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Abstract

An SIS epidemic model in two competing species with the mass action incidence is

formulated and analyzed. Thresholds for the existence of boundary equilibria are

identified and conditions for their local asymptotic stability or instability are found.

By persistence theory, conditions for the persistence of either hosts or pathogens are

proved. Using Hopf bifurcation theory and numerical simulations, some aspects of

the complicated dynamical behaviors of the model are shown: the system may have

zero up to three internal equilibria, may have a stable limit cycle, may have three

stable attractors. Through the results on persistence and stability of the bound-

ary equilibria, some important interactions between infection and competition are

revealed: (1) a species that would get extinct without the infection, may persist

in presence of the infection; (2) a species that would coexist with its competitor

without the infection, is driven to extinction by the infection; (3) an infection that

would die out in either species without the inter-infection of disease, may persist in

both species in presence of this factor.

Key words: Epidemic model, Multi-host infection, Species extinction, Uniform

persistence, Hopf bifurcation, Periodic solutions

Preprint submitted to Elsevier Science 30 July 2007



1 Introduction

Models for ecological interactions, and models for host-pathogen interactions

were initially developed separately. However, it has been recognized that a

strong interaction may arise between these factors: a pathogen may tilt the

balance between competing species, or may provoke a negative influence be-

tween the densities of two species that are not otherwise interacting (“apparent

competition”), even causing the extinction of one of them; a pathogen may be

able to persist in a community of 2 (or more) competing species, but not in

any of them in isolation.

The problem, however, is that the models become quickly very difficult to

analyse. Even the simplest possible model with an SI epidemics spreading in

two not interacting species [1] gives rise to a 4-dimensional ODE model that

may have multiple stable attractors often in the form of limit cycles [2].

It must be however remarked that the behavior of the model becomes much

simpler [3] if one assumes that infection incidence is proportional to the in-

fected fractions in each species and not to the densities of infectives. Which

is the most appropriate form for the infection rate has been debated in sev-
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eral papers, and the conclusion should clearly depend on the actual transmis-

sion routes on the pathogen. Considering a generic infection that is indirectly

(through air-borne propagules or through the soil) transmitted among compet-

ing species, we believe that the standard bilinear form (mass action incidence)

used in [1] is quite reasonable, and we will use it in our model.

Some empirical investigations on epidemics in competing species have been

performed, with the help of epidemic models, by Begon et al. [4] on the cow-

pox virus in coexisting populations of bank voles and wood mice, and by

Tompkins et al. [5] on a pathogen in competing squirrel species. Begon et

al. [6] suggest that the data on the presence of the pathogen in islands are

not compatible with the mass action incidence, but we believe that several

different interpretation of these data are possible.

Models for two species which share a disease without competition have been

discussed in some papers. In their works, Holt and Pickering [7], Begon and

Bowers [1,8] conjectured that the models have the classic endemic model be-

havior: the infected coexistence equilibrium is relevant and stable if and only

if no other stable equilibrium exists in the nonnegative orthant. But this con-

jecture was soon denied by some counterexamples given by Greenman and

Hudson [2]. On the other hand, Hethcote et al. [9] later found that the mod-

els have the behavior of a classic endemic model if the frequency-dependent

incidence is used.

Epidemic models in competing species have also been studied previously. An-

derson and May [10] considered a host-competitor-pathogen model which in-

volves two direct competitors, one subject to a pathogen. They examined the

effect of a pathogen on conventional competition. Bowers and Turner [11]
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introduced a proto-typical model of two hosts sharing a pathogen and com-

peting directly. They studied the interplay between infection and competition.

In their model, the death rates are density-independent. Venturino [12] ana-

lyzed the dynamics of two competing species when one of them is subject to a

disease. In his model with mass action incidence, he obtained limit cycles. Han

et al. [13] studied an SIRS epidemic model of two competitive species without

disease-related deaths. They analyzed the effect of inter-infection of disease

on the dynamical behaviors of the model. Saenz and Hethcote [3] considered

some models of SIS, SIR and SIRS type with frequency-dependent incidence.

They found that the models have the classic endemic model behavior. In their

paper, a key result is that the disease must either die out in both species or

remain endemic in both species.

Our model is different from the previous models, because it uses the mass

action incidence, both density-dependent and disease-related death rates, and

both species can be infected. Because of the complicated behaviors of the

system, shown by [2], we do not aim at a complete analysis. Rather, instead

of considering the global stabilities of the equilibria, we focus on the concept

of persistence, and present conditions that guarantee the persistence (or the

non-persistence) of either hosts or pathogens, following ideas by Thieme [14].

Together with the discussion on the local stabilities of the equilibria, by the

analysis of persistence, we investigate the interactions between infection and

competition. Moreover, by Hopf bifurcation theory and numerical simulations,

some complex behaviors of the model are shown.

The organization of this paper is as follows. in the next section, we introduce

the model and some preliminary results. In section 3, the existences and sta-

bilities of the equilibria are discussed. In section 4, we analyze the persistence
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of either hosts or pathogens. In section 5, we study the bifurcation phenom-

ena and analyze the periodic orbits and the number of the internal equilibria.

Finally, in section 6, the detailed discussion and conclusions are given.

2 Formulation of the Model

We consider two competing species, whose densities are denoted by N1 and N2,

whose dynamics follow a standard Lotka-Volterra system. Ki are the carrying

capacity of each species in isolation, ri = bi − di the intrinsic growth rates,

α12 and α21 the competition coefficients. When considering the spread of an

infectious disease in a species that grows logistically, it becomes necessary to

specify explicitly the birth and the death rate; we follow Gao and Hethcote

[15], assuming that bi −
airiNi

Ki
is the birth rate and [di +(1−ai)

riNi

Ki
] the death

rate of species i in isolation, where 0 ≤ ai ≤ 1 is a parameter that subdivides

the density-dependence between births and deaths (note that for ai > 0 the

birth rates become negative at very high densities, which may be disturbing;

however, such densities are outside the compact attracting set in which the

analysis is relevant). Competition will be assumed to act only on death rates,

so that the death rate of species i when its own density is Ni and that of the

competitor is Nj are di + (1 − ai)
riNi

Ki
+ αij

riNj

Ki
.

We now assume that both species can be infected by a common pathogen,

whose cycle follow an SIS scheme, i.e. following recovery an individual be-

come susceptible and can be infected again. Each species will then be divided

in a susceptible part Si and an infected class Yi. We let βii be the intra-

infection rate of disease in species i, and βij (i 6= j) the inter-infection rate

of disease between the two species, both following the mass action incidence
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rule. Moreover, γi is the recovery rate and δi is the disease-related death rate.

We assume δi > 0 (otherwise, the system’s behavior would be much simpler),

but neglect any effect of the infection on the birth rates.

From these assumptions, we obtain the following system:



















































































































































































dS1

dt
= (b1 −

a1r1N1

K1
)N1 − [d1 + r1

(

(1−a1)N1+α12N2

K1

)

]S1

−S1(β11Y1 + β12Y2) + γ1Y1

dY1

dt
= S1(β11Y1 + β12Y2) − γ1Y1 − [d1 + r1

(

(1−a1)N1+α12N2

K1
+ δ1

)

]Y1

dN1

dt
= r1

(

1 − N1

K1
− α12N2

K1

)

N1 − δ1Y1

dS2

dt
= (b2 −

a2r2N2

K2
)N2 − [d2 + r2

(

(1−a2)N2+α21N1

K2

)

]S2

−S2(β21Y1 + β22Y2) + γ2Y2

dY2

dt
= S2(β21Y1 + β22Y2) − γ2Y2 − [d2 + r2

(

(1−a2)N2+α21N1

K2
+ δ2

)

]Y2

dN2

dt
= r2

(

1 − N2

K2
− α21N1

K2

)

N2 − δ2Y2

(2.1)

System (2.1) comprises 6 equations, but only 4 are necessary, since Ni = Si+Yi.

We choose to use as variables Ni and Ii = Yi

Ni
for i = 1, 2, obtaining the
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following 4 dimensional system:



























































































































































dI1
dt

= [β11(1 − I1)N1 − (b1 −
a1r1N1

K1
) − (γ1 + δ1) + δ1I1]I1

+β12(1 − I1)I2N2

dN1

dt
= [r1

(

1 − N1

K1
− α12N2

K1

)

− δ1I1]N1

dI2
dt

= [β22(1 − I2)N2 − (b2 −
a2r2N2

K2
) − (γ2 + δ2) + δ2I2]I2

+β21(1 − I2)I1N1

dN2

dt
= [r2

(

1 − N2

K2
− α21N1

K2

)

− δ2I2]N2

0 ≤ Ii ≤ 1, 0 ≤ Ni i = 1, 2

(2.2)

It is easy to see that system (2.2) is mathematically well posed in the positive

invariant region D = {(I1, N1, I2, N2)|0 ≤ Ii ≤ 1, 0 ≤ Ni ≤ Ki, i = 1, 2} and

solutions in D exist for all positive time. In the remainder of the paper, system

(2.2) is always analyzed in the region D.

