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Abstract

We start from a stochastic SIS model for the spread of epidemics among a popu-
lation partitioned into M sites, each containing N individuals; epidemic spread occurs
through within-site (‘local’) contacts and global contacts. We analyse the limit be-
haviour of the system as M and N increase to 0o. Two limit procedures are considered,
according to the order in which M and N go to oo0; independently of the order, the
limiting distribution of infected individuals across sites is a probability measure, whose
evolution in time is governed by the weak form of a PDE. Existence and uniqueness
of the solutions to this problem is shown. Finally, it is shown that the infected dis-
tribution converges, as time goes to infinity, to a Dirac measure at the value z*, the
equilibrium of a single-patch SIS model with contact rate equal to the sum of local and
global contacts.

1 Introduction

The stochastic SIS model under discussion describes the spread of an epidemic among a
population partitioned into M sites, each of N individuals, as it has been introduced by Ball
[1]. Tt is assumed that susceptible individuals can become infected through contacts within
the same site (at rate ¢), and through global contacts (at rate d) that do not depend on
the site of individuals. The sites can be interpreted as households within a city, as in Ball’s
formulation [1], but may also be towns within a country [15], or habitable sites within the
range of an animal population. In household model, the number of individual per site has to
be small, while in other situation, it could be relevant to consider a larger local population.
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From a mathematical point of view, this process can be modeled by a continuous time
Markov chain, which involves the two size-parameters M and N, the local infection rate ¢, the
global infection rate d, and the recovery rate . The same mathematical setting arises also
in different biological and epidemiological contexts: for example, models of macroparasites
infections [5] and metapopulation dynamics [19].

We are interested in the approximation of this stochastic model by deterministic systems,
along the lines of Kurtz [20] or Barbour [4], [3]. In Section 2, we report two different
deterministic approximations, which have been suggested in [1]. The first one is suitable for
not so many sites, each with large population; the resulting system of M ordinary differential
equations is a particular case of the SIS multigroup epidemic studied in [21] and [8], for
which one has a complete description of the equilibria and of their stability. The second
deterministic approximation describes instead a situation of a population of a large number of
patches, each with small local population and derives a system of N ODE’s for the proportion
of patches with § infectives: for N = 2, [1] studies the equilibria and their stability, while
for N > 3, only numerical investigations are performed.

It must be remarked that, within the context of structured metapopulation dynamics,
Gyllenberg and co-workers [16, 17] have proposed models consisting of 3 PDE whose variable
is the distribution of population densities across patches. Although there are no rigorous
derivations, such models should correspond to the limiting case of infinitely many patches,
each with infinitely large population.

Our aim here is indeed to study the behaviour of the process as both parameters M
and N go to infinity: in Section 3, we introduce a new variable Y¥M(¢), that gives a
global description of the system at time t: it is a random probability measure that, roughly
speaking, represents the fraction of patches with a percentage of infectives in an assigned
range; its limit will also be a measure. The choice of a measure-valued function to describe
the evolution over time of structured populations has been suggested in several papers by
Diekmann and co-workers [9, 10]. Here, as in [17], the individual level is that of the single
sites, the population level is actually the metapopulation one, and the state z is the infectious
load.

We show in Sections 4 and 5 that, independently of the order in which the double limit is
performed, the process Y™™ (¢) converges to a deterministic measure u(¢). The convergence
is proved by applying results of compactness for families of probability measures [7] and
employing “laws of large numbers” for density-dependent Markov processes [14, 22].

The limiting measure yu(¢) satisfies a non-linear evolution equation, that can be considered
the weak form of a partial differential equation.

From an epidemiological point of view, the main result (Section 6) is that, in the limit
of infinitely many sites each with infinitely large population, the measure u(t) converges,
as t goes to infinity to a Dirac measure, centred at an endemic state z*, if the threshold
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condition %‘ > 1 holds; centred at 0, below the threshold. We discuss (Section 7) how to
interpret this condition in terms of the basic reproduction number: we define Ry for the
approximating models, according to the approach presented by Diekmann and Heesterbeek
[], and, going to the limit, we can obtain a definition of Ry for the limiting case for which the
threshold condition becomes Ry > 1. We also present some numerical examples to illustrate
how large patch population size N must be to be accurately approximated by the limiting
case, at least in terms of Rp.

