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I examine here the effects of host heterogeneity in the growth of immune response on the evolution and
co-evolution of virulence. The analysis is based on an extension of the ‘nested model’ by Gilchrist and
Sasaki [Modeling host-parasite coevolution, J. Theor. Biol. 218 (2002), pp. 289–308]; the criteria for host
and parasite evolution, in the paradigm of adaptive dynamics, for that model are derived in generality.
Host heterogeneity is assumed to be fixed at birth according to a lognormal distribution or to the presence
of two discrete types. In both cases, it is found that host heterogeneity determines a dramatic decrease in
pathogen virulence, since pathogens will tune to the ‘weakest’ hosts. Finally, the difference in modelling Q1
assumptions is clarified why different results are present in the literature.

Keywords: evolution of virulence; host heterogeneity; host–pathogen coevolution; pathogen-immune Q2
dynamics

1. Introduction

The evolution of virulence is at the centre of very extensive theoretical investigations, with also
practical consequences and experimental tests [10]. Within a very extensive literature on the
subject, only few papers have considered the effect of heterogeneity in host population, with
contrasting results [13,14,17,29].

I analyse here this problem in the framework of ‘nested models’ where the between-host
transmission model is coupled with a (simplified) model of host immune response [2,15,16,21];
precisely, I assume that individuals differ in the rate of immune response, so that the host popula-
tion will consist of a mixture of individuals more or less able to cope with a pathogen infection.
This idea is applied to the model proposed by Gilchrist and Sasaki [16], slightly modified as for
host demography; this modification allows for a clear presentation of the assumptions used in the
invasion analysis.

The model is presented in Section 2 and its evolutionary analysis in Section 3, where I look
specifically at the evolution of disease-induced mortality; the criterion for host evolution, stud-
ied by Gilchrist and Sasaki [16] only in the limiting case of negligible natural mortality, is
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2 A. Pugliese

extended to arbitrary natural mortality. In the following section, the model is extended allowing
for heterogeneous hosts; the focus of the analysis is on the effect of heterogeneity on the evo-
lution of disease-induced mortality. In Section 5, I compare the results obtained on the effect of
heterogeneity with those obtained by different authors and suggest possible extensions to make
the model more realistic.

2. Nested model

In the ‘nested models’ framework, there is a model for within-host pathogen dynamics that is then
coupled to a between-host transmission model.

2.1. Within-host model

The analysis here is based on the model proposed by Gilchrist and Sasaki [16], in which within-host
immune response is described in a very simple way. Precisely, the within-host state is described
through the pathogen load P and the host’s level of specific immunity B. The variable B may
represent some precise quantity, such as the density of specific B-cells, or a more generic index
related to the different types of immune cells specific for that pathogen agent.

The model has the structure of a predator–prey model, with pathogens (the prey) replicating
at, in the absence of immune response, rate r and being killed by the immune system at rate c on
encounter, while the immune cells proliferate proportionally (with a proportionality constant a)
to the pathogen load:

dP

dϑ
= rP − cBP,

dB

dϑ
= aBP, (1)

where ϑ represents the time since infection of the individual host.
The initial conditions (at the time of infection) P(0) = P0 and B(0) = B0 are assumed to be

identical for all individuals that get infected. Note that by appropriate rescaling of variables, it
would be possible to set P0 = B0 = 1 (and c = 1) as in [16]. I choose to avoid this, so that one
could consider evolutionary dynamics of different parameters.

From an analysis of the phase plane of Equation (1), one easily sees that, as long as the
initial conditions satisfy r > cB0, pathogen level P(ϑ) initially increases to a maximum and then
declines to 0, while B(ϑ) increases to an asymptotic level (depending on initial conditions) B∞.
From the similarity of Equation (1) to the classical SIR epidemic models, Gilchrist and Sasaki [16]
found that the asymptotic value B∞ can be obtained as the unique root in (B0, +∞) of

c(B∞ − B0) = r log

(
B∞
B0

)
+ aP0. (2)

Note that recovery is not explicitly modelled in this system; however, when an individual
reaches a B level close to B∞, it is effectively immune to further infections and its pathogen load
is effectively 0.

Other simple models for within-host pathogen–immune interactions have been consid-
ered [24,28,33] with potentially different behaviours that may be realistic in many cases. For
the purpose of this analysis, system (1) describes adequately the dynamics of an acute infection
that is eventually cleared by the immune system. This is therefore the kind of infection dynamics
that is considered in this paper.
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2.2. Between-hosts transmission

As for between-hosts transmission, the basic idea is to assume that the force of infection of an
infected host is proportional to its pathogen load, i.e. equal to β0P . The constant β0 will be related
to the probability that an infecting particle reaches a host compartment from which it can be
released outside (saliva, skin, . . ., depending on transmission features) and can then reach another
host.

The other ‘macroscopic’ feature that will depend on internal state is the death rate of infected
hosts. The assumption used by Gilchrist and Sasaki [16] is that, beyond a natural mortality level
d, infected hosts will die, proportionally to rP , because of direct ill effects caused by pathogen
growth and, proportionally to aBP , because of resource strains caused by immune system growth.
Hence, the death rate of infected individuals will be

d + α(B, P ) := d + k1rP + k2aBP. (3)

Note that Ganusov et al. [14] made a very different assumption about pathogen-induced deaths.
In order to insert these assumptions into a proper mathematical framework, one could introduce

a density function i(t, B, P ) of infected hosts with immune level B and pathogen load P and
derive a partial differential equation (to be intended in a weak sense) for it.Alternatively, as in [16],
one can describe infected hosts only in terms of their infection age ϑ , since Equations (1) together
with initial conditions B(0) = B0 and P(0) = P0 yield unique expressions B(ϑ) and P(ϑ), albeit
impossible to compute explicitly; then a partial differential equation in t and ϑ can be derived.