Before proceeding, we briefly summarize known results on the two ingredients

of system (2.2), the Lotka-Volterra competition model, and the host-pathogen

model.

2.1 Basic results on Lotka-Volterra competition model

Consider first the classic Lotka-Volterra competition model



















dN1

dt
= r1

(

1 −
N1

K1

−
α12N2

K1

)

N1

dN2

dt
= r2

(

1 −
N2

K2
−

α21N1

K2

)

N2

(2.3)
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The following result can be found in all books on theoretical ecology.

Lemma 2.1 System (2.3) always has the equilibria E0 = (0, 0), E1 = (K1, 0)

and E2 = (0, K2). Assuming that all parameters are positive, E0 is always

unstable. As for the existence of an internal equilibrium and the stability of

them all, there are 4 generic cases:

(1) If α12K2 < K1 and α21K1 < K2, there exists also a unique internal

equilibrium E12 = (N1E , N2E). E12 is globally asymptotically stable in

Ω = {(N1, N2)|0 < Ni ≤ Ki, i = 1, 2}.

(2) If α12K2 > K1 and α21K1 > K2, there exists a unique internal equilib-

rium E12, which is a saddle point. Both E1 and E2 are locally asymptot-

ically stable.

(3) If α12K2 < K1 and α21K1 > K2, there is no internal equilibrium, and E1

is globally asymptotically stable in Ω.

(4) If α12K2 > K1 and α21K1 < K2, there is no internal equilibrium, and E2

is globally asymptotically stable in Ω.

The coordinates of E12 are:

N1E =
K1 − α12K2

1 − α12α21

, N2E =
K2 − α21K1

1 − α12α21

.

2.2 SIS host-pathogen system

Restricting system (2.2) to a single host species, one obtains the following SIS

model, already considered in [16]



















dI

dt
= [β(1 − I)N − (b −

arN

K
) − (γ + δ) + δI]I

dN

dt
= [r(1 −

N

K
) − δI]N

(2.4)
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The state space for the variables is 0 ≤ I ≤ 1, 0 ≤ N , and we assume

r = b − d > 0, 0 ≤ a ≤ 1.

The behavior of system (2.4) can be obtained on the basis of the reproduction

number

R =
βK

b + γ + δ − ar
(2.5)

of the infection [17]; note that the denominator can be written as d+r(1−a)+

γ + δ; hence, it is positive, and represents the average length of the infectious

period.

Precisely, one has

Lemma 2.2 ([16,18]) For system (2.4), if R ≤ 1, the disease-free equilib-

rium E1 = (0, K) is globally asymptotically stable in the region {(I, N)|0 ≤

I ≤ 1, 0 < N}.

If R > 1, there exists a unique internal equilibrium P = (I∗, N∗) which is

globally asymptotically stable in the region {(I, N)|0 < I ≤ 1, 0 < N}. Any

solution starting from the I axis goes to E0 = (0, 0), while those starting from

the N axis go to E1.

Remark 2.3 Setting the RHS of (2.4) equal to 0, one sees that (I∗, N∗) can

be found as follows:

N∗ = K

(

1 −
δ

r
I∗

)

F (I∗) = 0 (2.6)

where

F (x) =
δ

r
x2 − Ax +

R − 1

R
with A = 1 +

δ

r
−

δ(1 − a)

βK
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It is immediate to see that, since R > 1, F (0) > 0, while

F (1) =
δ(1 − a)

βK
−

1

R
= −

aδ + b + γ − ar

βK
= −

aδ + d + γ + r(1 − a)

βK
< 0.

Hence from (2.6) one finds a unique I∗ in the feasible interval (0, 1), that can

be written as

I∗ =
r

δ

A −
√

A2 − 4 δ
r

R−1
R

2
.

Moreover one can see that δ
r
I∗ < 1 since

F (
r

δ
) =

r(1 − a)

βK
−

1

R
= −

δ + d + γ

βK
< 0.

Hence, expression (2.6) shows that N∗ > 0.

3 Equilibria

3.1 Existence of the equilibria

System (2.2) always has the following 3 boundary equilibria:

E0 = (0, 0, 0, 0), E1 = (0, K1, 0, 0), E2 = (0, 0, 0, K2).

Let now

R1 =
β11K1

b1 + γ1 + δ1 − a1r1
, R2 =

β22K2

b2 + γ2 + δ2 − a2r2

be the reproductive ratios of the infection, analogously to (2.5).

If R1 > 1 [or R2 > 1], the following boundary equilibrium exists:

B1 = (I∗
1 , N∗

1 , J∗
2 , 0) [ or B2 = (J∗

1 , 0, I∗
2 , N

∗
2 )].
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With the same procedure of Remark 2.3, one sees that I∗
i and N∗

i satisfy

N∗
i = Ki

(

1 −
δi

ri

I∗
i

)

Fi(I
∗
i ) = 0 (3.1)

where

Fi(x) =
δi

ri

x2 − Aix +
Ri − 1

Ri

with Ai = 1 +
δi

ri

−
δi(1 − ai)

βiiKi

Finally, J∗
i can be found as the smaller solution of Gi(x) = 0, where

Gi(x) = δix
2 − (bi + γi + δi + βijI

∗
j N

∗
j )x + βijI

∗
j N∗

j (3.2)

and j indicates the index different from i. It is in fact immediate to see that

Gi(x) = 0 has a unique solution in (0, 1) given by

J∗
i =

bi + γi + δi + βijI
∗
j N

∗
j −

√

(bi + γi + δi + βijI
∗
j N∗

j )2 − 4δiβijI
∗
j N

∗
j

2δi

.

From Section 2.1 we see that there may exist an infection-free coexistence

equilibrium E12:

E12 = (0, N1E, 0, N2E)

under two different conditions:

a) α12K2 < K1 and α21K1 < K2; b) α12K2 > K1 and α21K1 > K2.

In case a), the equilibrium is stable relatively to infection-free perturbations;

in case b), it is unstable and the equilibria E1 and E2 are stable relatively to

infection-free perturbations.

There may exist an internal equilibrium P ∗. Its coordinates must satisfy the

equations:

I1 =
r1

δ1

(

1 −
N1

K1
−

α12N2

K1

)

, I2 =
r2

δ2

(

1 −
α21N1

K2
−

N2

K2

)
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while N1 and N2 can be found as solution of a system of 2 algebraic equations.

As shown in [1,2] (in the case without competition), there are not simple

conditions that guarantee the existence of an internal equilibrium. Moreover,

there exist cases in which there are several internal equilibria [2]. Hence, we

do not attempt to characterize conditions for their existence, and we will limit

ourselves to show some computer-assisted bifurcation diagrams, and to give

sufficient conditions for their existence, based on persistence theory.

3.2 Local stabilities of the equilibria

In the following, we study the local stabilities of boundary equilibria. The

Jacobian is

A =













a11 β11I1(1−I1)+
a1r1
K1

I1 β12(1−I1)N2 β12(1−I1)I2

−δ1N1 r1

(

1−
2N1+α12N2

K1

)

−δ1I1 0 −
r1α12

K1
N1

β21(1−I2)N1 β21(1−I2)I1 a33 β22(1−I2)I2+
a2r2
K2

I2

0 −
r2α21

K2
N2 −δ2N2 r2

(

1−
α21N1+2N2

K2

)

−δ2I2













where

a11 = β11N1 − 2β11I1N1 − (b1 + γ1 + δ1) +
a1r1

K1
N1 + 2δ1I1 − β12I2N2,

a33 = β22N2 − 2β22I2N2 − (b2 + γ2 + δ2) +
a2r2

K2
N2 + 2δ2I2 − β21I1N1.

For E0 = (0, 0, 0, 0), we have

A0 =









































−(b1 + γ1 + δ1) 0 0 0

0 r1 0 0

0 0 −(b2 + γ2 + δ2) 0

0 0 0 r2
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So E0 is unstable.

For E1 = (0, K1, 0, 0), we have

A1 =







β11K1−(b1+γ1+δ1)+a1r1 0 0 0
−δ1K1 −r1 0 −r1α12

β21K1 0 −(b2+γ2+δ2) 0

0 0 0 r2

(

1−
α21K1

K2

)







Its eigenvalues are

λ1 = β11K1 − (b1 + γ1 + δ1) + a1r1, λ2 = −r1, λ3 = −(b2 + γ2 + δ2), λ4 =

r2

(

1 − α21K1

K2

)

.

