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Abstract. We analyse a model for macro-parasites in an age-structured host
population, with infections of hosts occurring in clumps of parasites. The
resulting model is an infinite system of partial differential equations of the first
order, with non-local boundary conditions. We establish the condition for the
parasite–free equilibrium to be asymptotically stable, in terms of R0 < 1, where
R0 is a quantity that is interpreted as the reproduction number of parasites.
To show this, we prove that s(B − A) < 0 [> 0] if and only if ρ(B(A)−1) < 1
[> 1] where B is a positive operator, and A generates a positive semigroup of
negative type. Finally, we discuss how R0 depends on the parameters of the
system, especially on the mean size of infecting clumps.

1. Introduction. A basic concept in models for micro-parasites (bacteria, viruses,. . .)
is the basic reproductive number R0, the expected number of infected hosts pro-
duced by a single infected host in a completely susceptible host population [7]:
in fact, in most epidemic models, R0 > 1 is a necessary and sufficient condition
for the instability of the disease-free equilibrium, and a sufficient condition for the
persistence of pathogens.

A similar concept (see, for instance, [24]) has been introduced in several models
for macro-parasites (mainly helminths), but it has been difficult to obtain general
results, because the basic models for macro-parasites consist of an infinite system of
differential equations, whose first root can be traced to Kostizin [15]. Such systems
have proved very difficult to analyse (see, however, [10, 17, 18, 22, 23, 20]) and much
of the analysis, including the formulation of thresholds for parasite persistence in
terms of R0, has been performed using simplified models consisting of few ordinary
differential equations.

Anderson and May [1] introduced in the infinite model by Kostizin the assump-
tion that parasite distributions were, at each time, negative binomial, obtaining
simplified models consisting of few ordinary differential equations. The negative
binomial distribution has been routinely used to fit empirical data on parasite
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abundance, and is considered an aggregated (or overdispersed) distribution, mean-
ing that, if parasites are distributed among hosts in a negative binomial fashion,
most parasites will be aggregated in few hosts. Generally, the negative binomial is
parametrized with a positive parameter κ that measures the degree of aggregation
κ, that was used as a fixed constant in the model by Anderson and May [1], and in
many following applications (see [4, 26] for recent reviews). It has been found that
parasite persistence occurs in this model if

R0 :=
hK

c+K
·

1

µ+ α+ σ
> 1. (1)

It can then be seen that the threshold is independent of the value of the aggregation
parameter κ.

While the model by Anderson and May has been extremely influential in un-
derstanding the dynamics of host-parasite systems, certainly it is not satisfying on
several respects. First of all, the assumption of a negative binomial distribution is
inconsistent with the (infinite) system of differential equations where it is inserted;
second, the assumption of a fixed k is in contrast with empirical observations [12]
of variability of k in space and time; finally, assuming a fixed aggregation index
k does not make it possible to understand out of which mechanisms aggregation
arises. Thus, progress has been made in several directions, analysing directly the
infinite system, or considering other types of low-dimensional approximations [19],
or introducing in the model those biological features that may cause parasite aggre-
gation: host heterogeneity and ‘clumped’ infections have been considered especially
relevant in this respect [25].

This paper presents the analysis of the infinite system with the latter feature:
‘clumped’ infections. By “clumped infections”, we mean that a host gets infected
with a “parcel” of larvae in the same time. This feature has already been considered
in models aimed at characterizing the age-intensity of parasitism among hosts [14],
and in dynamic models at the population level [21]. It was found [21] in the analysis
of a three-dimensional approximation of the infinite model that (1) is correct only
when infections occur only with a single parasite; otherwise, R0 can be expressed
only implicitly, but it can be seen that the value of R0 decreases as aggregation is
increased, in contrast to (1), found with fixed aggregation [1].

It seems therefore interesting understanding how R0 depends on the level of ag-
gregation in the infinite model, in order to see whether the result of [21] depends on
the approximation used. A rigorous treatment of the threshold condition for para-
site persistence, written as R0 > 1, has been carried out, using semigroup methods,
in [23] (see also [20] for extensions of the idea). The computations performed in [23],
while providing the general setting used here, did not yield an explicit expression
for the case considered here.