It may be noticed that the threshold condition, and the infection level z*, are exactly
the same as an SIS epidemic spreading in a single population with infection rate ¢+ d. In
this sense, we may say that, at least in the limiting case, the metapopulation structure does
not add new biological features; this, however, probably depends on the monotone structure
of SIS epidemic models that makes them very stable [21, 8]. The present paper provides a
rigorous framework where deterministic systems can be derived for different models, such
as SIR epidemic models [2], or structured metapopulation models [17], whose qualitative
behaviour may be richer, even in the limiting case.

2 The stochastic model

The epidemic spreads among a population consisting of M patches, labelled 1,..., M, each
containing N individuals. We describe this process by means of a continuous time Markov
chain with values in the lattice Z¥ :

K: (K:E::YM)

where Y;() denotes the number of infectives at time t in the i-th patch; the constants involved
are ¢ (the local infection rate), d (the global infection rate) and -y (the recovery rate). Let
e; the j-th coordinate vector; ¥ is a jump Markov process with transition rates

Y —Y +e; at rate (N—Yj)(c%1+%2?il%i
Y Y —eg;at rate Y

To start with, we recall two results of approxmation of the stochastic model with a
deterministic one. In the first case, we let the number of individuals in each site go to
infinity, keeping the number of sites fixed; in the second formulation, we let the number of
sites go to infinity, with fixed population for each patch.

o Let X x(t) be the Markov process, whose components represent the fraction of infectives
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in each patch

Xp(t) = (“;PYMT@)

X is the density process associated to Y'(t). A result of [14] (Theorem 11.2.1, page
456) for density-dependent Markov processes shows that if X 5(0) — X® as. for
N — oo, then

lim sup [ Xy(t)-X(@)|=0 as
N_wotE[{]',T]

where the vector function X = (X,... Xp) satisfies the following ODE system

{ Xi(t) = (1 - Xi@)(eXs®) + & T, X)) —1X:(0)

Xi(0) = X} &1

fori=1,...M.
When M — oo, it is useful to consider the fraction of patches with 5 infectives:
@M(t) = (ﬂﬁ'{},---,ﬂ&‘N)

:L‘;M(t) _ Ej:l E?fé:ﬂ(t)

N+l
{zM(¢),t € [0, )} is a continuous time Markov chain with state-space ([0, 1N ﬁ)

and transition rates

¥ M+ Lie,; —e;) atrate M(N —fzM(ci+ 437 1aM)

M

eM =M+ (e —e;) atrate MyjzM

Eihier and Kuriz [14] and Barbour and Kafetzaki [5] show that assuming that z¥(0)
N

converges a.s., as M goes to infinity, to y € [0, 1]¥*! with Zyj = 1, the stochastic
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process ™ (t) converges a.s. to & = (&,...,&n) e CYTP ={ 0 < &) < 1, i =
0,...,N & € C[0,T]} solution of the following deterministic ODE system:

(&) =+ 1) — 56]+
+e[(N—j+ )80 — (N =48] +

uid 2.2
+E> GHN — G+ 1)g0 — (N — 5)¢)] 22)
=0
£ot) =6 —&d Y, &l
, {'}(0) =¥

where  =0...N, Ena(t) =0, and £-4(¢) = 0.

3 Limit equation

QOur aim is to study the behaviour of the process as both parameters go to infinity.
In order to do that, we construct a family of probability measures on the interval [0, 1]
depending on the time parameter ¢; for every measurable set I C [0, 1], let us define

M
;]I[‘%\,—“)ef] 1M
YNM()(T) = == HZ Oy, (I). (3.1)
i:l

If I = (a,b], Y™M(¢) is the fraction of patches with a fraction of infectives between a and b
at time ¢; if o = £and b= £ | we have Y¥M(2)(I) = 2 (2).

Y¥M(1) is g stochastic process indexed by two parameters and values in the space of prob-
ability measure on the unit interval; with the notation of the previous section, we get

YRM@(I) =Dz} ()61 (1).
i=0

The following sections deal with two limits:



A) lim lim Y¥M(3)

M—aoo N=oo

B) lim lim Y¥M™(3)

N—=oo M—o00

They could be g ’priori’ different, but it will be shown that they both lead to the same mea-
sure on the interval [0, 1], whose evolution is described by the following non-linear equation

'
< foult) >=< fru0 > + fo <Huofu(s)>ds  VEeC(D,)  (32)

where we denote the action of the generic measure of probability 4 on a continuous function
f:00,1] > R with < +,- >

<fu>= [0 F(@)u(de)

and
Hyf =-vRf+cSf+dEWTS
Rf(z) =zf'(z)
Sf(z) ==z(1-=z)f(z) (3.3)

Tflz) =1 —-z)f'(z)
E(u) = [ zu(dz)