So E1 is stable if α21K1 > K2 and R1 < 1; it is unstable if either inequality is

reversed.

Analogously, one finds that E2 = (0, 0, 0, K2) is stable if α12K2 > K1 and

R2 < 1; it is unstable if either inequality is reversed.

For B2 = (J∗
1 , 0, I∗

2 , N
∗
2 ), we have

AB2
=











b11 β11J∗

1
(1−J∗

1
)+

a1r1
K1

J∗

1
β12(1−J∗

1
)N∗

2
β12(1−J∗

1
)I∗

2

0 r1

(

1−α12

N∗

2
K1

)

−δ1J∗

1
0 0

0 β21(1−I∗
2
)J∗

1
−(β22N∗

2
−δ2)I∗2 β22(1−I∗

2
)I∗

2
+

a2r2
K2

I∗
2

0 −α21
r2
K2

N∗

2
−δ2N∗

2
r2−2

r2
K2

N∗

2
−δ2I∗

2











where

b11 = −(b1 + γ1 + δ1) + 2δ1J
∗
1 − β12I

∗
2N∗

2 .

It is immediate to see that the eigenvalues of AB2
are

λ1 = b11, λ2 = r1

(

1 − α12
N∗

2

K1

)

− δ1J
∗
1 , while λ3 and λ4 the two eigenvalues of

the bottom-right submatrix

BR =

















−(β22N
∗
2 − δ2)I

∗
2 β22(1 − I∗

2 )I∗
2 + a2r2

K2
I∗
2

−δ2N
∗
2 r2 − 2 r2

K2
N∗

2 − δ2I
∗
2

















.

Both eigenvalues of BR have negative real parts, as known from the analysis
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of SIS models in a single population (see Section 2.2) and confirmed by the

sign of its trace and determinant.

Moreover, we have

λ1 = b11 =
1

J∗
1

(δ1J
∗2
1 − β12I

∗
2N

∗
2 ) < 0

using the fact that J∗
1 is the smaller root of (3.2).

Hence B2 is stable if π1 = r1

(

1 − α12
N∗

2

K1

)

− δ1J
∗
1 < 0, and unstable if the

inequality is reversed.

Analogously, B1 is stable if π2 = r2

(

1 − α21
N∗

1

K2

)

−δ2J
∗
2 < 0, unstable otherwise.

For studying the eigenvalues of the Jacobian at E12, it is more convenient to

change the order of coordinates to (I1, I2, N1, N2); hence, the equilibrium will

be (0, 0, N1E, N2E). Then, its Jacobian is

C12 =











c11 β12N2E 0 0
β21N1E c22 0 0

−δ1N1E 0 r1

(

1−
2N1E+α12N2E

K1

)

−
r1α12

K1
N1E

0 −δ2N2E −
r2α21

K2
N2E r2

(

1−
α21N1E+2N2E

K2

)











(3.3)

with

c11 = β11N1E−(b1+γ1+δ1)+
a1r1

K1
N1E , c22 = β22N2E−(b2+γ2+δ2)+

a2r2

K2
N2E

Since C12 is block triangular, its eigenvalues are those of the top-left and of

the bottom-right submatrices. The top-left matrix TL can be written as

TL = K − D with

K =

















β11N1E β12N2E

β21N1E β22N2E

















and D = diag

















d1 + γ1 + δ1 + r1(1 − a1
N1E

K1
)

d2 + γ2 + δ2 + r2(1 − a2
N2E

K2
)

















.
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In conclusion, the eigenvalues of TL have all negative real parts if and only

if all eigenvalues of KD−1 are in the interior of the unit ball [19,20]. One can

then define R12 as the largest eigenvalue of KD−1, in formula

R12 = ρ

































β11N1E

d1+γ1+δ1+r1(1−a1
N1E
K1

)

β12N2E

d2+γ2+δ2+r2(1−a2
N2E
K2

)

β21N1E

d1+γ1+δ1+r1(1−a1
N1E
K1

)

β22N2E

d2+γ2+δ2+r2(1−a2
N2E
K2

)

































. (3.4)

The bottom-right submatrix

















r1

(

1 − 2N1E+α12N2E

K1

)

−r1α12

K1
N1E

−r2α21

K2
N2E r2

(

1 − α21N1E+2N2E

K2

)

















is the Jacobian of the infection-free competition system. Its eigenvalues are

negative when E12 is stable relatively to infection-free perturbations, i.e. when

α12K2 < K1 and α21K1 < K2. If the inequalities are reversed, one eigenvalue

is positive.

Hence, E12 is stable if α12K2 < K1, α21K1 < K2 and R12 < 1. It is unstable if

any of these inequalities is reversed.

Remark 3.1 It is useful to distinguish between two subcases when R12 > 1:

in the first, both eigenvalues of TL have positive real parts; in the other, the

eigenvalues are real and opposite in sign. In the first subcase, necessarily we

have R1 > 1 and R2 > 1. In fact, both eigenvalues have positive real parts if

and only tr(TL) > 0 and det(TL) > 0; these two conditions together imply

βiiNiE −
(

bi + γi + δi −
airi

Ki

NiE

)

> 0 (i = 1, 2)
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i.e.

Qi(NiE) :=
βiiNiE

bi + γi + δi −
airi

Ki
NiE

> 1. (3.5)

Since NiE < Ki and Qi(·) are increasing functions, we obtain 1 < Qi(Ki) =

Ri.

The results of this section are summarized in the table below.

Equilibrium Existence? Stable?

E0 = (0, 0, 0, 0) Yes No

E1 = (0,K1, 0, 0) Yes α21K1 > K2 and R1 < 1

E2 = (0, 0, 0,K2) Yes α12K2 > K1 and R2 < 1

B1 = (I∗1 , N∗
1 , J∗

2 , 0) R1 > 1 π2 = r2

(

1 −
α21N∗

1

K2

)

− δ2J
∗
2 < 0

B2 = (J∗
1 , 0, I∗2 , N∗

2 ) R2 > 1 π1 = r1

(

1 −
α12N∗

2

K1

)

− δ1J
∗
1 < 0

E12 = (0, N1E , 0, N2E) αijKj < Ki (or both reversed) αijKj < Ki and R12 < 1

Table 1

Conditions for existence and stability of boundary equilibria

4 Persistence

We start by recalling some basic definition and results about persistence, fol-

lowing the presentation by Thieme [14].

Let X be a metric space with metric d and the union of two disjoint subsets

X1, X2, and Φ a continuous semiflow on X1, i.e., a continuous mapping Φ :
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[0,∞) × X1 −→ X1 with the following properties:

Φt ◦ Φs = Φt+s, t, s ≥ 0; Φ0(x) = x, x ∈ X1

Let Y2 be a subset of X2, and recall that the distance d(x, Y ) of a point x ∈ X

from a subset Y of X is defined by d(x, Y ) = inf
y∈Y

d(x, y). Then

Y2 is called a weak repeller for X1 if

lim sup
t→∞

d(Φt(x1), Y2) > 0 ∀x1 ∈ X1.

Y2 is called a strong repeller for X1 if

lim inf
t→∞

d(Φt(x1), Y2) > 0 ∀x1 ∈ X1.

Y2 is called a uniform weak repeller for X1 if there is some ǫ > 0 such that

lim sup
t→∞

d(Φt(x1), Y2) > ǫ ∀x1 ∈ X1.

Y2 is called a uniform strong repeller for X1 if there is some ǫ > 0 such that

lim inf
t→∞

d(Φt(x1), Y2) > ǫ ∀x1 ∈ X1.

Let M be a subset of X, M is called forward invariant if and only if Φt(M) ⊂

M, t > 0, and invariant if and only if Φt(M) = M, t > 0. A compact

invariant subset M of Y ⊆ X is called an isolated compact invariant set in Y

if there is an open subset U of X such that there is no invariant set M̃ with

M ⊆ M̃ ⊆ U ∩ Y except M . A finite covering M =
⋃m

k=1 Mk in X2 is called

isolated if the sets Mk are pairwise disjoint subsets of X2, which are isolated

compact invariant sets in X.
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A set M ⊂ X2 is said to be chained (in X2) to another (not necessarily

different) set N ⊂ X2, symbolically M 7→ N , if there is some y ∈ X2, y 6∈

M
⋃

N , and a full orbit through y in X2 whose α−limit set is contained in

M and whose ω−limit set is contained in N . We recall that an element y ∈ X

has a full orbit, if there is a function x(t), −∞ < t < ∞, such that x(0) = y

and x(t + s) = Φt(x(s)) for all t ≥ 0, s ∈ R. Moreover, the ω−limit set of a

point y is defined as usual:

ω(y) =
⋂

t≥0

Φ([t,∞) × {y})

A finite covering M =
⋃m

k=1 Mk is called cyclic if, after possible renumbering,

M1 7→ M1 or M1 7→ M2 7→ · · · 7→ Mk 7→ M1 for some k ∈ {2, 3, · · · , m}. M is

called an acyclic covering otherwise.