The organization of the paper is as follows. In Section 2 we present the model, set
it in abstract form, and, summarizing some results of [22, 23], show (Proposition 2)
that the parasite-free-equilibrium is asymptotically stable or unstable, according to
whether s(B+A) is negative or positive, where B and A are suitable operators, and s
represents the spectral bound [28]. In Section 3, we prove, in an infinite-dimensional
setting, a technical lemma on the spectrum of positive operators, well known in
finite dimensions [7]: i.e. that s(B + A) < 0 [> 0] if and only if ρ(B(−A)−1) < 1
[> 1] under suitable assumptions on A and B; such a result is somehow alluded
to in the infinite-dimensional definition of R0 [11], but we could not find in the
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literature any explicit statement, or proof. Finally, in Section 4 we compute explictly
R0 = ρ(B(−A)−1), and discuss the biological interpretation of the result.

2. The model, and its abstract setting. The variables of the model are pi(t)
for i ≥ 0, the density of hosts which carry i parasites in the host at time t. One
can write differential equations for these variables, by taking into account the new
infections, the deaths of adult parasites, as well as hosts’ births and deaths. The
method is explained, for instance, in [23]; the main difference lies in the infection
mechanism.

Here, we assume that, as a host is infected, it ingests an infecting “parcel”, of
which cl represents the probability that it consists of l larvae, l ≥ 1; the mean

number of larvae in an infecting “packet” is γ =
∞
∑

l=1

lcl < +∞. Finally, we assume

that ϕ is the rate at which a host ingests an infective parcel.
Under this assumption on the infection process together with constant rates of

parasite death σ, of host birth b and death d, plus parasite-induced host death rate
α and birth reduction ξ, one obtains the following infinite system of differential
equations











































d

dt
p0(t) = −(µ+ ϕ(t))p0(t) + σp1(t) + b

+∞
∑

i=0

pi(t)ξ
i

d

dt
pi(t) = −(µ+ ϕ+ i(α+ σ))pi(t) + σ(i+ 1)pi+1(t)

+ ϕ

i
∑

l=1

clpi−l(t) i ≥ 1.

(2)

We showed in [23] that including hosts’ age in the model (as in [17]) does not
really introduce big complications, and indeed makes many expressions more trans-
parent. Thus, we rewrite the model for an age-structured host population, allowing
for age-dependent host fertility and mortality, and, in order to have a parasite-free
equilibrium, for density-dependent host birth rate.

Thus, the model we consider in the paper is































































∂

∂t
pi(a, t) +

∂

∂a
pi(a, t) = −(µ(a) + ϕ(t) + i(α+ σ))pi(a, t)

+σ(i+ 1)pi+1(a, t) + ϕ(t)

i
∑

l=1

clpi−l(a, t) i ≥ 0

p0(0, t) = ψ(N(t))

∫ +∞

0

β(a)

+∞
∑

i=0

pi(a, t)ξ
i da

pi(0, t) = 0 i > 0

pi(a, 0) = hi(a) i ≥ 0

(3)

with the convention p−1(a, t) ≡ 0. Here pi(a, t) for i ≥ 0 and a in [0,+∞) denotes
the density of hosts of age a harbouring i parasites at time t.
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Here N(t) is total population density, and P (t) [to be used below] is total parasite
density, given by

N(t) =

∫ +∞

0

+∞
∑

i=0

pi(a, t) da and P (t) =

∫ +∞

0

+∞
∑

i=1

ipi(a, t) da. (4)

Moreover, the infection rate ϕ(t), is given, following the time-scale argument of
Anderson and May [1] about free-living larvae, by

ϕ(t) =
hP (t)

c+N(t)
. (5)

As for demographic parameters, µ(a) is the natural death rate of hosts while
the fertility rate of hosts carrying i parasites is given by ψ(N(t))β(a)ξi, where β is
the maximum fertility rate, and ψ is a decreasing function that shapes the density-
dependence of fertility.

Following standard assumptions in the theory of age-structured populations [13,
28], we assume that β and µ are nonnegative functions, β ∈ L∞[0,+∞), there exist
µ−, µ+ such that 0 < µ− ≤ µ(a) ≤ µ+ for a.e. a ∈ [0,+∞). As for the function ψ,
we assume ψ ∈ C1([0,+∞)), ψ(0) = 1, ψ′(s) < 0, lim

s→+∞
ψ(s) = 0.

The behaviour of the purely demographic system (hi ≡ 0 for i ≥ 1) is well known.
Let

π(a) = exp{−

∫ a

0

µ(s) ds} (survival function)

and

R =

∫ +∞

0

β(a)π(a) da.

It can be easily seen that, if R > 1, there is a stationary solution p̄ of (3) given by










p̄0(a) =
K

∫ +∞

0 π(u) du
π(a)

p̄i(a) = 0 i > 0.