In order to show existence and uniqueness of solutions of (3.2), we follow the strategy adopted
in [10]: pretending that the ’environmental’ input (the severity of the global epidemics at
time t) is known, we have a non-autonomous linear dynamical system that, for a given iy
yields a unique solution; then, by a contraction argument, we obtain the requested solution
of (3.2). Hence, we first consider the linear equation

¢
<) >=< fu0) > + [ <r@ ) O >ds VFeCRY)  (4)
where (2, z) is a given continuous function defined on [0, T] x [0,1] and u(t) are measures
on the Borel o-field. Formally, we can write O, = A*(¢)u where A* denotes the adjoint of
the time dependent operator (A(¢)f)(z) = r(¢,z) f'(z).

Note that if we assume that the measure p(#) solution of (3.4) is absolutely continuous with
respect to the Lebesgue measure, that is du:(z) = v(¢,z) dz with v € C'([0,T] x [0,1]),
then if 7(¢, 0) and 7(z, 1) are different from 0, the density function v must satisfy the partial
differential equation

atv(ta 1‘) = _aw(r(ta 1‘)’0(t,2?))
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with boundary conditions
v(t,0) =v(¢,1) =0

as one can see by integrating by parts.
Let us denote by ®(¢;ty, z) the solution to the Cauchy problem

{ 9(t)  =rty) (35)

y(to) ==

extending r(¢,z) =r(¢,1) for z > 1,2 € R and 7(¢,z) = 7(¢,0) for z < 0,t € R and assume
that this solution is defined for each ¢ € R and z € R.

Lemma 3.1 Let 7(¢,0) > 0 > r(t,1) for allt > 0. Then 0 < ®(t;tp,2) <1, Vz €
[Ual]atZthU

Proof It is enough considering the sign of %(I’(t; tp, ) when ®(t;tg, 2) = 0 or 8(¢;tg,2) = 1.

As in the case of an absolutely continuous measure, we can construct the measure solution
of ( 3.4) carrying the initial p; along the flow: for every Borel measurable set A in [0, 1], let

Yi(z) = ¢;' () = (0;¢,2) (3.6)
w(A) = po [¢77(A)N[0,1]]

In order to show that y; is the unique solution of (3.4), we need some identities. Note first
that, since the solution of (3.5) is unique , we have

&(t; s, B(s;t,2)) = z. (3.7)

Taking the derivatives with respect to ¢ and to z of both sides of (3.7) ( 8;, ¢ = 1, 2,3 denotes
the partial derivative of & with respect to the i — th variable), we have

(019)(t, 5, B(s,t,2)) + (a®)(2, 8, B(8,t,2))(B(s,2,2)) =0
(0sB)(t, 5, B(s,¢,2))(sB(s,t,2)) =1.

Multiplying the first equality by 8:®(s,t,z) and recalling that

B (t, s, B(s,t,2)) = r(t, B(t, 5, 8(s,¢, 7)) =r(t, z),



we have
Oa®(s,t,2) +1(t,2)08(s,t,2) =0 (3.8)
and for s =10

Oathe(2)7(2, 2) + Bpifpy(z) = 0. (3.9)

Lemma 3.2 Let 7(t,0) > 0 > 7(¢,1) for allt > 0. Then p;, defined in (3.6) is the only
solution of (8.4).

Proof First, note that u(z) satisfies (3.4). In fact, for every measurable function f defined
on [0, 1]

| t@mtan) = [ ro)ma)
0 0
(see for example [13],Th.I11.10.8). Hence, if f € C*([0, 1])

E<fim> =% [fﬁl f (ét(y))m(dy)]
= fi 2£(6:(¥)noldy) =
= fy F(6u(¥)) 2% po(dy)
= [, F(SW))r(t, e(y))uoldy)
= fo F1(@)r(t,2)pu(da)-

so that (3.4) holds.
Let v; be a solution of the equation (3.4). First note that, if g € C*([0,7] x [0,1])

G <owdm>= [ Soeum@+ [ Leevreou@). 610

To show that the family of measures (3.6) is the only solution of equation (3.4), we extend
the measures 1, and i to measures 7; and fip on R by setting

7(A) =u(An(0,1]), A € B(R)
E‘D(A) = NG(A A [05 1]): Ae B(R)

where B(R) is the Borel g-field, and construct the family of measures on R
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M(B) = 7 [v7(B)] (3.11)
Since )
[ 1@ntda) = [ sn@naias) = [ fodomida)
for all f € C*(R), we have, using (3.10)