We now state two useful results of Thieme [14] on how to obtain persistence

through the acyclicity of the flow on X2.

Lemma 4.1 ([14, Theorem 4.5]) Let X be locally compact, and let X2 be

compact in X and X1 be forward invariant under the continuous semiflow Φ

on X. Assume that

Ω2 =
⋃

y∈Y2

ω(y), Y2 = {x ∈ X2; Φt(x) ∈ X2, ∀t > 0}. (4.1)

has an acyclic isolated covering M =
⋃m

k=1 Mk. If each part Mk of M is a weak

repeller for X1, then X2 is a uniform strong repeller for X1.

Lemma 4.2 ([14, Proposition 4.3]) Let X be locally compact, and let X2

be compact in X and X1 be forward invariant under the continuous semiflow
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Φ on X. Let xn be a sequence of elements in X1 satisfying

lim sup
t→∞

d(Φt(xn), X2) → 0, n → ∞

Let M =
⋃m

k=1 Mk be an isolated covering of Ω2 such that ω(xn) 6⊂ Mk for all

n, k. Then M is cyclic.

We will use these concepts with Φt denoting the mapping given by Φt(x) =

Φ(t, x), the solution of system (2.2) with initial condition x ∈ X = D =

{(I1, N1, I2, N2)|0 ≤ Ii ≤ 1, 0 ≤ Ni ≤ Ki, i = 1, 2}. We analyze the persistence

of system (2.2), meaning that a given set D2 ⊂ X is a repeller for D1 = X \D2

or some D̃1 ⊂ D1. D2 will represent (part of) the boundary of the compact set

D. For ease of notation, we will let x(t) = (I1(t), N1(t), I2(t), N2(t)) = Φt(x
0)

with x0 = (I1(0), N1(0), I2(0), N2(0)).

At first, we consider persistence of the populations.

Theorem 4.3 For system (2.2), we have the following result: there exists

an ǫ > 0 such that, for any solution x(t) with N1(0) > 0, N2(0) > 0,

lim inf
t→∞

max{N1(t), N2(t)} > ǫ.

Proof. Define

D2 = {(I1, N1, I2, N2)|0 ≤ Ii ≤ 1, Ni = 0, i = 1, 2}, D1 = D \ D2

D2 is clearly compact (in D), D1 and D2 are forward invariant.

Let Ω2 =
⋃

y∈D2

ω(y).

It is easy to see that Ω2 = {E0} = {(0, 0, 0, 0)} and {E0} is an acyclic covering

for Ω2. Looking at system (2.2) we see that this covering is isolated and a weak

repeller for D1. So by Lemma 4.1, D2 is a uniform strong repeller for D1, i.e.
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the thesis. 2

The previous result shows that always at least one population does not get

extinct. Let now consider assumptions that guarantee strong persistence of

one specific host, say host population 1.

Theorem 4.4 Let α12K2 < K1 and either

a) R2 ≤ 1,

or

b) R2 > 1 and π1 > 0.

Then there exists an ǫ > 0 such that lim inf
t→∞

N1(t) > ǫ, for any solution x(t)

with N1(0) > 0.

Proof. Define

D2 = {(I1, N1, I2, N2)|0 ≤ Ii ≤ 1, N1 = 0, 0 ≤ N2 ≤ K2}, D1 = D \ D2.

The proof of case a) is analogous (but simpler) to that of case b). Hence we

restrict the analysis to case b).

D2 is compact in D, D1 and D2 are forward invariant. Let Ω2 =
⋃

y∈D2

ω(y).

In order to study Ω2, we analyze the semiflow induced by (2.2) on the forward

invariant set D2, i.e., for N1 ≡ 0:























































dI1
dt

= [−(b1 + γ1 + δ1) + δ1I1]I1 + β12(1 − I1)I2N2

dI2
dt

= [β22(1 − I2)N2 − (b2 −
a2r2N2

K2
) − (γ2 + δ2) + δ2I2]I2

dN2

dt
= [r2(1 − N2

K2
) − δ2I2]N2

(4.2)
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It is easy to see that there are three equilibria E0 = (0, 0, 0, 0), E2 = (0, 0, 0, K2)

and B2 = (J∗
1 , 0, I∗

2 , N
∗
2 ) for system (4.2). By Section 2.2 and the first equa-

tion of system (4.2), we have: (1) any solution (I1(t), 0, I2(t), N2(t)) ∈ D2 with

N2(0) = 0 tends to E0 as t → ∞; (2) any solution (I1(t), 0, I2(t), N2(t)) ∈

D2 with I2(0) = 0, N2(0) > 0 tends to E2 as t → ∞; (3) any solution

(I1(t), 0, I2(t), N2(t)) ∈ D2 with I2(0) > 0, N2(0) > 0 tends to B2 as t → ∞.

So Ω2 consists of the three equilibria. And it is easy to see that these equilibria

cannot be chained to themselves in D2. Furthermore, they cannot be chained

to each other in a cyclic way in D2.

Let M1 = {E0}, M2 = {E2}, M3 = {B2}, then M =
3
⋃

i=1

Mi represents an

acyclic covering for Ω2. To show that this covering is isolated in D and a weak

repeller for D1, we analyze the behavior of

dN1

dt
= [r1

(

1 −
N1

K1

−
α12N2

K1

)

− δ1I1]N1, N1(0) > 0 (4.3)

when a solution x(t) stays close to E0, E2 or B2 respectively. If x(t) stays close

to E0, by (4.3) N1 increases exponentially. Similarly, if x(t) stays close to E2 or

B2, by (4.3), and the conditions α12K2 < K1 or π1 = r1

(

1 −
α12N∗

2

K1

)

−δ1J
∗
1 > 0,

N1 increases exponentially too. So the covering M is isolated and each part

Mi is a weak repeller for D1.

Hence by Lemma 4.1, D2 is a uniform strong repeller for D1. Namely there

exists an ǫ > 0 such that lim inf
t→∞

N1(t) > ǫ, for any solution x(t) with N1(0) > 0.

2

Theorem 4.4 assumes that the equilibrium E2 is unstable for the pure compe-

tition system (2.3). Without that assumption, we may still prove weak persis-

tence of population 1.
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Theorem 4.5 For system (2.2), if α12K2 > K1, R2 > 1 and π1 > 0, then we

have:

(1) there exists a solution x(t) = (0, N1(t), 0, N2(t)) with N1(0) > 0, such

that lim
t→∞

N1(t) = 0;

(2) there exists an ǫ > 0 such that lim sup
t→∞

N1(t) > ǫ, for any solution x(t)

with I1(0) > 0, N1(0) > 0, I2(0) > 0, N2(0) > 0.

Proof. 1. When α12K2 > K1, by Section 2.1 (0, K2) is stable for system

(2.3). So we can find a solution (0, N1(t), 0, N2(t)) with N1(0) > 0, such that

lim
t→∞

N1(t) = 0.

2. Define

D2 = {(I1, N1, I2, N2)|0 ≤ Ii ≤ 1, N1 = 0, 0 ≤ N2 ≤ K2}, D1 = D \ D2,

D̃1 = {(I1, N1, I2, N2)|0 < Ii ≤ 1, 0 < Ni ≤ Ki, i = 1, 2}

It is easy to see that D1, D̃1 and D2 are forward invariant.

Let Ω2 =
⋃

y∈D2

ω(y).

In order to study Ω2, we must analyze the semiflow on D2, i.e. (4.2). As above,

Ω2 consists of three equilibria E0, E2 and B2. And it is easy to see that these

equilibria cannot be chained to themselves or to each other in a cyclic way in

D2.

Letting again M1 = {E0}, M2 = {E2}, M3 = {B2}, then M =
3
⋃

i=1

Mi rep-

resents an acyclic covering for Ω2, and it is easy to see that this covering is

isolated in D and each part Mi is a weak repeller for D̃1.

We cannot apply Lemma 4.1, since it is not true that each part is a weak

22



repeller for D1. However, we will show, using Lemma 4.2, that D2 is a uniform

weak repeller for D̃1.