(6)

This will be called the ‘Parasite Free Equilibrium’, shortly PFE.
It is well known [13, 28] that p̄0 will be locally asymptotically stable for the

purely demographic system if and only if there are no solutions with Reλ ≥ 0 of

1

R

∫ ∞

0

β(a)π(a)e−λa da+
ψ′(K)KR

∫ ∞

0

π(a) da

∫ ∞

0

π(a)e−λa da = 1.

All these conditions on the demographic functions will be implicitly assumed
from here onwards.

In order to study the stability of the equilibrium p̄ of (3), we follow the abstract
approach described in [22] using semigroup theory. To perform this, we transform
system (3) into the abstract Cauchy problem:

{

p′(t) = A(p(t) +H(p(t)) + F (p(t))
p(0) = p0 (7)

where A is the generator of a C0-semigroup on a certain Banach space X , while
F : X → X and H : X → FA are locally Lipschitz operators.
Here FA is the Favard class of A (see [2]). We remember the following general
Theorem presented in (see [6] for details):
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Theorem A ([22, 6]). Assume

(H1) A : D(A) ⊂ X → X is the generator of a C0-semigroup on a Banach space X
(H2) H : X → FA and F : X → X are locally Lipschitz continuous, i.e. for all

R > 0 there exists LR, KR > 0 such that

||H(p) −H(q)||FA
≤ LR||p− q||, ||F (p) − F (q)| ≤ KR||p− q||

for all p, q ∈ X such that ||p||, ||q|| ≤ R (more generally, H and F could be
defined only on an open set of X).

Then

(a) for each p0 ∈ X there exists a unique (local) mild solution of (7) i.e. a
continuous function t→ p(t) satisfying the integral equation

p(t) = etAp0 +A

∫ t

0

e(t−s)AH(p(s))ds+

∫ t

0

e(t−s)AF (p(s))ds;

(b) If H and F are continuously differentiable and (p0 +H(p0)) ∈ D(A) then p(t)
is a classical solution of (7), i.e. p(t) +H(p(t)) ∈ D(A) for each t ∈ [0, tmax),
p(t) is differentiable and satisfies the equation (7) for each 0 ≤ t < tmax.

(c) The mild solution depend continuously on the initial datum and give rise to
a nonlinear semigroup T (t).

To use this “abstract approach” for system (7), we choose for X :

X :=

{

p = (pi)i∈N : pi ∈ L1(0,∞) ∀ i ≥ 0,

+∞
∑

i=1

i

∫ +∞

0

|pi(a)|da <∞

}

endowed whith the norm:

||p|| :=

∫ +∞

0

|p0(a)|da+
+∞
∑

i=1

i

∫ +∞

0

|pi(a)|da.

As the operators A, F and H , we let A be the closure of the (closable) linear
operator A on X defined by:

D(A) =
{

p = (pi)i∈N : pi ∈W 1,1(0,∞), pi(0) = 0 ∀i ≥ 0,

∃ N ∈ N s.t. pi ≡ 0 ∀ i > N
}

Api(a) := −p′i(a) − (µ(a) + i(α+ σ))pi(a) + (i+ 1)σpi+1(a) for i ≥ 0

F is the non linear operator given by:

(Fp)0(a) =

−h
+∞
∑

i=1

i
∫ +∞

0
pi(s)ds

c+
+∞
∑

i=0

∫ +∞

0
pi(s)ds

p0(a)

(Fp)i(a) =

−h
+∞
∑

i=1

i
∫ +∞

0 pi(s)ds

c+
∑+∞

i=0

∫ +∞

0 pi(s)ds

(

i
∑

j=1

cjpi−j(a) − pi(a)
)

i ≥ 1.

(8)

F is defined on E where

E := {p ∈ X : c+

+∞
∑

i=0

∫ +∞

0

pi(s)ds 6= 0}.
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Finally H is

(Hp)0(a) = −ψ
(

∫ +∞

0

+∞
∑

i=0

pi(s)ds
)(

∫ +∞

0

β(s)

+∞
∑

i=0

pi(s)ξ
ids

)

π(a)

(Hp)i(a) ≡ 0 for i ≥ 1

(9)

In order to study the stability of p∗, we will use the linearization principle, proved
in [5] for non linear semigroups, and specialized to equations of the type (7) in [23].