4 [ fa@wldy) = [5F @) wildy) + f, [i (F(e(@)))] r(t, )il dy) =
= [ F@a(y)Bcbew)w(dy) + f £ (0e9)) By (e(3))r (8, ) il dy)
= [ F@0(y) [Bys(y)r(t,y) + 0tiu(y)] veldy) =0

because of (3.9). Hence, [, f(x)A(dz) = [, f(z)Ao(dz) = [ f(2)iip(dz) so that, for every
measurable set B C R

A(B) = Ao(B) = fio(B) = tia(B N [0, 1]). (3.12)
For each measurable set A C [0,1], take B = ¢;'(A); from (3.12) and (3.11) we have
Vt(A) = ﬁt(A) = ﬁt("p;l(é;l(A))) = At(‘lsf;_l(A))
= po{87" (4) N0, 1]) = pu(A).

Remark The measure ;(t) may be considered as the measure associated to a Markov process
Z(t), which is actually random only in the distribution pq at the initial time ¢ = 0, while its
evolution is deterministic, with transition function dg(s;4).

In our original equation, the function r depends on the measure i, but we can apply the
previous argument to construct a contraction map: a fixed point of this map is the solution
of our original problem. Note first

Lemma 3.3 Let F € C([0,T)) with0 < E(t) <1, z € [0,1] and ¢%(t,z) be the solution of
(8.5) withty =0 and r(t,y) = cy(1 —y) — vy + E(t)d(1 — v).

Then 0 < ¢B(t,z) <1, =z e][0,1],¢<]0,T).

Proof Clearly, r(¢, y) satisfies the assumptions of Lemma 3.1.

Theorem 3.4 There exists & unigue solution to the equation (3.2).
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Proof Let us consider M = {E € C([0,7]),0 < E(t) < 1} equipped with the supremum
norm , and let uf be the solution of (3.4) where 7(¢,%) = ey(1 —y) —yy+d(1—y)E(?). Let
T: M- M

T(E)(t) :f zu; (dz).

We will show that if T < T, where T} is such that dTyexp((c+v+d)T;) =1, then T is a
contraction.

Let E,F € M and ¢®(t,z), [¢"(¢,2)] the solution of (3.5) with 7Z(¢,y) = cy(1 — 3) —
vy +d(1—y)E@) [P, y) = ey(1 — y) — vy + d(1 — ) F(t)]; using (3.6) we can write

T(E)0) = [ 616 2)uolda)
and
97(t,2) —¢7(,2)| = |fy (s, 6 (5,2)) = rT (5,67 (s, 2)) ds|
< [y |72(s, 6% (s,2)) = r7(s,6%(s,2)) +77(5,6°(s,)) = r7(s, 6"(5,2))]| ds

<( s pEoree( sp 167(5,) — ¥ (5,3) s
0,1 [0, o.1)x[o,77 199 1/ o

< dsuppz) [E(t) — F@)[t+ (c+ v +d) [ [6%(s,2) — ¢7(s,3)| ds
By Gronwall inequality
6% (t,2) — 67 (t,2)| < dt||E — F| expl(c + v + d)t]

Hence V¢t € 0,7,

[(T(E) - T(F)) (t)| =

The contraction mapping theorem shows that there exists a unique solution of (3.2) on [0, T,
for any T < Tp; since Ty depends only on the constants c, d, 7y, the previous procedure can
be iterated, yielding a solution of (3.2) on any compact interval [0, 7).

[c_ [67(t,2) — 67 (¢, @) solda)| < dHl|E — F expl(c+ v + ).

4 First limit

We saw in Section 2 that, if 11m X (0) = X° a.5. then weakly

M
NM (g _
A]Tl_l;%oY () = hm —ZJ Y = ZJXf‘(t)

1::1
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where {X/}}L, are the solution of the ODE system (2.1) (see, for instance, [5] and [20]).
Hence, we consider the probability measures for ¢ € [0, T

M
1
p = 7 Y Oxmqy (4.1)
=1

Since the trajectories X¥ belong to the space of continuous functions, we can consider
the sequence of probability measure pu on the space C([0,7T]), each with a finite support
consisting of the M functions X:

1 M
My = H Z ng“-
=0
First we have:

Lemma 4.1 The sequence of probability measures {1} s tight.