Following the approach by Diekmann et al. [11], I prefer to write the equations in terms of
‘birth’ (in this context meaning infection) rates and kernels, since this framework allows for
generalizations without too many technical problems. In this case, the state at birth is unique
(all infected individuals start with the same initial conditions), and within-host dynamics after
infection is not influenced by the rest of the population. Then it is possible to compute the
probability of surviving to infection age ϑ as

exp

{∫ ϑ

0
[d + α(B(τ), P (τ))] dτ

}
= e−dϑπ(ϑ) (4)

with (check Equation (21) of [16])

π(ϑ) = exp

{
−

∫ ϑ

0
[k1rP (τ) + k2aB(τ)P (τ)] dτ

}
=

(
B(ϑ)

B0

)−k1r/a

e−k2(B(ϑ)−B0). (5)

Then the density of infectives of infection age ϑ at time t will be given by

i(t, θ) = ϕ(t − ϑ) e−dϑπ(ϑ), (6)

where ϕ(t) is the instantaneous rate of new infections at time t (‘birth’ rate).
ϕ(t) will be the product of susceptibles S(t) times the force of infection; this latter is given by

the integral (over all infection ages ϑ) of β0P(ϑ) times the density of infectives of age ϑ i(t, θ),
i.e.

ϕ(t) = S(t)

∫ ∞

0
β0P(ϑ) e−dϑπ(ϑ)ϕ(t − ϑ) dϑ. (7)

The total population size is

N(t) = S(t) +
∫ ∞

0
i(t, θ) dϑ = S(t) +

∫ ∞

0
e−dϑπ(ϑ)ϕ(t − ϑ) dϑ. (8)

The dynamics must be completed by an equation for susceptibles S(t). This will be a balance
between fertility (it is assumed that new hosts are born susceptibles both from susceptible and
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4 A. Pugliese

infected individuals), mortality d and infection rate ϕ(t). We then obtain

S ′(t) = b(N(t))N(t) − dS(t) − ϕ(t). (9)

Following Bremermann and Thieme [6], I assume that fertility is a decreasing function b(N) of
total population size N(t) such that b(0) > d and there exists a carrying capacity K such that
b(K) = d. An extreme assumption would be b(N) = 	/N , so that K = 	/d.

If b(N) = 	/N , system (7)–(9) is in the class of systems studied by Thieme and Castillo-
Chavez [32] in their study of models for HIV/AIDS. Following their analysis with a generic
function b(N), it can be seen that a key quantity in determining the behaviour of the system is

R0 = K

∫ ∞

0
β0P(ϑ) e−dϑπ(ϑ) dϑ. (10)

The quantity R0 can be easily interpreted as the expected number of hosts infected by a
newly infected host over its lifetime, if the susceptible population is kept at the disease-free
equilibrium K .

If R0 ≤ 1, the only equilibrium is (S, ϕ) = (	/d, 0), which is globally asymptotically stable; if
R0 > 1, (	/d, 0) is unstable and there exists a unique endemic equilibrium (S∗, ϕ∗) (Appendix 1).

Although a general proof of stability is missing, I will take for granted that, if R0 > 1, the
endemic equilibrium (S∗, ϕ∗) is the global attractor of the solutions of (7)–(9).

3. Pathogen and host evolution

3.1. Pathogen evolution

Bremermann and Thieme [6] proved, within the context of SIR ODE models, that in the compe-
tition between several pathogen strains with complete cross-immunity, only the strain with the
highest value of R0 survives. The same result was proved (through invasion analysis) by Anderson
and May [1] and has been widely used.

In the paradigm of adaptive dynamics (small and rare mutations) [20], this property leads to
the evolution of the pathogen strain with the highest feasible value of R0.

Gilchrist and Sasaki [16] employ the same criterion, without giving a proof since they considered
it to be standard through invasion analysis. For the sake of completeness, in Appendix 2, I present
a proof of the maximization of R0 for the current model, as long as it is true that (S∗, ϕ∗) is the
global attractor of the solutions of Equations (7)–(9).

If it is assumed [16] that pathogen replication rate r is free to evolve, evolution will lead to
reaching a maximum of R0 as a function of r . To see how R0 defined in Equation (10) will depend
on r , one uses Equation (5) and, with a change of variables, arrives at

R0 = β0K

∫ ∞

0
P(ϑ) e−dϑπ(ϑ) dϑ

= β0K

∫ ∞

0
P(ϑ) e−dϑ

(
B(ϑ)

B0

)−k1r/a

e−k2(B(ϑ)−B0) dϑ (11)

= β0K

aB0

∫ B∞

B0

e−dB−1(u)

(
u

B0

)−k1r/a−1

e−k2(u−B0) du.

This is Equation (26) of [16], except that there d = 0 is used, assuming that d is much smaller
than other parameters.
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Looking just at the direct dependence of Equation (11) on r , it may seem that R0 is a decreasing
function of r . However, also B∞ is an increasing function of r , and since for any t B(t) is an
increasing function of r , B−1(u) is a decreasing function of r .