Before stating the precise theorem, we recall some standard notations and results
about the spectrum of generators of semigroups (see, for instance, [9] or [28]). Let
A : D(A) ⊂ X → X be the generator of a C0-semigroup T (t) on a Banach space
X , then one can define the quantities:

• s(A) := sup{Reλ : λ is an eigenvalue of A}, the spectral bound of A.
• ρ(A) := sup{|λ| : λ is an eigenvalue of A}, the spectral radius of A.

• ω0(A) := limt→∞
|| log T (t)||

t
, the type or growth bound of T (t).

• ω1(A) := limt→∞
|| log α[T (t)]

t
, where α is the measure of noncompactness

It is well known [28, Prop. 4.13] that ω0(A) = max(ω1(A), s(A))).
For an equilibrium p∗ of (7), define the linear operator Bp∗p := A(I+H ′(p∗))p+

F ′(p∗)p. The type of the semigroup generated by Bp∗ determines the stability of
p∗:

Theorem B ([23, Corollary 1]). If ω0(Bp∗) < 0, then p∗ is exponentially asymp-
totically stable for (7). If ω0(Bp∗) > 0, X = X1 ⊕X2 with X1 finite dimensional,
Xi invariant with respect to etBp∗ for i = 1, 2, and

min{Reλ : λ ∈ σ(Bp∗ |X2)} > max{ω0(Bp∗ |X2), 0}

then p∗ is unstable for (7).

In order to apply Theorem B to the equilibrium p̄ of (3), we need first to linearize
H and F . We can easily establish the following:

Lemma 2.1. Let ci ≥ 0, i ≥ 1 and
∑+∞

i=1 ci = 1. The Frèchet derivative of F and
H in p̄ are given by:

[

F ′(p̄)u
]

0
(a) = −

h

c+K

π(a)
∫ +∞

0
π(u)du

+∞
∑

i=1

i

∫ +∞

0

ui(s)ds

[

F ′(p̄)u
]

i
(a) =

cih

c+K

π(a)
∫ +∞

0 π(u)du

+∞
∑

i=1

i

∫ +∞

0

ui(s)ds, i ≥ 1

[

H ′(p̄)u
]

0
(a) = −

( ψ′(K)KR
∫ +∞

0
π(u)du

+∞
∑

i=0

∫ +∞

0

ui(s)ds

+
1

R

∫ +∞

0

β(s)

+∞
∑

i=1

iui(s)ξ
ids

)

π(a)

[

H ′(p̄)u
]

i
(a) = 0, i ≥ 1.

Note that these operators differ from those obtained in [23] only in the compo-
nents

[

F ′(p̄)u
]

i
, i ≥ 1. Indeed, if c1 = 1 and ci = 0 for i > 1 (infections with a

single parasite), we recover exactly the results in [23].
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Because of the structure of H ′(p̄) (all components beyond the 0-th are 0), the
following proposition is useful to determine the type of the semigroup generated by
B(p̄):

Theorem C ([23, Theorem 3]). Let A0 and B1 be the generators of C0-semigroups
on the Banach spaces Y0 and Y1 respectively. Let Hi ∈ L(Yi, FA0) for i = 0, 1 and
B10 ∈ L(Y1, Y0).Then:

(i) The operator B̃ defined by:

B̃
(

q0
q1

)

=
(

A0(q0 +H0q0 +H1q1) +B10q1
B1q1

)

is the generator of a C0-semigroup on Y = Y0 ⊕ Y1;
(ii) If, letting I0 be the identity in Y0,

(I0 +H0) is invertible on Y0,

then

ω0(B1) < 0 and ω0(A0(I0 +H0)) < 0 ⇐⇒ ω0(B̃) < 0

We now show that Theorem C can be applied to B̃ := Bp̄.
Set

X̄1 = {q̄1 = (qi)i≥1 : qi ∈ L1(0,+∞),

+∞
∑

i=1

∫ +∞

0

i|qi(a)|da <∞}

X0 = X1 = L1(0,+∞) and X = X0 ⊕ X̄1

The operator B̃ can be represented as

B̃
(

q0
q̄1

)

=
(

A0(q0 +H0q0 +H1q̄1) +B10q̄1
B̄1q̄1

)

where

A0 : D(A0) = {q0 ∈ X0 : q0 ∈ W 1,1(o,∞), q0(0) = 0} → X0

A0q0(a) = −q′0(a) − µ(a)q0(a),

B10 : X̄1 → X0

B10q̄1(a) =
−h

∑+∞
i=1 i

∫ +∞

0 qi(s)ds

c+K
p∗0(a) + σq1(a);

H0 : X0 → FA0 ,

H0q0(a) = −
( ψ′(K)KR

∫ +∞

0 π(u)du

∫ +∞

0

q0(s)ds+
1

R

∫ +∞

0

β(s)q0(s)ds
)

π(a);

H1 : X1 → FA0

H1q̄1(a) = −
( ψ′(K)KR

∫ +∞

0
π(u)du

+∞
∑

i=1

∫ +∞

0

qi(s)ds+
1

R

∫ +∞

0

β(s)

+∞
∑

i=1

qi(s)ξ
ids

)

π(a).