Proof We remind that a sequence of probability measures Py on C([0,T]) is tight iff the
next two conditions hold

i) For each positive n, there exists an « such that

Pyl{z:|z(0)| >a}<n N2=21

ii) For each positive ¢ and 7, there exist a § and an integer Np such that

Py{z: sup |o(s)—2(t)[2e}<n N=N
lo—t]<8

The first condition, which is equivalent to the tightness of the initial finite-dimensional
measure is automatically fulfilled because we deal with measures on a compact space. Since
the functions X} are Lipschitz with a uniform Lipschitz constant

Xi(t)] <ell = X;@)]|1X@)]+ 11— X:@)| & 58, 1 XM + | X:(t)]
<c+d+7,

so that the second condition is satisfied.

Tightness implies the relative compactness of the sequence via Prokhorov theorem [7]. Tm-
proving on this, we obtain:
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Theorem 4.2 Let us assume that the sequence {um(0)} converges weakly to jo; then the
sequence {up (1)} converges weakly to (t) solution of (3.2).

Proof For every M, p(t) satisfies the weak equation :

< fipu(t) > —< f,nM(O >= [ & < fum(s) > ds= f SF, LL7(XM(s))ds
= fo TE 3 (XM(6) [(1 = K@) (eXi() + 5 T2y X5(8)) = vXi(s)] ds
= [y e < Sf piua(8) > +dE(puar) < TF, pae(8) > —y < Rf, puuae(s) >] dls

— [ < Hyfuu(s) >ds  Vf e CH0,1)
(4.2)

with R,S,T, H,, defined in (3.3).

Take a sequence {ua, (t)} weakly converging to a limit f(¢). Since pa(0) — o, as
M — oo, one can pass to the limit in (4.2) and see that fi(t) must satisfy equation (3.2);
because of the uniqueness of the solutions of (3.2), we have that the whole sequence i3 has
1 as weak limit.

5 Second limit

First of all, according to the result of Section 2, if lim zM(0) = y we have that
L y

N N
ﬂ}%;mﬁf(ﬂaﬁ = _z;g;.‘*(t)al
1= 1=

where {£}Y (t)};1, satisfies (2.2).
Let us deﬁne the sequence of probability measures

wit) = S ¥ (05,
=0

In order to prove the convergence for N — oo of this family of measures, we give a proba-
N .
bilistic interpretation of the measures: considering E¥(t) = Z ‘fjv (t)% as a given function,

i=0
we construct continuous time Markov chains Z¥ (%) on the same probability space (22, F,P)
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Z
with state space Sy = (ﬁ N [0, 1]), and inhomogeneous transitions: pi(2) will be the distri-
bution of that process at time t.
First of all, let us construct a family of Markov processes Zi‘; , Ne N, zy € Syona
probability space (¥, F',P") with state space Sy such that, as h — 0

j+£

PIzE e+ =T 2 @ = 1) =M G+t htoh) 140

P’[ Zy0)=zy] =1

(5.1)

where 4,1 € Z and the transition rates are

(i +1L8) =N -HE+dN-HEY(®)
=N [e(1 - §) & +d(1 - FHEY@)]
a¥(4,5 - 1,t) =~j=7N({)
qN(jsj'l'z:t) =0 |z|>1
Note that &(t) = P'[Z (t) = j] satisfy (2.2) with y = 4.

The functions ¢¥ (4,5 + I,¢) satisfy the definition of asymptotically density dependence
(see the Appendix) with

B¥(z,1,8) =c(l —2)z+d(1 —2)EN(2)
ﬁN(m: -1 t) - ‘Yﬂ&'
B 1t =0 I >1

FN(z,t) = c(1 —z)e +d(1 - 2)BV(2) -

In order to apply Theorem 8.1 of the Appendix, we need the convergence of the sequence
{F¥(z,t)}. One can easily show that

Lemma 5.1 The family of functions E¥(t) is equicontinuous and uniformly bounded on the
compact time interval [0,T].

. . . . N ;
Proof It is enough tg give an uniform estimate for 42~ (r) = 31 | ££/(r), r € [0, T]; from
(2.2), we see that |2=(7)| < (c+d + ) (the explicit calculation can be found in 5.6, if we
choose f(z) = z).

Restricting ourselves to a converging subsequence, we set

E(t) = lim EM(t)  and  F(z,t) =c(l—2)z +d(1 — 2)E(t) — 7z, (5.2)
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s0 that limg .o F¥*(x,1) = F(z,1).
N

Let us assume that the sequence of measures pf = ny ) 4 converges in distribution
5=0
to a probability measure i on [0, 1]. First we have the result ([6], Theorem 25.6)

Lemma 5.2 If imy_ oo udf = o then there exist random variables Z¥,Zy on a com-
mon probability space Q° such that ZY has distribution ulY, Zy has distribution py, and
limpy_,o0 Z&¥ = Zy for all w' € Q1.