Therefore, R0 is affected by r in opposite directions, and it is not easy to understand analytically
the overall effect. By numerical computations, R0 has always been found a function with a single
maximum; when a or k1 is very large, it is possible to prove that dR0/dr|r=0 < 0, so that the
maximum is at r = 0. Using parameter values that give rise to epidemic dynamics that appear
more realistic, R0 is a bell-shaped function with an intermediate maximum (Figure 1).

How can pathogen virulence corresponding to a given r be defined? In the context of
evolutionary epidemiology, virulence is generally synonymous to deaths induced by infection.

The probability of surviving the infection, neglecting natural deaths, is

π(∞) =
(

B∞
B0

)−k1r/a

e−k2(B∞−B0). (12)

1 − π(∞) is the case–fatality ratio and can be considered as a simple measure of virulence. It
is apparent that π(∞) is a decreasing function of r; in Figure 1, it can be seen that it decreases
sharply around the maximum of R0. Note that from the figure it appears that survival increases
with r for small values of r; this is an artefact, due to the fact that in that figure survival is actually
computed as total survival (also from natural deaths) up to the end of infection and that infections
are much longer with small r .

A slightly different definition of virulence, which keeps into account natural death rate, is given
in [27]. Using that definition, the apparent decrease in virulence with increasing r for small r is
avoided.

3.2. Host evolution

Gilchrist and Sasaki [16] analysed the evolution of a, the parameter measuring the speed of
immune response growth. Considering the limiting case when the natural death rate d goes to 0,
they prove, by invasion analysis, that evolution will tend to maximize π(∞), the probability of
surviving the infection.
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Figure 1. The values of the reproductive ratio R0, from Equation (11), and host survival to the end of the infection, for
different values of r . The scale for R0 is on the left and that for survival on the right. Parameter values are a = 1, c = 1,
P0 = 0.1, B0 = 10−3, d = 10−4, k1 = 10−4, k2 = 10−6 and β̄K = 0.4.
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6 A. Pugliese

In Appendix 3, I extend the analysis to an arbitrary mortality rate d, showing that, in the
paradigm of adaptive dynamics, evolution will tend to the maximum of expected life of a newly
infected individual, defined as

L =
∫ +∞

0
e−dϑπ(ϑ) dϑ =

∫ +∞

0
e−dϑ

(
B(ϑ)

B0

)−k1r/a

e−k2(B(ϑ)−B0) dϑ. (13)

This principle is probably well known, but I could not find a precise reference in the literature.
It is then necessary to analyse L as a function of a, and it is not difficult to show that, analogously

to π(∞) in [16], it will generally have a maximum at an intermediate value of a.
In fact, as long as k2 > 0, lima→∞ L = 0, since, for each ϑ > 0, lima→∞ B(ϑ) = +∞, while

for each a > 0, (B(ϑ)/B0)
−k1r/a < 1.

On the other hand, a direct computation of the solution of Equation (1) for a = 0 [16], and of
the corresponding variational equations, shows that dL/da|a=0 is proportional to∫ ∞

0
e−dϑ−(k1rP0/(r−cB0))(e(r−cB0)ϑ−1)

×
(

k1rcP0

2(r − cB0)2
(e2(r−cB0)ϑ − 1 − 2(r − cB0)ϑe(r−cB0)ϑ ) − k2(e

(r−cB0)ϑ − 1)

)
dϑ. (14)

If Equation (14) is negative (which is true for small r), then L has a maximum at a = 0.
Otherwise, it will have an intermediate maximum, which numerically appears to be always unique
(Figure 2).

Note from Figure 2 that, while the qualitative dependence of L and π(∞) on a is similar, there
is some quantitative difference, with the maximum of L being reached at quite lower values of a

than the maximum of π(∞).

3.3. Host–pathogen coevolution

Gilchrist and Sasaki [16] have analysed in detail the co-evolution of r (controlled by pathogens)
and a (controlled by hosts) using the canonical equations [7–9] with pathogen fitness proportional
to the gradient of R0 and host fitness proportional to the gradient of L. The isoclines of the system
are given by the curves r∗(a) (the value of r that maximizes R0 for a given value of a) and a∗(r)
(the value of a that maximizes L for a given value of r). The direction of the vector field depends
on the relative rates and size of mutations in host and parasites.
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Figure 2. (a) The values of an infected individual expected life (13) L against a and (b) the values of the probability
of survival (12) vs. a; for three different couples (see legend) of values of k1 and k2. Other parameter values are r = 0.5,
c = 1, P0 = 10−1, B0 = 10−3, d = 10−4 and β̄K = 40.
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In principle, co-evolutionary dynamics might depend on the relative speed of evolution in
host and parasites, although it is well possible that there is convergence to the co-evolutionary
equilibrium (intersection of the two isoclines) for any mutation structure [19]. As a simplified
case, a reasonable assumption is that the time scale of pathogen evolution is faster than that of
hosts; hence, in the limiting case, pathogens first evolve to r∗(a) with a fixed; on the slower time
scale, a will evolve in the direction of a∗(r), but r will immediately change, so that, on the slow
time scale, evolution will take place on the curve r∗(a).