B̄1 is the closure of

B1 : D(B1) → X̄1, B1 = B +A1
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with

A1 : D(A1) → X̄1

D(A1) =
{

q̄1 ∈ X̄1 : qi ∈W 1,1(0,+∞), qi(0) = 0 ∀ i ≥ 1,

∃ N ∈ N s.t. pi ≡ 0 ∀ i > N
}

A1qi(a) = −q′i(a) + (µ(a) + i(α+ σ)qi(a) + σ(i+ 1)qi+1, i ≥ 1

(10)

and

B : X̄1 → X̄1

Bq̄1(a) = bϕ(q̄1), with b(∈ X1) = (c1, c2, . . . )π(a),

ϕ(q̄) =
hK

(c+K)L

∞
∑

i=1

i

∫ +∞

0

qi(s)ds.

(11)

Proposition 1. The closure A1 of A1 generates a C0-semigroup on X̄1, with
ω0(A1) < 0. The closure of B1 generates a C0-semigroup on X̄1.

Proof. To see that A1 generates a C0-semigroup on X̄1 with ω0(A1) < 0, one can
follow the proof given for the operator A in [22].

Since B is bounded, the classical result on bounded perturbations can be applied
and B1 = A1 +B generates a C0-semigroup.

Proposition D ([23, Prop. 5 and 6] ). I0 +H0 has a bounded inverse on X0, and
ω0(A0(I0 +H0)) < 0.

Summarizing the results of this Section, we have the following

Proposition 2. The equilibrium p̄ of (3) is asymptotically stable [unstable] if
ω0(A1 +B) < [>] 0, with A1 and B defined in (10) and (11).

3. s(B + A) < 0 ⇐⇒ ρ(B(−A)−1) < 1. It is well known that, in most epidemic
models, stability [or instability[ of the disease–free equilibrium holds if R0 < 1
[> 1], where R0 represents the average number of infectious produced by a single
infected over its infectious period. Diekmann and Heesterbeek [7] have given a
general definition of R0 in terms of the spectral radius of a positive operator. In [8]
they show, in a finite dimensional context, the equivalence between R0 < 1 and the
stability of the disease–free equilibrium, by proving the following

Proposition E. Let B a nonnegative irreducible matrix, and D an invertible ma-
trix with nonnegative inverse. Then

s(B −D) < 0 ⇐⇒ ρ(BD−1) < 1.

In most applications, the variables indicate different infectious stages,D describes
the transitions between stages (in many cases, D is a diagonal matrix whose entries
are the exit rates from the infective classes) and B represents the infection process.

In this Section, we give an extension of Proposition E to the infinite-dimensional
case that can be applied to Proposition 2. Heesterbeek [11] gives a definition of R0

in an infinite-dimensional case, but we could not find in the literature any explicit
statement, or proof, of a result analogous to Proposition E in infinite dimensions.

Our proof is completely analogous to that in [8], but, first, we need the following
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Lemma 3.1. Let C be an linear compact positive operator on Banach space X,
with total positive cone X+ (i.e., its linear hull is dense in X). If C has a spectral
radius ρ > 0, then ρ is a pole of the risolvent of maximal order on the spectral circle,
with an eigenvector in X+.

Proof. See [27, Appendix 2.4, Corollary].

Our result is the following

Proposition 3. Let A and K be operators on a Banach space X with total positive
cone X+. Let:

H1) A is the generator of a positive strongly continuos semigroup with ω0(A) < 0.

Hence there exists (−A)−1 and (−A)−1 =
∫ +∞

0
etAdt ≥ 0 (see [9] , Cap. VI,

Lemma 1.9 for details).
H2) K is a linear compact positive operator.