We can consider now the sequence of random processes Zx(t, o', w") = ZzéV(wrr)(t, w') on

the probability space Q@ = ¥ ® " with the product measure P = P' ® P”. Moreover, the
measure ux(t) is the distribution of the process Z¥(t, w,w"), that is, for a measurable set
Ac[0,1]

un(t)(A) =P [Z¥(t, ', ") € A].

Since, for a fixed & € Q°, Jim Zxn(0,0', ") = Z3' (") applying Theorem 8.1, we obtain
—+00

Corollary 5.3 Take a subsequence {N;} such that lim;_, ., EM¢(t) = E(t). Then for every
w" € QY there exists a set I'(w") € ¥ of measure zero such that

lim sup [Z%(t,/,0") = Z(t,w")|=0 (") € (@\T'W))xQ" (53)
k_}th[G,T]

where Z(t,w") satisfies

Z(t,w") = Zp(o") + /: F(Z(s,"),s) ds (5.4)

Now we can obtain

Lemma 5.4 For every t € [0,T], the sequence of measures u™¥*(t) converge weakly to the
measure ji(t) given by

G)(A) =P[Z(t, ") e A] = P"[Z(t, ") € A].
Moreover, E(t) = fnl zfi;(dz).

Proof Take f € C([0, 1]): for every w”, we have k]im F(ZN% (¢, ' ") = F(Z(t, ") a.e.
—oo
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Hence, from the dominated convergence theorem we have

lim | f(Z%(@,0, ) dP = | f(Z@1,0")dP =F(2(t,e") Vo' e
ﬂf

k—o0 o

and
jim [ e = Jim [ 526, ) P

_tim [ aP" [ f(@%@ o, 0")dP = [ ap” f F20,) AP (55)
k QF o

_ fn Hau)aP = fo F(@)ut)(dz)

ie. u™ (t) converge weakly to fi(t).
If we choose the function f(z) = z, we have that

1 1
E(t) = lim EM(¢) = lim [ zu*(dz) = f zi(dz).

In principle, the measure ji could depend on the function E(t) defined in (5.2), and hence
on the choice of the subsequence Ni. Instead, we show that [i is actually the solution u(t)
of equation (3.2).

Theorem 5.5 If Ly, u = pp weakly, then p™(t) converges weakly to u(t) solution of

(3.2).

Proof The family of measures i (t) satisfies the following equation
¢ N . j
< foun(t) >=< £,un(0) > + [ D éa)f()ds  vfec(o1)
0 =0

and from (2.2)
S GO =T G + D - 31+
+CZ;-V=0 FE) (=5 -1 — (1= £)i&] +
+d (Sa(3)6) Se ) [0 - &G - (- &) (56)
=~ LiLe VEF()EE + e EiLo(1 = 2 4&VYF()+
+ABY () Lo (1 - £V ()8
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where

vy =&t

3)-
SRR OB (CEF)

Hence we have
< f:“N(t) > =< f:)uN(O) >
= [ < VIO n(e) > e < (1= VEF O () > (5.7)
+ E¥(s) < (1= )VEF(), uw(s) >] ds.

Our aim is to show that, with notations of Lemma (5.4)

1 1
lim < V¥F(), v, (s) >= Jim f 2V £(2) da, (5) = fo of'(z) dii(s).

If we choose a function f € C?([0, 1]), we have

f3 2V f(z) dun,(s) — fy of(2) dii(s)| <

3 aVEf(@) dum,(s) — f3 of (@), () + [} 2f @), (s) — [y of/(2) dfi(s)|
< supyy Ly RVI(2) = of (&) + | L@ F @) du(s) - i)
< & suppy @) + | f; @F (@) (du™ (s) — dji(s)) -

Since ™+ (s) tends weakly to fi(s) and the function g(z) = zf'(z) is continuous and bounded
on [0,1],the right-hand side of the inequality tends to zero, as N — co. Analogously, one
can prove that

l_i

lim "(1 = )2V £(z) duun, (5) = f (1 — 2)2 ' (2)dii(s)

Nk—}OO ]

and
1—1

Vi 1
lim (1 — 2)V £ (2) dum, (s) = f (1 — 2)f' (@)dii(s).
Ny—oo 0 )]
We can apply the dominated convergence theorem and we have that [i() satisfies equation
N
(3.2) with g = ;\.lrim (Z £;(0)d ;). Since there exists a unique solution u(t) of (3.2), ji(t) =
—$00 —0 N

u(t); thus, every subsequence of {u~(t)} contains a subsequence that converges to u(t),
which shows that the whole sequence converges weakly to that limit.
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6 Asymptotic behaviour of the measure u(t)