If D2 is not a uniform weak repeller for D̃1, then we find a sequence xn =

(I1n, N1n, I2n, N2n) ∈ D̃1 ⊂ D1 satisfying

lim sup
t→∞

d(Φt(xn), D2) → 0, n → ∞

As each part Mi is a weak repeller for D̃1, we have ω(xn) 6⊂ Mi for all n, i.

Hence the assumptions of Lemma 4.2 are satisfied (indeed D2 is compact) and

the covering M has to be cyclic, in contradiction to the acyclic property of

M . So D2 is a uniform weak repeller for D̃1, which is the thesis. 2

The previous Theorem shows that a species that would get extinct without

the infection, may (weakly) persist in presence of the infection.

Remark 4.6 The results on the stability of the boundary equilibria yield con-

ditions for the non-persistence of N1. Precisely, if α12K2 > K1 and R2 < 1,

or if R2 > 1 and π1 < 0, then N1 is not persistent. In fact, in the first case,

E2 is asymptotically stable; in the second, B2 is asymptotically stable.

Clearly, similar results would hold for species 2, exchanging all indices.

We now consider persistence of the infection.

Theorem 4.7 If α12K2 > K1, α21K1 < K2 and R2 > 1, there exists an ǫ > 0

such that, for any solution x(t) with N1(0) > 0, N2(0) > 0 and I2(0) > 0 or

I1(0) > 0, lim inf
t→∞

min{I1(t), I2(t)} > ǫ.

Proof. Define

D2 = {(I1, N1, I2, N2)|I1 = 0 or I2 = 0, 0 ≤ Ni ≤ Ki}, D1 = D \ D2,
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D̃1 = {(I1, N1, I2, N2)|0 < Ii ≤ 1, 0 < Ni ≤ Ki, i = 1, 2}

It is easy to see that D1 and D̃1 are forward invariant.

From the assumption N1(0) > 0, N2(0) > 0, and I2(0) > 0 or I1(0) > 0, it

follows that Φt(x
0) ∈ D̃1 for all t > 0. We can then assume x0 ∈ D̃1.

Let

Ω2 =
⋃

y∈Y2

ω(y), Y2 = {x = (I1, N1, I2, N2) ∈ D2; Φt(x) ∈ D2, ∀t > 0}

By analyzing the semiflow induced by (2.2), we find that Ω2 consists of three

equilibria, E0 = (0, 0, 0, 0), E1 = (0, K1, 0, 0) and E2 = (0, 0, 0, K2). Further-

more, they cannot be chained to themselves, or to each other in a cyclic way

in D2.

Setting M1 = {E0}, M2 = {E1}, M3 = {E2}, M =
3
⋃

i=1

Mi represents an

acyclic covering for Ω2. By analysing the flow in the neighbourhood of each

equilibrium, it is easy to see that this covering is isolated in D and each part

Mi is a weak repeller for D̃1. As in the Proof of Theorem 4.5, we can use

this to prove that D2 is a uniform weak repeller for D̃1, i.e. there exists an

0 < ǫ̃ < min{J∗
1 , J∗

2 , I∗
1 , I

∗
2} such that

lim sup
t→∞

min{I1(t), I2(t)} > ǫ̃ (4.4)

for any solution x(t) with N1(0) > 0, N2(0) > 0, I1(0) > 0 and I2(0) > 0.

Now, we prove that D2 is a uniform strong repeller for D̃1. Suppose that

D2 is not a uniform strong repeller for D̃1. Then there exist sequences x0
j =
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(Ij
1(0), N j

1 (0), Ij
2(0), N j

2 (0)) ∈ D̃1 and 0 < ǫj < ǫ̃ such that

lim inf
t→∞

min{Ij
1(t), I

j
2(t)} < ǫj for j = 1, 2, . . . (4.5)

Here lim
t→∞

ǫj = 0 and (Ij
1(t), N

j
1(t), I

j
2(t), N

j
2(t)) are the solutions of system

(2.2) with initial values x0
j ∈ D̃1.

From (4.5) and (4.4), we can find sequences 0 < rj < sj < tj with lim
j→∞

rj = ∞

such that

lim
j→∞

min{Ij
1(sj), I

j
2(sj)} = 0, (4.6)

min{Ij
1(rj), I

j
2(rj)} = min{Ij

1(tj), I
j
2(tj)} = ǫ̃, (4.7)

min{Ij
1(t), I

j
2(t)} ≤ ǫ̃ for rj ≤ t ≤ tj . (4.8)

Moreover, rj may be chosen large enough such that: (1) when R1 ≤ 1, N
j
2 (t) >

ǫ∗ for t ≥ rj , where ǫ∗ > 0 is a positive constant (this follows from Theorem

4.4, reversing the indices); (2) when R1 > 1, max{N j
1 (t), N j

2 (t)} > ǫ∗ for t ≥ rj

(this follows from Theorem 4.3).

After choosing a subsequence, the sequence (Ij
1(rj), N

j
1 (rj), I

j
2(rj), N

j
2(rj)) is

convergent in D, and let

lim
j→∞

(Ij
1(rj), N

j
1 (rj), I

j
2(rj), N

j
2(rj)) = (I∗∗

1 (0), N∗∗
1 (0), I∗∗

2 (0), N∗∗
2 (0)) = x∗∗(0).

Then by (4.7) we have min{I∗∗
1 (0), I∗∗

2 (0)} = ǫ̃, so that x∗∗(0) ∈ D1.

In the following, we prove the thesis in two steps.

First, we prove by contradiction that tj − rj is unbounded. Suppose in fact

that tj − rj is bounded; then, after taking a subsequence, sj − rj is convergent
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and let lim
j→∞

(sj − rj) = s∗. By the basic properties of flow we have

lim
j→∞

(Ij
1(rj + s∗), N j

1(rj + s∗), Ij
2(rj + s∗), N j

2 (rj + s∗)) = x∗∗(s∗) (4.9)

where x∗∗(t) is the solution of system (2.2) with initial value x∗∗(0). Since

x∗∗(0) ∈ D1 and D1 is invariant, we have x∗∗(s∗) ∈ D1. At the same time, by

the basic properties of flow we also have

lim
j→∞

(Ij
1(sj), N

j
1 (sj), I

j
2(sj), N

j
2 (sj)) = x∗∗(s∗).

Moreover we have x∗∗(s∗) ∈ D2 by (4.6) and the compactness of D2. A con-

tradiction occurs, so tj − rj is unbounded.

Next, we prove a contradiction under the assumption of non-uniform strong

repeller. If x∗∗(0) ∈ D̃1, then, by (4.4), we have

lim sup
t→∞

min{I∗∗
1 (t), I∗∗

2 (t)} > ǫ̃ (4.10)

We show that (4.10) always holds. If x∗∗(0) ∈ D1\D̃1, then we have two cases:

(1) when R1 ≤ 1, we have seen above that N
j
2 (t) > ǫ∗ for t ≥ rj so that

N∗∗
2 (0) ≥ ǫ∗; then, from (4.7), we have min{I∗∗

1 (0), I∗∗
2 (0)} = ǫ̃, so that it

must be N∗∗
1 (0) = 0. Then N∗∗

1 (t) ≡ 0 and from Lemma 2.2 and the first

equation of system (2.2) we have

lim
t→∞

I∗∗
1 (t) = J∗

1 and lim
t→∞

I∗∗
2 (t) = I∗

2

which means that (4.10) holds.

(2) when R1 > 1, we obtain by max{N j
1 (t), N j

2 (t)} > ǫ∗ for t ≥ rj that either

N∗∗
1 (0) = 0 and N∗∗

2 (0) ≥ ǫ∗ or vice versa. Analogously to the previous

case, we can then prove that (4.10) holds.

Now, since tj −rj is unbounded, after choosing a subsequence, we may assume
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that tj − rj is increasing monotonically and lim
j→∞

tj − rj = ∞. Then by (4.8)

we have, for k > j,

min{Ik
1 (rk + r), Ik

2 (rk + r)} ≤ ǫ̃ for 0 ≤ r ≤ tj − rj.

Fixing r and j, and letting k tend to infinity, we obtain, for 0 ≤ r ≤ tj − rj,

min{I∗∗
1 (r), I∗∗

2 (r)} = lim
k→∞

min{Ik
1 (rk + r), Ik

2 (rk + r)} ≤ ǫ̃. (4.11)

We now let j → ∞ and, as lim
j→∞

tj − rj = ∞, (4.11) holds for all r ≥ 0,

contradicting (4.10). This means that D2 is a uniform strong repeller for D̃1,

i.e. the thesis. 2

A similar result holds exchanging hosts 1 and 2.