The shape of the two functions r∗(a) and a∗(r) is crucial in determining co-evolutionary
dynamics. As observed by Gilchrist and Sasaki [16], the function a∗(r) is equal to 0 for r very
small (check Equation (14)) and then is an increasing function, following the intuition that the
more aggressive the pathogens are, the faster is the immune response to mount. On the other hand,
the function r∗(a) is increasing for small a and then, after a long plateau, decreases, being equal
to 0 for very large a.

If k1 is very large, it is possible that the intersection of the two isoclines occurs in the region where
r∗(a) is decreasing. This corresponds to a co-evolutionary equilibrium with very small values of
r [16, Figure 7], even lower than cB0, so that the pathogen level does not grow during an infection
beyond the initial inoculum P0. This does not appear a realistic picture of actual infections;
moreover, in such cases, the model is lacking because it neglects the decrease in the within-host–
pathogen level due to transmitting an inoculum in the course of an infection (such a decrease is
not very relevant if P0 is much lower than the pathogen level in the course of an infection).

For these reasons, in the rest of the manuscript, I restrict the consideration to low or moderate
values of k1; in such cases, I always found that the two curves two curves r∗(a) and a∗(r) intersect
in the region where r∗(a) is still increasing (Figure 3(a)). In such a case, necessarily evolution will
lead towards the unique intersection (a∗∗, r∗∗) of the two curves, independently of the structure
of host and pathogen mutations.

When this occurs, along most of the co-evolutionary path, host (and pathogen) fitnesses actually
decrease, at least in the limiting case of faster pathogen evolution. An example of this can be seen
in Figure 3(b) where the functions L(a, r∗(a)) and R0(a, r∗(a)) are shown for each value of a.

In Appendix 4, I prove that if r∗(a) is increasing for a close to the co-evolutionary attractor a∗∗,
then L(a, r∗(a)) is a decreasing function of a over the same range. As long as a increases over
evolutionary time (the alternative would occur if the situation would be one of a host population
with too strong initial immune response), this implies that expected lifetime L will eventually
decrease over the course of evolution, i.e. virulence will increase.
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an evolutionary trajectory in the limiting case of separate time scale for the evolution of a and r . (b) The values of L and
R0 at (a, r∗(a)). Parameter values are c = 1, P0 = 10−1, B0 = 10−3, d = 10−4, β̄K = 40, k1 = 10−4 and k2 = 10−6.
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8 A. Pugliese

4. Heterogeneous host population

The previous results can be described as implying that host–parasite co-evolution will bring,
through an arms race, towards rather pathogenic infections. One aspect, among many other ones,
that has not been considered in the analysis is host heterogeneity. This is the subject of this
section through the analysis of a simple model, definitely not realistic or exhaustive, but capable
of bringing qualitative conclusion about the issue.

4.1. Parasite evolution

Assume hosts are born with a fixed distribution p(a) in the values of a. The resulting model can
be written (in a slightly imprecise notation) as

S ′
a(t) = p(a)b(N)N − (d + λ(t))Sa(t) (15)

ϕa(t) = Sa(t)λ(t) (16)

λ(t) =
∫∫ ∞

0
β0Pa(ϑ) e−dϑπa(ϑ)ϕa(t − ϑ) dϑ dp(a), (17)

where Pa(ϑ) and πa(ϑ) are found from Equations (1) and (5), stressing their dependence on the
value of a.

In writing model (15), it is implicitly assumed that the value of a affects the host’s properties, if
and after it is infected, but does not influence its birth or death rates, nor the probability of getting
infected. Furthermore, there is random mixing, precisely no correlation between the value of a of
a newly infected individual and that of its infector.

Finally, the fact that individuals are always born with the same distribution p(a) means that
a is not genetically transmitted. It may be thought as something like nutritional status, or social
rank, except that it does not vary in time, but is fixed at birth.

The advantage of such a simplified model is that it is immediate to obtain an evolutionary
principle. If the parameter r is evolving among pathogens, the uninvadable r will maximize

∫
R0(r, a) dp(a). (18)

I have studied numerically, comparing them with the case where a is a constant, two possible
cases: that of a lognormally distributed a and the one (whose results are easier to understand
intuitively) where a has only two possible values.

In Figure 4, I show the values of R0 vs. pathogen’s replication rate r under the assumption
of a lognormally distributed with different variances. Computations are made integrating an
approximation of Equation (11) using the Gauss–Hermite method, as implemented in [26].

The feature most apparent in Figure 4 is the large increase in R0 with increasing variance, for all
but the largest values of r . Moreover, with increasing variance, the maximum of R0 is reached at
much smaller values of r . Finally, looking at the effect of variance on host survival, it can be seen
(the bars on the graph should help) that, while at most fixed levels of r host survival decreases
with increasing r , host survival at the value of r that maximizes R0 increases with increasing
variance.

In order to better understand the mechanism why the optimal r decreases with increasing
variance, I consider the case where hosts are divided into two groups, differing in their immune
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Figure 4. (a) The values of the reproductive ratio R0 (Equation (18)) against r . (b) Host survival to the end of the
infection against r . a follows a lognormal distribution with mean 1 and different coefficients of variation (corresponding
in this case to standard deviations) shown in the legend. The bars are at the values of r that maximize R0 for each coefficient
of variation. Parameter values are c = 1, P0 = 0.1, B0 = 10−3, d = 10−4, k1 = 10−4, k2 = 10−6 and β̄K = 0.4.

response. Precisely, I choose

p(a) = p1δa1(a) + (1 − p1)δa2(a) (19)

with p1 = 10% and a1 fixed equal to 1 and study how the parasite optimal replication rate r

depends on a2, the value of a for the majority of the population.
Observing Figure 5(a), it can be noted that, while the optimal r is close to r∗(a2) (compare

Figure 3) for a2 < a1 and also for a2 slightly larger than a1, increasing a2 further causes the optimal
r to decrease towards r∗(a1). In words, when a2 is much larger than a1, pathogen replication rate
evolves towards the value best suited to a1, although immune response is equal to a1 only in a
minority of hosts (10% in the example).