We search for an equilibrium measure for the equation (3.2) as a delta measure y* = §«
with support z* € (0,1). Since B(y*) = z*, < Hf,1i* >=0 Vf € C'([0,1]) if and only if
we have

Glz*) =c(l—-2*)+d(1-2")—v=0. (6.1)

(6.1) has a unique solution z* € (0,1) if and only if ¢ + d > «v. We notice that, in this case,
G(z) » 0 if and only if z < z*.

On the other hand, if e+ d < v, G(2) < 0 for all 2 > 0. It must also be noted that
u(t) = & is always an equilibrium solution of (3.2).
In order to study the asymptotic behaviour of the measure ;(t) solution of (3.2), we can take
advantage of its representation (5.4) as the measure associated at time ¢ to the stochastic
process Z(t) solution of the Cauchy problem

Z'@) =cZ@)(1—Z(@) +d(1 — Z@)E() —vZ(2) := F(Z(1),1) (6.2)
Z(O) — Z‘D *
where Z, is a random variable with distribution p4 and E(¢) = j;}l zp(dz).
We consider the solution Z,,(¢) and Zu(t) of the Cauchy problems
Z(t) = F(Zn(t)?) Zyu(t) =F(Zu(t),?)
Zm(o) =0 ZM(O) =1
They bound the solution Z(2), that is 0 < Z,.(t) < Z(t, ") < Zu(t) < 1; hence
Zm(t) < E(2) < Zu(2) (6.3)

with strict inequalities, unless py = dp.

Proposition 6.1 Let z* be the unigue positive solution of (6.1) if c+d > v and 2* = 0 if
c+d <y: both Z,(t) and Zy(t) go to z* fort — +oo, unless z* > 0, and pt = & or d = 0.

Proof First, note from (6.3) that
Zy(t) < Zu(t)G(Zu(t)) (6.4)
and

Zp(t) 2 Zm()G(Zm(2)) (6.5)
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If z* = 0, (6.4), together with G(2) < 0 for all z > 0, yields immediately the conclusion.
Let z* > 0. If there exists ty such that Z,,(t) < z*, for ¢t > t;, then, using (6.5), we have
Z! (t) = 0, hence Z,,(¢) is non- decreasing in t; then tlim Zm(t) = m* < z*. Tt is obvious that

—00
m* = 0if and only if 44 = & or d = 0; take then 0 < m* < z*: we have Z!, () = m*G(m*) > 0
contradicting the assumption of the existence of g finite limit; so m* = z*. Analogously, we
can prove that, if Zy(t) > z*, for all ¢ € [ty, +00), then tl_i}m Zu(t) = z*.

o0

Assume now that there exists 7 such that z* = Z,,(7); from the uniqueness of solution of
(6.2), we have Z(¢, zp) > z* for all 2z > 0; hence, F(7) > z*. Now we have

Zpy(7) = F(Zp(7),7) > 5*G(a") = 0. (6.6)

It is then impossible that Z,,(¢) crosses z* downward. Hence Z,,(t) > z* for t > 7. Since
T+ < Zp(t) < Zu(t), t e (7, +00), we conclude from the previous case that tH_’rp Zu(t) =
20

z*; from z* < Z,,(t) < Zp(t), we also have that lim, ., Z,,(t) = z*.
The case where there exists 7 such that Z3;(7) = z* is dealt with analogously.

Since the support of the measure u(t) C [Zn(t), Zu(t)], we can easily conclude

Theorem 6.2 Ast — oo, the measure u(t) tends weakly to the Dirac measure 65+, unless
>0, andpu=dpord=0.