For the cases where the competition model has an internal equilibrium, we

have the following:

Theorem 4.8 For system (2.2), if α12K2 < K1, α21K1 < K2 and R12 > 1,

there exists an ǫ > 0 such that lim inf
t→∞

min{I1(t), I2(t)} > ǫ, for any solution

x(t) with N1(0) > 0, N2(0) > 0 and I2(0) > 0 or I1(0) > 0.

Proof. Define

D2 = {(I1, N1, I2, N2)|I1 = 0 or I2 = 0, 0 ≤ Ni ≤ Ki}, D1 = D \ D2,

D̃1 = {(I1, N1, I2, N2)|0 < Ii ≤ 1, 0 < Ni ≤ Ki, i = 1, 2}

D1 and D̃1 are forward invariant. Let

Ω2 =
⋃

y∈Y2

ω(y), Y2 = {x = (I1, N1, I2, N2) ∈ D2; Φt(x) ∈ D2, ∀t > 0}

By analyzing the semiflow induced by (2.2), we find that Ω2 consists of four

equilibria, E0 = (0, 0, 0, 0), E1 = (0, K1, 0, 0), E2 = (0, 0, 0, K2) and E12 =
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(0, N1E, 0, N2E). These equilibria cannot be chained to themselves in D2 or to

each other in a cyclic way in D2.

Let M1 = {E0}, M2 = {E1}, M3 = {E2}, M4 = {E12}; then M =
4
⋃

i=1
Mi

represents an acyclic covering for Ω2. To show that this covering is isolated in

D, we analyze the behavior of system (2.2) when any solution x(t) stays close

to E0, E1, E2 or E12 respectively.

If x(t) stays close to E0, we have two cases: (1) if N1(0) = N2(0) = 0, then

N1(t) = N2(t) ≡ 0. In this case, I1 and I2 decrease exponentially; (2) if

N1(0) > 0 or N2(0) > 0, then N1(t) > 0 or N2(t) > 0. By (2.2) N1 or N2

increases exponentially. So by the two cases, M1 is isolated in D.

If x(t) stays in a small neighbourhood of E2, we have three cases:

(1) if N1(0) = I2(0) = 0, then N1(t) = I2(t) ≡ 0. By (2.2), K2 − N2(t)

decreases exponentially, so x(t) has to exit the neighbourhood as t →

−∞;

(2) if N1(0) > 0, then N1(t) > 0 and

dN1

dt
≥
[

r1

(

1 −
η

K1
−

α12K2

K1

)

− δ1η

]

N1

where η is the size of the neighbourhood. Since α12K2 < K1, choosing

η > 0 small enough, we see that N1 increases exponentially as t → +∞;

(3) if N1(0) = 0 and I2(0) > 0, then N1(t) ≡ 0 and I2(t) > 0 for all t >

0. In this case, (I2(t), N2(t)) satisfy system (2.4) that has no invariant

subset other than E2 in its neighbourhood; in fact, if R2 ≤ 1, I2(t) is

monotonically decreasing; otherwise I2(t) increases to I∗
2 .

So by all cases, M3 is isolated in D.
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Similarly, we can prove that M2 is isolated in D.

If x(t) stays close to E12, we have two cases:

(1) if I1(0) = I2(0) = 0, then I1(t) = I2(t) ≡ 0. Then (2.3) with α12K2 <

K1 and α21K1 < K2 shows that (N1(t), N2(t)) goes far away from E12 as

t → −∞.

(2) if I1(0) > 0 or I2(0) > 0, then I1(t) > 0 and I2(t) > 0 for all t > 0. When

x(t) stays very close to E12, by (2.2) there exists some δ > 0 (related to

the size of the neighbourhood of E12) such that































dI1
dt

> c̃11I1 + c̃12I2

dI2
dt

> c̃21I1 + c̃22I2

(4.12)

where c̃ij = cij − δ and cij are the entries of the top-left matrix TL of the

matrix C12 in (3.3). By choosing δ small enough, the matrix C̃ in (4.12)

has positive non-diagonal elements and its largest eigenvalue is positive,

since R12 > 1 [17]. Hence the solution of the linear quasi-monotonic

system






























dx1

dt
= c̃11x1 + c̃12x2

dx2

dt
= c̃21x1 + c̃22x2

with x1(0) > 0, x2(0) > 0 are exponentially increasing as t → ∞. By the

comparison principle, (I1(t), I2(t)) goes away from (0, 0).

Hence, by the two cases M4 is isolated in D, so that M is isolated in D.

The arguments used in these proofs (cases 2.) show also that each part Mi is

a weak repeller for D̃1.
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Using Lemma 4.2 as in the proof of Theorem 4.5, we can prove that D2 is a

uniform weak repeller for D̃1; and then as in the proof of Theorem 4.7, we can

prove that D2 is a uniform strong repeller for D̃1, i.e. the thesis. 2

The previous Theorem shows that it is possible that an infection that would

die out in either species without the inter-infection of disease, may persist in

both species in presence of this factor.

By the strong uniform persistence of infection, in several cases, the weak uni-

form persistence of populations (Theorem 4.5) can be strengthened to the

strong uniform persistence.

Theorem 4.9 Let α12K2 > K1, R2 > 1, π1 > 0 and either

a) α21K1 < K2

or

b) α21K1 > K2, R1 > 1 and R12 > 1.

Then there exists an ǫ > 0 such that lim inf
t→∞

N1(t) > ǫ, for any solution x(t)

with N1(0) > 0, N2(0) > 0 and I1(0) > 0 or I2(0) > 0.

Proof. The idea and method of the proof are similar to those of the previous

Theorem and the proof is, therefore, omitted. 2

A similar result holds exchanging hosts 1 and 2.

Finally, by the strong uniform persistence of populations and infection, we can

obtain the strong uniform persistence of (2.2) relatively to all components.

Theorem 4.10 For system (2.2), if α12K2 > K1, α21K1 < K2, R2 > 1,
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π1 > 0, and either (1) R1 < 1, or (2) R1 > 1 and π2 > 0, then there exists

an ǫ > 0 such that, for any solution x(t) with N1(0) > 0, N2(0) > 0 and

I1(0) > 0 or I2(0) > 0, lim inf
t→∞

min{I1(t), N1(t), I2(t), N2(t)} > ǫ.

A similar result holds exchanging hosts 1 and 2.

For the cases where the competition model has an internal equilibrium, we

have the following:

Theorem 4.11 For system (2.2), if α12K2 < K1, α21K1 < K2, R12 > 1, and

any one of the following conditions holds:

(1) R1 < 1, R2 < 1;

(2) R1 > 1, R2 < 1, π2 > 0;

(3) R1 < 1, R2 > 1, π1 > 0;

(4) R1 > 1, R2 > 1, π1 > 0, π2 > 0,

conditions conclusion

Rj < 1 αijKj > Ki NP, Ej stable

(j 6= i, j = 1, 2) αijKj < Ki SUP

πi < 0 NP, Bj stable

αijKj < Ki SUP

Rj > 1 αjiKi < Kj SUP

πi > 0 αijKj > Ki Ri < 1 WUP

αjiKi > Kj Ri > 1 R12 < 1 WUP

R12 > 1 SUP

Table 2

Persistence of either population Ni (i = 1, 2), where, NP stands for non-persistence,

SUP stands for strong uniform persistence, WUP stands for weak uniform persis-

tence
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then there exists an ǫ > 0 such that lim inf
t→∞

min{I1(t), N1(t), I2(t), N2(t)} > ǫ,

for any solution x(t) with N1(0) > 0, N2(0) > 0 and I1(0) > 0 or I2(0) > 0.

Remark 4.12 Note that, by Remark 3.1, if both eigenvalues of the top-left

matrix TL of (3.3) have positive real parts, then R1 > 1 and R2 > 1, so that

only case 4) may occur, and one needs only check π1 > 0 and π2 > 0.