The reason for this can be seen graphically in Figure 5(b), where R0 as a function of r is shown
for a = 1 and a = 20. The loss for being suboptimal with hosts of a = 1 is much larger than with
hosts of a = 20. Even if the losses are weighed by the proportion of hosts, still R0 is largest with
r close to 100.

 0

 50

 100

 150

 200

 250

 0
.0

1

 0
.1  1  1
0

 1
00

 1
00

0

 5000

 6000

 7000

 8000

 9000

 10000

r

ex
p.

 li
fe

a2

r_opt
exp. life

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0
.0

1

 0
.1  1  1
0

 1
00

 1
00

0

 1
00

00

R
0

r

a=1
a=20

(b)

Figure 5. (a) The value of r that maximizes R0, given by Equation (18), and the corresponding host survival, for different
values of a2 (Equation (19)), p1 = 0.1 and a1 = 1. (b) R0 as a function of r for a = 1 and a = 20. Common parameter
values are c = 1, P0 = 0.1, B0 = 10−3, d = 10−4, k1 = 10−4, k2 = 10−6 and β̄K = 0.4.
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10 A. Pugliese

The result of the decrease in the optimal r with a is that the host survival computed at (a2, r
∗(a2))

increases with a2, contrary to what was found in Figure 3(b).

4.2. Host–parasite coevolution

In the previous subsection, it was assumed that state-at-birth of hosts were independent of the
current population structure. If a were transmitted from mother to daughter, host population would
tend to become monomorphic at the value of a maximizing L: heterogeneity would be lost.

I now study a model for host evolution, constrained to maintain the environmentally induced
heterogeneity considered in the previous subsection. Specifically, I have considered two submodels
corresponding to the cases examined in Figures 4 and 5.

In the first submodel, a is assumed to be lognormal, i.e. log(a) ∼ N(μ, σ 2): μ is assumed to
be subject to selection and mutation, while σ is related to μ by the relation

σ = k(μ − μm). (20)

In other words, each offspring of a mother with trait μ (or mutant with trait μ) will have a value
of a from the corresponding lognormal distribution.

Relation (20) (that makes sense only for μ > μm) means that the standard deviation grows
linearly with the mean, a scaling relation (sometimes known as Taylor’s law [31]) widely applied
in ecology [18] and recently also in cell biology [4].

Moreover, the idea that a may be small because of young age, low nutrition or similar reasons,
entails that the evolution of μ must anyway allow for an almost constant quota of offsprings with
low a, which implies that σ must increase with a. Some resulting distributions of log(a) are shown
in Figure 6(a).

Using relation (20), I computed numerically for each μ the value of r (r∗(μ)) maximizing
Equation (18) and, for each r , the value of μ (μ∗(r)) that maximizes∫

L(r, a) dpμ(a), (21)

where pμ represented the log-normal distribution parametrized from μ through Equation (20).
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Figure 6. (a) The density curves of a (in logarithmic scale) for different values of μ and relation (20). (b) The curves
r∗(ā) and ā∗(r) similar to Figure 3 but using the densities for a shown in (a). The bold line shows an evolutionary trajectory
in the limiting case of separate time scale for the evolution of a and r . The solid line represents the average host survival
after infection at the values (ā, r∗(ā)). Parameter values are the same as in Figure 3 plus k = 0.7613 and μm = −4.
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The results are shown in Figure 6(b) where, for ease of comparison with Figure 3, the distri-
butions are parametrized through ā = eμ+σ 2/2 instead of μ. It can be seen that r∗(ā) is initially
increasing but eventually decreasing with ā, as in Figure 5(a). Consequently, at least in the lim-
iting case (sketched in the figure) of time-scale separation, life expectancy (and host survival)
increases along the course of evolution (check Appendix 4), contrary to the case of homogeneous
host population but exactly as in Figure 5(a).

From the shape of the two curves, it is not possible to infer the evolutionary dynamics without
assumptions on the relative mutation rates. Indeed, just by looking at Figure 6(b), co-evolutionary
cycles cannot be excluded. In the limiting case where pathogen evolution is infinitely faster than
that of hosts, evolution proceeds vertically and then along the curve r∗(ā) obviously implying
convergence to the co-evolutionary steady state. By continuity, the same will be true whenever
pathogen evolution is much faster than hosts, a quite reasonable assumption.

The second submodel is based on the distribution (19) for a. Precisely, it is assumed that p1

and a1 are fixed, while a2 can evolve. The resulting curve r∗(a2) is shown in Figure 5(a); the
curve a∗

2(r) has a shape similar to those in Figure 3 or Figure 6(b), giving rise to an evolutionary
dynamics qualitatively similar to Figure 6(b).