Then the following are equivalent:

(a) s(A+K) < 0
(b) ρ(K(−A)−1) < 1

Proof. (a) =⇒ (b) Since K is compact ω1(A + K) = ω1(A)[28, Proposition 4.14].
Therefore from (1) ω1(A+K) = ω1(A) ≤ ω0(A) < 0 and from this and (a)

ω0(A+K) = max(s(A+K), ω1(A+K)) < 0 (12)

Since A+K generates a strongly positive semigroup, Lemma VI.1.9 of [9] can be
applied to the semigroup generated by A+K and we have from (12) [−(A+K)]−1 ≥
0. FromH1) andH2) it follows that the operatorK(−A)−1 is compact and positive,
therefore ρ(K(−A)−1) ∈ σ(K(−A)−1) [3, Prop. A 3.12].

If ρ(K(−A)−1) = 0 (b) is true. Therefore assume ρ(K(−A)−1) > 0; by virtue of
Lemma 3.1 there exists a positive eigenvector ϕ that corresponds to ρ(K(−A)−1).
From K(−A)−1ϕ = ρ(K(−A)−1)ϕ it follows

(K(−A)−1 − I)ϕ = (ρ(K(−A)−1) − 1)ϕ;

letting ψ = (−A)−1ϕ, this identity becomes

Kψ +Aψ = (ρ(K(−A)−1) − 1)ϕ. (13)

Applying [−(A+K)]−1 to this identity, we have

−ψ = (−A−K)−1(ρ(K(−A)−1) − 1)ϕ.

Since −ψ ≤ 0 it follows that ρ(K(−A)−1) − 1 ≤ 0, that is

ρ(K(−A)−1) ≤ 1.

If ρ(K(−A)−1) = 1, (13) becomes Kψ + Aψ = 0 which contradicts (a). This
concludes the proof of (b).
(b) =⇒ (a) We show at first that s(K(−A)−1 − I) ≤ ρ(K(−A)−1) − 1. To prove
this, let λ be an eigenvalue of K(−A)−1 − I, that corresponds to the eigenvector
v, then K(−A)−1v − v = λv, therefore K(−A)−1v = (λ + 1)v and |λ + 1| ≤
ρ(K(−A)−1); from this it easily follows that Reλ ≤ ρ(K(−A)−1)− 1 and therefore
s(K(−A)−1 − I) ≤ ρ(K(−A)−1) − 1.

From H1) and (2) K(−A)−1 is linear positive and continuous, therefore it gen-
erates a strongly positive continuous semigroups and 0 ∈ ρ(K(−A)−1 − I); then
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Lemma 1.9, Cap.VI of [9] can be applied toK(−A)−1 and since s(K(−A)−1−I) < 0
we get [−(K(−A)−1 − I)]−1 ≥ 0. Therefore, since (−A)−1 ≥ 0

[(−K(−A)−1 + I)(−A)]−1 = (−A)−1[−(K(−A)−1 − I)]−1 ≥ 0

and

[(−K(−A)−1 + I)(−A)]−1 = (−K − A)−1 ≥ 0.

Then Lemma VI.1.9 of [9] can be applied to A+K and we conclude that s(A+K) <
0.

4. The threshold for the stability of the parasite–free equilibrium. By
Proposition 2, we know that p̄ is asymptotically stable if ω(B +A1) < 0. From the
previous Section, we have

Proposition 4. s(B +A1) < 0 ⇐⇒ ρ(B(−A1)
−1) < 1.

Proof. By virtue of Proposition 1 A1 verifies H1) of Proposition 3; B is a linear
compact (with one-dimensional range) positive operator, satisfying H2) of Propo-
sition 3. Moreover L1

+ is a total cone in L1. Therefore the thesis follows from
Proposition 3.

Theorem 4.1. The equilibrium p̄ of (3) is asymptotically stable if R0 < 1 and
unstable if R0 > 1 where

R0 = ρ(B(−A1)
−1)

=
hK

(c+K)L

+∞
∫

0

e(−α+σ)aG′
( σ

α+ σ
+

α

α+ σ
e(−α+σ)a

)

da

+∞
∫

0

π(a+ s)ds. (14)

and G(z) :=
+∞
∑

i=1

ciz
i.

Proof. By Proposition 4, s(B+A1) < 0 ⇐⇒ ρ(B(−A1)
−1) < 1. Moreover, ω1(A1 +

B) = ω1(A1) since B is compact [28], Prop. 4.14) and ω1(A1) < 0 (Proposition 1);
therefore ω0(B1) < 0 if and only if ρ(B(−A1)

−1) < 1.
We now show that ρ(B(−A1)

−1) is given by the expression (14).
In fact, let ρ be an eigenvalue and q an eigenvector of B(−A1)

−1, that is

B(−A1)
−1q = ρq (15)

By the definition (11) of B we have B(−A1)
−1q = bϕ((−A1)

−1q). Then in (15) we
can set q = b so that necessarily ρ = ϕ((−A1)

1b). This means that ρ(B(−A1)
−1) =

ϕ(p) with p := (−A1)
−1b.