Theorem 4.13 For system (2.2), if α12K2 > K1, α21K1 > K2, R12 >

1, R1 > 1, R2 > 1, π1 > 0, π2 > 0, then there exists an ǫ > 0 such that,

for any solution x(t) with N1(0) > 0, N2(0) > 0 and I1(0) > 0 or I2(0) > 0,

lim inf
t→∞

min{I1(t), N1(t), I2(t), N2(t)} > ǫ.

conditions conclusion

α12K2 > K1, α21K1 < K2 R2 < 1 NP, E2 stable

R2 > 1 SUP

α12K2 < K1, α21K1 > K2 R1 < 1 NP, E1 stable

R1 > 1 SUP

α12K2 < K1, α21K1 < K2 R12 < 1 NP, E12 stable

R12 > 1 SUP

R2 < 1 NP, E2 stable

α12K2 > K1, α21K1 > K2 R1 < 1 NP, E1 stable

R2 > 1 R1 > 1 R12 < 1 NP, 3d-SM at E12

R12 > 1 SUP

Table 3

Persistence of both of Ii (i = 1, 2) where, 3d-SM stands for a 3-dimensional stable

manifold

Remark 4.14 If α12K2 < K1, α21K1 < K2 and R12 < 1, then the equilibrium

E12 is stable; hence system (2.2) is not persistent.
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On the other hand, if α12K2 > K1, α21K1 > K2 and R12 < 1, the equilibrium

E12 has a 3-dimensional stable manifold V s and a 1-dimensional unstable

manifold V u lying on the plane (N1, N2). Letting

D1 = {(N1, N2, I1, I2) : I1 > 0, I2 > 0}

it is clear that D2 = D \ D1 is not a repeller for D1, since points lying in

D1 ∩ V s are attracted to E12. The question of what happens if x(0) ∈ D1 \ V s

remains open.

We summarize the results on persistence, together with the stability results of

the previous Section, in Tables 2, 3 and 4. In reading Table 4, remember that

in case III when R12 > 1 and both eigenvalues of the top-left matrix TL of the

matrix C12 in (3.3) have positive real parts, necessarily R1 > 1 and R2 > 1.

.

Corollary 4.15 In all conditions listed in Table 4 that guaranteed strong uni-

form persistence, there exists at least one internal equilibrium of (2.2).

Proof. It follows from a general result from persistence theory [21, Remark

3.10 and Theorem 4.7], [22, pp. 160–166]. 2

5 Bifurcation Phenomena

In this section, we present, with the help of numerical software, some bifur-

cation diagrams of system (2.2) in order to explore the possible behaviors of

the solutions.

First, we recall the conditions for Hopf bifurcation, following the presentation
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conditions conclusion

R2 < 1 NP, E2 stable

π1 < 0 NP, B2 stable

I R2 > 1 R1 < 1 SUP

π1 > 0 R1 > 1 π2 < 0 NP, B1 stable

π2 > 0 SUP

R1 < 1 NP, E1 stable

π2 < 0 NP, B1 stable

II R1 > 1 R2 < 1 SUP

π2 > 0 R2 > 1 π1 < 0 NP, B2 stable

π1 > 0 SUP

R12 < 1 NP, E12 stable

R1 < 1 SUP

III R2 < 1 R1 > 1 π2 < 0 NP, B1 stable

π2 > 0 SUP

R12 > 1 π1 < 0 NP, B2 stable

R2 > 1 R1 < 1 SUP

π1 > 0 R1 > 1 π2 < 0 NP, B1 stable

π2 > 0 SUP

R2 < 1 NP, E2 stable

R1 < 1 NP, E1 stable

IV π1 < 0 NP, B2 stable

R2 > 1 R1 > 1 π1 > 0 π2 < 0 NP, B1 stable

π2 > 0 R12 < 1 NP, 3d-SM at E12

R12 > 1 SUP

Table 4

Persistence of all of I1, N1, I2 and N2. I stands for α12K2 > K1, α21K1 < K2, II

stands for α12K2 < K1, α21K1 > K2, III stands for α12K2 < K1, α21K1 < K2, IV

stands for α12K2 > K1, α21K1 > K2. 34



by Shen and Jing [23].

Consider the following differential system

dx

dt
= f(x, µ), x ∈ Rn, µ ∈ R (5.1)

with an equilibrium point x = x0(µ). If the Jacobian matrix

A(µ) = Dxf(x0(µ), µ)

has a pair of complex conjugate eigenvalues

λ1(µ) ± iλ2(µ) (5.2)

and for some value µ = µ0,

λ1(µ0) = 0, λ2(µ0) > 0, dλ1(µ0)
dµ

6= 0 (5.3)

and the remaining eigenvalues of A(µ0) have nonzero real parts, then the cru-

cial hypotheses of Hopf bifurcation theorem are satisfied, and the equilibrium

x0 bifurcates into a “small amplitude” periodic solution as µ passes through

µ0.

For system (5.1), the characteristic equation at the equilibrium x = x0 can be

written as

P (λ) = λn + cn−1(µ)λn−1 + · · ·+ c0(µ) = 0 (5.4)

Conditions (5.2) and (5.3) can be written in terms of the coefficients of (5.4),

as stated in the following lemma:

Lemma 5.1 ([23, Theorem 3]) Conditions (5.2) and (5.3) for the existence

of the Hopf bifurcation are satisfied for system (5.4), if the following con-

ditions are satisfied: 1) µ = µ0 is a zero of Hn−1(µ) = 0; 2) Hn−2(µ0) 6=
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0, Hn−3(µ0) 6= 0, cj(µ0) > 0, j = 0, 1, 2, · · · , n − 1; 3) dHn−1(µ0)
dµ

6= 0, where

Hj(µ), j = 1, 2, · · · , n, are the Hurwitz determinants.

To use this theorem for system (2.2), we need to discuss Hopf bifurcation

at an internal equilibrium. However, for system (2.2) there are no explicit

formulae for an internal equilibrium and, in general, not even its existence

can be proved. Hence we will study the bifurcation in the very special case,

where all the analogous parameters are same for species 1 and 2. Although

it is a very particular case, it displays several interesting behaviors that can

shed light also outside of this special structure.

Namely, we let

r1 = r2 = r, b1 = b2 = b, d1 = d2 = d, a1 = a2 = a, K1 = K2 = K,

α12 = α21 = α, γ1 = γ2 = γ, δ1 = δ2 = δ, β11 = β22 = β1, β12 = β21 = β2.

Then system (2.2) becomes a symmetric (with respect to the exchange of 1

and 2) system.

When R∗ > 1, there exists a unique internal equilibrium P ∗ = (I∗, N∗, I∗, N∗)

where

R∗ =
(β1 + β2 + ar

K
) r

r
K

(1+α)

b + γ + δ
, I∗ =

r

δ
−

r

δK
(1 + α)N∗

and N∗ is the larger solution of the equation

(β1 + β2)
r

δK
(1 + α)x2 + [(β1 + β2)(1−

r

δ
) −

(1 + α − a)r

K
]x− (d + γ + δ) = 0
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For this equilibrium, the Jacobian matrix is

A∗ =









































a1 b1 c1 d1

a2 b2 0 d2

c1 d1 a1 b1

0 d2 a2 b2









































where

a1 = −β1I
∗N∗ − β2N

∗ + δI∗, b1 = β1I
∗(1 − I∗) +

ar

K
I∗, c1 = β2(1 − I∗)N∗,

d1 = β2(1 − I∗)I∗, a2 = −δN∗, b2 = −
r

K
N∗, d2 = −

rα

K
N∗.

Through long computations, one finds that its characteristic equation is

A0 + A1λ + A2λ
2 + A3λ

3 + λ4 = 0

where

A0 = (a1b2 − a2b1)
2 − (a2d1 − a1d2)

2 + 2a2b2c1d1 − 2a2b1c1d2 − b2
2c

2
1 + c2

1d
2
2,

A1 = −2(a1 + b2)(a1b2 − a2b1) − 2d2(a2d1 − a1d2) − 2a2c1d1 + 2b2c
2
1,

A2 = (a1 + b2)
2 − d2

2 − c2
1 + 2(a1b2 − a2b1), A3 = −2(a1 + b2),

and its Hurwitz determinants are

H1 = A3, H2 = A2A3 − A1, H3 = A1A2A3 − A0A
2
3 − A2

1, H4 = A0H3.

Clearly A0, A1, A2, A3, H1, H2, H3 and H4 are the functions of all the

parameters of the system. In the following, we choose β2 as the bifurcation

parameter, and fix the other parameters. Because of the complexity of the

characteristic equation, we present only numerical results, shown in Fig. 1,

where β2 varies from 0.14 to 0.18 .
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Fig. 1. the curves of A0, A1, A2, A3, H1, H2, H3 and dH3

dβ2
as functions of β2.

Parameter values are r = 1, b = 2, a = 0.5, K = 2, d = 1, α = 2, δ = 1, γ = 1 and

β1 = 6.

From Fig. 1, we see that, as β2 changes from 0.14 to 0.18, the values of

A0, A1, A2, A3, H1, H2,
dH3

dβ2
always remain positive, but the value of H3

changes from negative to positive. Hence, there exists some β̃2 ∈ [0.14, 0.18]

such that H3(β̃2) = 0 and A0, A1, A2, A3, H1, H2,
dH3

dβ2
are all positive. The

conditions of Lemma 5.1 are satisfied and Hopf bifurcation occurs. So, the

internal equilibrium P ∗ bifurcates into a “small amplitude” periodic solution

as β2 passes through β̃2.