5. Discussion

The current manuscript is based on the model and methods proposed by Gilchrist and Sasaki [16].
I show that, for parameter values giving rise to realistic infection patterns, virulence evolution
and co-evolution in that model will tend to produce relatively high fatality rates after infection
and that inevitably these will eventually increase through co-evolution.

The model has been extended allowing for host heterogeneity in immune response arising from
environmental causes. Admittedly, heterogeneity is modelled in a rather primitive way, since
immune response is taken as fixed at birth according to a given distribution. However, this allows
to perform computations rather quickly, and thus to obtain a first approximation of the effect of
this heterogeneity on virulence evolution.

Just a limited amount of host heterogeneity causes a striking change in optimal parasite strategy:
the level of virulence selected for in pathogen drops dramatically (compare Figures 3 and 6).

Using anthropomorphic language, we could say that ‘optimal’ pathogens tune their replication
rates to the weakest hosts, since these can allow for a long and persisting infection with ample
opportunities for pathogens’ propagation; this is a selected strategy, even if it entails that the
pathogens get immediately cleared from most hosts with a better immune response. On the other
hand, more aggressive pathogens can resist (for some time, since eventual pathogen clearance
is certain in the within-host model) immune response of stronger hosts and obtain some pay-off
from these infections, but at the cost of killing immediately weaker hosts, therefore losing the
much higher pay-off they could provide.

Indeed, many human viral infections, from cytomegalovirus to Epstein–Barr or rotavirus, are
quite widespread (as can be seen through serological tests) but create noticeable symptoms, often
in the form of mild but prolonged infections, only in a small minority of cases. The present
results show that this could actually be the outcome of pathogen evolution; clearly, a wide col-
lection of data with a quantification of heterogeneity in immune response in different contexts
would be necessary, before making any connection with the conclusion of this model, or of more
realistic ones.

In principle, optimal pathogens could adjust their replication rate to the host they have infected.
A plastic strategy in which parasites achieve information about hosts’ immune response and tune
their replication rate accordingly does not seem feasible for acute transient infections and is not
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included in the current model focused on such infections. For pathogens with long infections, an
adjustment in strategy depending on time since infection and environmental cues could instead
be likely and has been analysed in [30].

As discussed above, several aspects of the model are not realistic: the within-host model,
while capturing the basic behaviour of rapid infections, has the disadvantage of always ending
with complete clearance of pathogens and persistence of high level of immunity. Several other
qualitative models of pathogen–immune dynamics have been introduced in recent years that can
yield different outcomes from persisting infections at low pathogen densities, to cycles, to bistable
behaviours in which initial conditions can lead either to pathogen clearance or persistence.

It is not difficult changing within-host system (1) to a different one, although they will not share
some features of the former that allow for some analytical computations. The real complication
is that, if hosts’ immunity is allowed to decrease, then reinfections have to be allowed to obtain a
biologically consistent model, and this leads to much more complicated epidemiological models
that, to my knowledge, nobody has analysed.

The infection process could also be modelled differently; instead of assuming that the force
of infection is a linear function of pathogen load, it could be assumed that inoculum size and
probability of transmission depend nonlinearly on the pathogen load. Such a model (definitely
more complex) would probably avoid the phenomenon that, for high values of pathogen cost k1,
the optimal pathogen strategy [16] is not to replicate at all (r = 0).

Genetic and non-genetic heterogeneities could exist also in B0, the immune level in naïve hosts.
Non-genetic heterogeneities in B0 would increase host diversity and presumably enhance the
effects already seen from heterogeneities on a. As for genetic heterogeneities, it can be conceived
that a trade-off exists between B0 and fertility or mortality rates [22], so that, as remarked by
Gilchrist and Sasaki [16], a potential cost of immune response is borne by all hosts, not only by
those that get infected. Such an analysis would open new issues, outside the scope of the present
manuscript.

As remarked above, a gross simplification in modelling host heterogeneity is that the parameter
a, the speed of immune build-up, has been assumed to have been fixed at birth. More realistically,
it will change during a host’s life for predictable (young vs. adults) or unpredictable (starvation,
stress,…) reasons. Models allowing for such changes are inevitably more complex, and optimal
strategies cannot be computed by maximizing a specific quantity. I believe that the results obtained
here (see, for instance, Figure 5(b) that shows R0(r) for different values of a) can be used to
build models that allow for host changes in immune response, without the need for a detailed
model of within-host immune–pathogen dynamics. On the whole, it seems likely that, if the
dependence of R0(r) on a is similar to that in Figure 5(b), there will be a strong selection for
pathogen suitable to hosts with low a, whether a is a constant property or a dynamic variable of
individual hosts.

How does this result compare with the previous literature? The conclusion that host hetero-
geneity should cause a decrease in pathogen virulence had already been reached by Ebert and
Hamilton [12] using verbal arguments and by Regoes et al. [29] using a model with two host
types. On the other hand, Ganusov and Antia [13] and Ganusov et al. [14] reached the opposite
conclusion, analysing a model somewhat similar to the one considered here. The main difference
of their model lies in how host mortality occurs, which instead of being continuously dependent
on replication rates of pathogen and immune system as here and in [16] is a threshold phe-
nomenon occurring as soon as pathogen density increases or host resources decrease below a
given level. Hosts are heterogeneous in the lethal level, not in any parameter affecting within-host
pathogen–immune dynamics, and pathogen virulence increases with heterogeneity. Indeed, in
their model, optimal virulence is 0 when the host population is homogeneous, because of the
threshold mortality; hence, this kind of heterogeneity seems tied more to model details than to
biological processes.
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Fundamentally, the reason of the opposite conclusion is that, in the present model, hosts that,
if optimally exploited, would yield the highest returns to a pathogen are the ‘weak’ ones, those
that would be most easily killed. Hence, adapted pathogens will avoid killing those, even if the
cost is being immediately cleared when infecting a ‘strong’ host. On the other hand, in [13],
hosts that would yield the highest returns are those with the highest lethal dose; hence, adapted
pathogens will be tuned to optimal exploitation of these, at the cost of killing hosts with lower
lethal dose and lower returns. Different biological systems may be closer to one or the other
situation, although I believe that the model presented here is much closer to reasonable biological
mechanisms.