We need only to compute ϕ(p). By definition, b = −A1p, i.e.

b+A1p = 0. (16)

Using bi = ciπ(a) for i ≥ 1, (16) becomes,
{

−p′i(a) − (µ(a) + i(α+ σ))pi(a) + σ(i+ 1)pi+1(a) + ciπ(a) = 0
pi(0) = 0

(17)

If we set qi :=
pi(a)

π(a)
, the first of (17) become

q′i(a) = −i(α+ σ))qi(a) + σ(i+ 1)qi+1(a) + ci for i ≥ 1 (18)
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Multiplying (18) by zi and summing from 0 to +∞ (for i = 0, we can set c0 = 0 so
that q′0 = σq1) we get:

+∞
∑

i=0

q′i(a)z
i = −

+∞
∑

i=0

i(α+ σ))qi(a)z
i +

+∞
∑

i=0

σ(i+ 1)qi+1(a)z
i +

+∞
∑

i=0

ciz
i (19)

Setting

Q(a, z) :=

+∞
∑

i=0

qi(a)z
i

(19) can be written as
{

Qa(a, z) = (σ − (α+ σ)z)Qz(a, z) +G(z)
Q(0, z) = 0

(20)

We can then obtain

ϕ(p) =
hK

(c+K)L

∫ +∞

0

+∞
∑

i=1

ipi(a)da =
hK

(c+K)L

∫ +∞

0

π(a)

+∞
∑

i=1

iqi(a)da

=
hK

(c+K)L

∫ +∞

0

π(a)Qz(a, 1)da.

(21)

The solution of (20) is

Q(a, z) =

∫ a

0

G

(

e−(α+σ)(a−s)z +
σ

α+ σ
(1 − e−(α+σ)(a−s))

)

ds. (22)

Substituting (22) in (21), we obtain

ϕ(p) =
hK

(c+K)L

∫ +∞

0

π(a)da

∫ a

0

e−(α+σ)(a−s)

×G′

(

e−(α+σ)(a−s) +
σ

α+ σ
(1 − e−(α+σ)(a−s))

)

ds

which, interchanging the order of integration and changing variables, can be written
as

R0 = ϕ(p) =
hK

(c+K)L

+∞
∫

0

+∞
∫

0

π(s+ τ)e−(α+σ)τ

×G′

(

σ

α+ σ
+

α

α+ σ
e−(α+σ)τ

)

dτ ds. (23)

Finally, with further changes of the order of integration and of variables, one arrives
at showing that ϕ(p) and hence ρ(B(−A1)

−1) is given by the expression in (14).

In order to give a biological interpretation of the quantity R0 defined in the
previous Theorem, it is convenient to think in terms of the average number of
infectious ‘parcels’ produced, in a population at the infection–free equilibrium, by
one average infectious ‘parcel’ in absence of further infections.

By definition, at time τ = 0, the ‘parcel’ will consist of i parasites with probability
ci; then, it will be subject to a death-and-extinction process Z(τ), due to parasite
deaths (at rate σ) and host deaths (at rate µ(a)+αj), if host’s age is a and number
of parasites is j). Assume that the initial host’s age (at time τ = 0) is a. Then
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pi(τ) (the probability that the host is alive and carries i parasites at time τ) satisfy
the following system of equations:

{

p′i(τ) = −(µ(a+ τ) + i(α+ σ))pi(τ) + σ(i+ 1)pi+1(τ)
pi(0) = ci

(24)

Analogously to above, considering the variables qi(τ) :=
pi(τ)π(a)

π(a+ τ)
and

Q(τ, z) :=

+∞
∑

i=0

qi(τ)z
i,

we find that Q satisfies
{

Qτ (τ, z) + ((α+ σ)z − σ)Qz(τ, z) = 0
Q(0, z) = G(z).