Precisely, we find that, when β2 = 0.1677 (in fact, this is just the value

of β̃2 in Fig. 1), Hopf bifurcation occurs at the internal equilibrium P ∗ =

(0.038509, 0.640994, 0.038509, 0.640994) and the corresponding Lyapunov

coefficient l = −23.93361 is negative, which means that the periodic orbits

are born stable (namely, stable limit cycles). In other words, as β2 decreases
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through β̃2 = 0.1677, the stability of the internal equilibrium changes from

stable to unstable and a stable limit cycle arises. In Fig. 2, we show the stable

limit cycle for β2 = 0.1 (plotting, for simplicity, only the coordinates I1 and

N1 of the limit cycle).
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Fig. 2. The stable limit cycle for β2 = 0.1

Let us moreover consider the stabilities of the boundary equilibria in this

case. By numerical computations, we find that, for β2 near β̃2 = 0.1677, the

equilibria E0, E1, E2, E12 are always unstable, but B1 and B2 are always

stable. So we have the results as follows: (1) When β2 > β̃2 = 0.1677, there

exist three stable equilibria B1, B2 and P ∗; (2) When β2 < β̃2 = 0.1677, there

exist two stable equilibria B1, B2 and a stable limit cycle.

Note that, with these parameter values, the pure competition model has both

boundary equilibria E1 and E2 stable, and an internal unstable equilibrium

E12; i.e., the competition model is “bi-stable”. Adding the infection, the sys-
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tem moves to a “tri-stable” situation: depending on the initial conditions, the

solutions may settle to a state with either species alone with the endemic in-

fection, or to a state with both species present and the infection either at an

equilibrium, or, depending on the value of β2, fluctuating in a limit cycle.

One can look at how the Hopf bifurcation depends on the other parameters.

For instance in Fig. 3, we let β2 and the inter-specific competition coefficient

α vary; the points on the curve shown in that figure are all Hopf bifurcation

points.
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Fig. 3. the continuation curve of Hopf bifurcation points

This means that, for each point (β̃2, α̃) on the curve, and α = α̃ is fixed, as

β2 decreases through β̃2, the stability of the internal equilibrium P ∗ changes

from stable to unstable and a stable limit cycle occurs; similarly, if β2 = β̃2 is

fixed and α increases through α̃.
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One can also check that, for values of (β̃2, α̃) on the curve, the boundary

equilibria E0, E1, E2, E12 are always unstable, while the equilibria B1 and

B2 can be stable or unstable. This brings us important information, in agree-

ment with [2]: (1) when all the boundary equilibria are unstable, the internal

equilibrium may be stable or unstable; (2) when there exists a stable bound-

ary equilibrium, the internal equilibrium may be stable or unstable; (3) the

system may have three stable attractors and one of which is a limit cycle.

Finally, we present the bifurcation diagram in a special asymmetric case, in

which all parameters

r1 = r2 = r, b1 = b2 = b, d1 = d2 = d, a1 = a2 = a, K1 = K2 = K,

γ1 = γ2 = γ, δ1 = δ2 = δ, β11 = β22 = β1, β12 = β21 = β2

are the same, except for the competition coefficients α12 and α21 that may be

different.

We choose α21 as the bifurcation parameter, and fix the other parameters.

With the help of MatCont numerical software [24], we obtain Fig. 4.

Fig. 4 shows (for simplicity, only the coordinate N2) the bifurcation diagram

of the internal equilibria and of the boundary equilibrium B1 when α21 varies

between 1.6 and 2.4. The stability is shown with the letters ‘s’ (=stable) or

‘u’ (=unstable), and the bifurcation points are shown as ’H’ (Hopf bifurcation

point), ’LP’ (saddle-node bifurcation point) and ’BP’ (branching point, or

transcritical bifurcation point). From Fig. 4, one sees that: (1) when α21 <

1.7932, there is no internal equilibria; (2) when 1.7932 < α21 < 1.8946, there

exist two internal equilibria, one is stable, the other is unstable; (3) when

1.8946 < α21 < 1.9512, there exist three internal equilibria, one is stable,
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b = 2, a = 0.5, K = 2, d = 1, α12 = 2, δ = 1, γ = 1, β1 = 6 and β2 = 0.1.

the other two are unstable; (4) when 1.9512 < α21 < 2.0388, there exist

a stable limit cycle and three internal equilibria which are all unstable; (5)

when 2.0388 < α21 < 2.0688, there exist three internal equilibria, one is

stable, the other two are unstable; (6) when α21 > 2.0688, there exists an

internal equilibrium which is unstable. In cases (1) and (2), the equilibrium

B1 is unstable, while it is stable in the other cases. Finally, it is possible to

check that, independently of the value of α21, the equilibrium B2 is always

stable.

We have obtained the important information: (1) the system may have be-

tween zero and three internal equilibria; (2) with two stable boundary equi-

librium, the system may have three internal equilibria, one of which may be

stable. It is also possible that the system has three stable attractors, one of
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which is a limit cycle.

6 Discussion

In this paper, we considered an SIS epidemic model of two competitive species

and obtained some results that show the biological significance and compli-

cated behaviors of the model.

In general, one species does not exist alone in the natural world. It always

interacts with other species for food, space and so on. Therefore, it is valuable

to consider the effect of interacting species when we study the dynamical

behaviors of epidemiological models. From this an interesting question occurs:

how do infection and ecological interactions among species affect each other? In

this competition model we found, by a careful analysis, important interactions

between infection and competition as follows: (1) a species that would get

extinct without the infection, may persist in presence of the infection; (2) a

species that would coexist with its competitor without the infection, but is

driven to extinction by the infection; (3) an infection that would die out in

either species without the inter-infection of disease, may persist in both species

in presence of this factor.

By mathematical analysis and numerical investigation, Holt and Pickering [7],

Begon and Bowers [1,8] conjectured that their models have the classic en-

demic model behavior with a unique attracting equilibrium, below and above

the threshold. But Greenman and Hudson [2] did extensive analysis of these

models and found counterexamples to this conjecture, showing that the two

host epidemic models can have complicated behaviors.
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In our model, using Hopf bifurcation theory and numerical simulations, we

have extended the analysis by Greenman and Hudson, revealing the following

complicated behaviors: (1) when all the boundary equilibria are unstable, the

internal equilibrium may be stable or unstable; (2) when there exists a stable

boundary equilibrium, the internal equilibrium may exist or not, and be sta-

ble or unstable; (3) the system may have three stable attractors and one of

which may be a limit cycle; (4) the system may have zero up to three internal

equilibria; (5) when there exists a stable boundary equilibrium, the system

may have three internal equilibria: sometimes all of them are unstable, but

sometimes one of them is stable. Probably, several other interesting behaviors

may be ascertained through a more extensive numerical investigation.

We have also analysed the system from the point of view of persistence. A

much clearer picture emerges from this, and it is almost always possible to

decide whether the system is persistent or not on the basis of a few quanti-

ties, related to the stability of the boundary equilibria (Table 4). A few cases

remain partially undecided from this analysis. From Table 2 we find that

host population i (i = 1, 2) is weakly uniform persistent when Rj > 1, πi >

0, αijKj > Ki, αjiKi > Kj(i 6= j) and Ri < 1 or Ri > 1, R12 < 1. For this

case, we can not prove the strong uniform persistence; but we conjecture that

there may exist some oscillating trajectory which destroys the strong uniform

persistence.

Finally, we compare our model with the model by Saenz and Hethcote [3]

who use the frequency-dependent incidence. In their model, there exists an

extinction equilibrium E∗ = (Ic
1, 0, I

c
2, 0) stable under some conditions; this

means that the infectious disease may drive both species to extinction. But

in our model, there does not exist such an equilibrium, thus total extinction
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can not occur. It is in fact known that an infection may cause population

extinction only with the frequency-dependent incidence, and not with the

standard bilinear form, or other laws increasing with population density [25].

Another difference is that their model never has periodic solutions, nor multi-

ple attractors, contrary to what we found in model (2.2). Hence, the different

forms of the incidence can lead to rather different dynamical behaviors of the

models.

At last, in their model, a key result is that the disease must either die out

or remain endemic synchronously in both species. Which still occurs in our

model, since the equilibrium value I1 is zero if and only if I2 is also zero. So,

the occurrence of this behavior is independent of the form of the incidence.
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