The effect of host heterogeneity on pathogen evolution has been analysed also by Kao [17] in
terms of ‘exploitation of heterogeneity’, without reaching precise conclusions about virulence.
His model concerns heterogeneity in contact rates or probability of being infected. In the present
model, instead, all individuals have the same probability of being infected; heterogeneity in
immune response affects only the course of the infection or disease.

As often recognized [5], between-host transmission and within-host competition could exert
selection pressures in different directions on the pathogen replication rate. This issue is not
explored here, mainly for the sake of simplicity: co-occurrence of genetically different pathogens
within a host could be due to within-host mutations, to reinfections or to genetically mixed
infections. The first two cases have little relevance in the present model focused on short, acute
infections with steep rise of immune response, while examining the last case would require a
more complex model than what analysed here.

In conclusion, the present analysis upholds the original suggestion by Ebert and Hamilton that
stochastic heterogeneity should decrease pathogen virulence. The decreased virulence is mediated
through reduced replication rate, a phenomenon suggested also in [3]. It is also clarified why an
opposite conclusion was reached in [13,14]. Heterogeneity is assumed here in rates of immune
response. It seems possible that heterogeneity in contact rates [17] or other aspects of infection
dynamics [13] could instead cause an increase in virulence, but the effects shown here seem very
strong.
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Appendix 1. Endemic equilibrium of system (7)–(9)

Setting ϕ(t) ≡ ϕ∗ in Equation (7), one immediately obtains R0(S
∗/K) = 1. This is a usual property [25], meaning that

at the endemic equilibrium, each newly infected host infects on average exactly one susceptible. Setting the right-hand
side of Equation (9) equal to 0, one obtains

ϕ∗ = N∗b(N∗) − dK

R0
(A1)

while from Equation (8)

N∗ = K

R0
+ ϕ∗L, (A2)

where L is the expected life of a newly infected individual, as in Equation (13).
Comparing Equations (A1) with (A2), one finally obtains an equation that determines N∗, i.e.

R0N
∗
(

1

L
− b(N∗)

)
= K

(
1

L
− d

)
. (A3)

The left-hand side of Equation (A3) is an increasing function of N∗; hence, there exists a (unique) solution in (0, K) if
and only if R0 > 1, as stated in the text.
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The stability of the endemic equilibrium depends on the location of the roots of the characteristic equations. For the case
b(N) = 	/N , Thieme and Castillo-Chavez [32] list several conditions that ensure the asymptotic stability of (S∗, ϕ∗),
but give also a counter-example [23]. It seems likely that the properties of the function P(ϑ) that has a unique peak yield
the stability of (S∗, ϕ∗), but this may depend also on the function b(N).

Appendix 2. Proof of the maximization of R0

Assuming that (S∗, ϕ∗) is the global attractor of the solutions of Equations (7)–(9) when R0 > 1, it is very easy to find
the condition under which a second pathogen strain, with complete cross-immunity, can invade a host population already
co-existing with one pathogen strain.

Following the techniques of adaptive dynamics [20], it suffices writing the linearized equation for the dynamics of the
second strain at the attractor (S∗, ϕ∗). Modifying Equation (7), one immediately obtains

ϕ2(t) = S∗
∫ ∞

0
β0P2(ϑ) e−dϑπ2(ϑ)ϕ2(t − ϑ) dϑ, (A4)

where the subscript 2 refers to the equations for hosts infected with pathogen 2, which may differ in the parameters r , a

and/or c.
Equation (A4) is a linear convolution Volterra integral equation. It is well known that the growth rate of the solutions

can be obtained through the Laplace transform of the kernel. Formally, one sets ϕ2(t) = Ceλt in Equation (A4) and sees
that this is a solution if and only if

S∗
∫ ∞

0
β0P2(ϑ) e−dϑπ2(ϑ) e−λϑ dϑ = 1. (A5)

Standard methods show that Equation (A5) has a solution λ with 	λ > 0 if and only if

S∗
∫ ∞

0
β0P2(ϑ) e−dϑπ2(ϑ) dϑ > 1. (A6)

Remembering that R1
0S∗ = 1, where R1

0 refers to expression (10) with the parameters of the first strain, and defining
analogously R2

0 , it is immediate to see that condition (A6) can be written as R2
0/R1

0 > 1.
Hence, invasion can be successful if and only if R2

0 > R1
0 .