(25)

The solution of (25) is

Q(τ, z) = G

(

e−(α+σ)τz +
σ

α+ σ
(1 − e−(α+σ)τ )

)

. (26)

Furthermore, the average number of parasites surviving (together with the host)
at time τ is

E(Z(τ)) =
∞
∑

i=1

ipi(τ) =
π(a+ τ)

π(a)

∞
∑

i=1

iqi(τ) =
π(a+ τ)

π(a)
Qz(τ, 1)

=
π(a+ τ)

π(a)
G′

(

σ

α+ σ
+

α

α+ σ
e−(α+σ)τ

)

e−(α+σ)τ

(27)

Since the rate at which each parasite produces new successful infectious ‘parcels’ is

(when the population density is K)
hK

c+K
, the average number of new successful

parcels produced over all times τ > 0 is

R(a) =
hK

c+K

∫ ∞

0

E(Z(τ)) dτ

=
hK

c+K

∫ ∞

0

π(a+ τ)

π(a)
G′

(

σ

α+ σ
+

α

α+ σ
e−(α+σ)τ

)

e−(α+σ)τ dτ.

(28)

We made explicit the dependence of the previous computations on the initial host’s
age a.

We need now to consider an average infection. In a stationary population, the

probability density of hosts’ age is
π(a)

L
. Hence, a natural definition for the repro-

ductive number is

R0 =

∫ ∞

0

π(a)

L
R(a) da.

Substituting (28) in this expression, we obtain exactly expression (23) for R0.
Finally, we consider the special case, already studied through 3-dimensional ap-

proximations, where no parameters are age-dependent and the distribution of in-
fectious ‘parcels’ follows a (truncated) Poisson.
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Corollary 1. Let µ(a) ≡ µ for each a ∈ [0,+∞), and ci =
λie−λ

i!(1 − e−λ)
for i ≥ 1.

Then

R0 =
hK

c+K

λe−λ

1 − e−λ

1

α+ σ
e

λσ
α+σ

∫ 1

0

t
µ

α+σ e
λαt
α+σ dt. (29)

Proof. By Proposition 4.1

R0 =
hK

(c+K)L

∫ +∞

0

e−(α+σ)aG′
( σ

α+ σ
+

α

α+ σ
e(−α+σ)a

)

da

∫ +∞

0

π(a+ s)ds.

Since µ(a) = µ, we have π(a+ s) = e−µ(a+s) and L =
∫ +∞

0 π(s) ds = 1
µ
. Moreover

G(z) =

+∞
∑

i=1

ziλie−λ

i!(1 − e−λ)
=
e−λ(eλz − 1)

1 − e−λ
so that G′(z) =

λe−λ

1 − e−λ
eλz .

Therefore we have

R0 =
hK

c+K

λe−λ

1 − e−λ

∫ +∞

0

e−(α+σ+µ)aeλ( σ
α+σ

+ α
α+σ

e−(α+σ)a) da

that, with a change of variables, reduces to the form (29).

Remark 1. Note that in the 3-dimensional approximation of the same model [21],
it was obtained

R0 =
hK

c+K

λ

1 − e−λ

1

µ+ σ + α+ ηK

where ηK solves the second degree equation

η(σ + α+ η +
hK

c+K
) − αλ

hK

c +K
= 0.

It is then apparent that this approximation does not yield the correct threshold
parameter (29).

In order to interpret (29), it is first of all worth noting that
λ

1 − e−λ
is the average

number of parasites per clump, so that, when λ goes to 0, we recover the model
with single infections. Consistently, it is easy to see that, setting λ = 0 in (29),
we obtain the expression (1). Hence, in order to properly understand the effect of

clumps, it is convenient to set h′ = h
λ

1 − e−λ
, so that rate of parasite production

becomes independent of λ and we write

R0 =
h′K

c+K

1

α+ σ

∫ 1

0

t
µ

α+σ e−
λα(1−t)

α+σ dt. (30)

One easily sees that the expression (30); hence, infections in clumps have a negative
effect on the reproduction number R0. If parasite aggregation were caused by
‘clumped’ infections, increasing aggregation would reduce the reproduction number,
and so the persistence, of parasites, in contrast with the conclusions obtained in the
2–dimensional approximation [1].

Finally, since (30) is anyway a complex expression, some approximations may
be useful. Here in particular, we consider the cases of α close to 0 (little mortality
induced by parasites) and λ close to 0 (small clumps).

For the first case, one easily obtains

R0 =
h′K

c+K

1

µ+ σ

(

1 − α(
1

µ + σ
+

λ

µ+ 2σ
) +O(α2)

)

. (31)
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The other approximation yields

R0 =
h′K

c+K

1

µ+ α+ σ

(

1 −
αλ

µ+ 2(α+ σ)
+ O(λ2)

)

. (32)
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