Appendix 3. Criterion for host invasion

Again, one can use the methods of adaptive dynamics to understand which type will outcompete the other. Let S2(t) the
density of susceptible hosts of type 2 and ϕ2(t) the rate at which they become infected, S1(t) and ϕ1(t) the corresponding
quantities for resident hosts of type 1. The equations for S2(t) and ϕ2(t) are:

S′
2(t) = N2(t)b(N1(t) + N2(t)) − dS2(t) − ϕ2(t)

ϕ2(t) = S2(t)

(∫ ∞

0
β0P1(ϑ) e−dϑπ1(ϑ)ϕ1(t − ϑ) dϑ +

∫ ∞

0
β0P2(ϑ)e−dϑπ2(ϑ)ϕ2(t − ϑ) dϑ

)
. (A7)

Pi(·) and πi(·) refer to the solutions of Equation (1) with the parameters of hosts i.
Linearizing these equations at the endemic equilibrium (S∗, ϕ∗) for the resident hosts, one obtains:

S′
2(t) = N2(t)b(N∗) − dS2(t) − ϕ2(t)

ϕ2(t) = S2(t)

(∫ ∞

0
β0P1(ϑ) e−dϑπ1(ϑ)ϕ∗ dϑ

)
= S2(t)R

1
0
ϕ∗

K
. (A8)

From ϕ2(t) = S2(t)R
1
0ϕ∗/K , one obtains

N2(t) = S2(t) +
∫ ∞

0
ϕ2(t − ϑ)π2(ϑ) e−dϑ dϑ = S2(t) + R1

0ϕ∗

K

∫ ∞

0
S2(t − ϑ)π2(ϑ) e−dϑ dϑ.

Using these in Equation (A8a), and trying S2(t) = ceλt , one obtains

λ − b(N∗)
R1

0ϕ∗

K
π̂2(d + λ) = b(N∗) − d − R1

0ϕ∗

K
, (A9)

where π̂2(·) denotes the Laplace transform of π2. Remember that the expected life of infected individuals of type i, Li ,
is equal to π̂i (d).
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Applying first Equation (A1) and then Equation (A2) to the right-hand side of Equation (A9), it follows

b(N∗) − d − R1
0ϕ∗

K
= b(N∗)

(
1 − R1

0N∗

K

)
= −b(N∗)

R1
0ϕ∗

K
L1.

Then, defining G(λ) as its left-hand side, Equation (A9) can be rewritten as

G(λ) := λ − b(N∗)
R1

0ϕ∗

K
π̂2(d + λ) = −b(N∗)

R1
0ϕ∗

K
L1. (A10)

Looking initially at λ ∈ R, it can be seen that G(·) is an increasing function growing to infinity; hence, there exists a
real positive solution of Equation (A10) if and only if G(0) < −b(N∗)(R1

0ϕ∗/K)L1, i.e. if L2 = π̂2(d) > L1.
Assume there are no real positive solutions (hence, L2 ≤ L1) and look for complex solutions λ = x + iy with x ≥ 0

and y > 0 of Equation (A10). This can be written as

λ − Aq̂(λ) + B = 0

with

B = b(N∗)
R1

0ϕ∗

K
L1, q(ϑ) = e−dϑπ2(ϑ)

L2
, A = b(N∗)

R1
0ϕ∗

K
L2,

so that q̂(0) = 1 and the condition L1 ≥ L2 becomes A ≤ B.
Setting the real part of Equation (A10) equal to 0 implies

x = −B + A	(q̂(x + iy)) ≤ −B + A|q̂(x + iy)| < −B + Aq̂(0) ≤ 0

against the claim x ≥ 0.
Hence, the condition under which hosts of type 2 invade a resident population is that the expected life L2 of an infected

2-host is greater than L1, that of an infected resident.
Finally, consider the limiting case of d → 0. One obtains

lim
d→0+ dLi = lim

d→0+ d

∫ ∞

0
e−dϑπi(ϑ) dϑ = lim

d→0+

∫ ∞

0
e−uπi

(u

d

)
du = πi(∞).

Hence, the condition L1 > L2 becomes, as d goes to 0, π1(∞) > π2(∞), recovering the criterion used by Gilchrist and
Sasaki [16].

Appendix 4. Decrease in host fitness near the co-evolutionary equilibrium

I show here that, if r∗(a) is increasing at a∗∗, the derivative of L(a, r∗(a)) is negative at a∗∗.
To prove this, note (it can be easily seen) that

∂

∂r
L(a, r) < 0,

∂

∂a
R0(a, r) < 0, (A11)

while, by definition,

∂

∂r
R0(a, r∗(a)) = 0

∂

∂a
L(a∗(r), r) = 0. (A12)

Now

d

da
L(a, r∗(a)) = ∂L

∂a
(a, r∗(a)) + ∂L

∂r
(a, (r∗(a))(r∗)′(a). (A13)

As a∗∗ = a∗(r∗∗) so that (∂L/∂a)(a∗∗, r∗∗) = 0, Equation (A13) computed in a∗∗ is negative, since (r∗)′(a) > 0. By
continuity, the same will hold for a close to a∗∗, proving the claim.

Analogously, if r∗(a) were increasing at a∗∗, the opposite conclusion would be reached.
It is very easy showing that R0(a, r∗(a)) is decreasing too. In fact,

d

da
R0(a, r∗(a)) = ∂R0

∂a
(a, r∗(a)) + ∂R0

∂r
(a, r∗(a))(r∗)′(a) = ∂R0

∂a
(a, r∗(a)) < 0. (A14)

Note that these properties come out of the relations (A11), which may intuitively be accepted as generally valid, beyond
the specific model considered here.