7 Basic reproduction ratios R

We discuss briefly the previous results in terms of the basic reproduction ratio Ry for our
S — I — S metapopulation model. We have seen in Section 6 that if ¢ + d > «y, the measure
1#(t) tends to a delta measure concentrated at the positive state z*, otherwise the disease
vanishes. How can this threshold condition be related to a basic reproduction ratio Fy as
defined in [11]7

Recently, Gyllenberg and Metz [18] have defined the mutant fitness in terms of a basic re-
productive ratio for a class of structured metapopulation models similar to that studied in
Section 6. However, it is not quite clear how to use that definition in our case. Therefore,
we start by discussing the threshold condition for the approximating models (2.1) and (2.2).
For the model (2.1), the disease-free equilibrium (0, . .., 0) is asymptotically stable if c+d < +.
This condition can be obtained in a classical way by estimating the spectral bound s(J) of
the Jacobian matrix of the system: s(J) = ¢+ d— -, thus is $(J) < 0, the disease-free equi-
librium (0, ..., 0) is asymptotically stable. Indeed, it can be shown [21] that the stability is
global, i.e. when s(J) < 0, the disease eventually vanishes.
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The same threshold condition can be obtained by using the approach Diekmann and Heester-
beck give in [12]. We can define the operator T on the space NM

¢ d
Tle)) =&+ 3.0

where ¢; = (0,...,1,...,0) andu = (1,1,...,1,1). From the epidemiological point of view,
the ¢-th component of the vector T'(e;) represents the number of infectives in the i-th patch
of the metapopulation, generated by an infective in the j-th patch over its life as infectious,
assuming that everybody else in the population is susceptible.

The basic reproduction number is defined as the dominant eigenvalue of T in this case
one computes easily Ry = %‘. Note that Ry doesn’t depend on the size parameter M.

In this case one sees immediately that s(J) < 0 if and only if Ry < 1. This is true in
more general cases, and can be proved using a property [12] that will be needed later:

(P) Let T be a positive matrix, 3 a positive off-diagonal matrix and D a positive diagonal
matrix, with s(3: — D) < 0 then

s(T+X-D) <0 p(-T(E-D) N <1.
In the second finite dimensional model (2.2), we can write down the linearization of the

ODE system at the equilibrium point (&,...,&x) = (1,0,...,0); keeping in mind that
&) =1- Z‘L} &w(t), we can consider only N equations

d
dt

— (4 1) —i [v T i)] £+cli-1) (%) brthad )l i<

where by definition £x.(2) = 0; in matrix form we write g = B¢

In order to study the stability of the equilibrium (&,...,6x) = (0,...,0), one can com-
pute the spectral bound of the matrix B but there does not seem to be any explicit or
illuminating formula. Instead, one could exploit the result (P) by choosing any decomposi-
tion B =3 — D; the easiest choice would be setting DD equal to the opposite of the diagonal
terms of B and ¥ equal to the off-diagonal part of B.

We prefer to present g different choice following the approach of Diekmann and Heester-
beck give in [12]; model (2.2) can be considered a structured epidemiological models, where
the patches play the role of individuals (i.e. are the epidemic units); each patch can be in a
finite number of different states, labelled by 7, the number of infectives in the patch.
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In such a case, one can write B = T + 3 — D where T represent the production of new in-
fected patches, 3! the transitions of the patches between the different states, and D takes into
account the deaths, and in our case is the null-matrix, because patches cannot disappear.

Precisely, the entries T;; represent the rate at which an infected patch with label j produce
infected patches with label ¢. Hence, in our case

Ti; = dduj.

where §; is the Kronecker symbol. The matrix ¥ is the transpose of the generator of the
Markov process describing the transitions among states. Hence

g =iy + )
Yij = T =7(E+1)
Siict =cli—1)(1 -5

From the property (P), we see that the equilibrium 0 is asymptotically stable if and only if
the dominant eigenvalue R of the next-generation operator K = —T(% — D)™ is less than
one.

In order to describe Ry, it is convenient to go back to the representation of the matrix 3 as
the generator of a defective birth and death Markov process X¥(¢), with rates

i—2i+l c(1-3)

i i1
Then
(e™)y = P(XT () = | X¥(0) = 5) (7.1)
and letting s;; = —(271);; we have
= (D) = wtz--d— cm]P"XN =il X¥(0) = §)d 2
sii=—(8); = A (e™)i;dt = : (X7 (@) =4X7(0) = 5) dt. (7.2)
Now we can compute the entries of the matrix K = —T%!
N N
kij = ZTirsrj = ZdJn:TSW
r=1 r=1
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The basic reproduction number Ry is the spectral radius of the matrix T'; since K has
one-dimensional range, it is easy to see that

Ry=ky = —Ej-ildjsﬂ =N 4 TPV () =5 XN(0) =1)dt =
=d f7 YL PXN () = 5| XM (0) = l)dt =d fFCE (X" (t))dt

We have obtained the expression of Ry':

+oo
y fn B (XY (¢))dt

which depends on the size parameter N and is quite similar to the expression found in other
structured metapopulation model [18].

Qur aim is now to study the limit of RY as N — co. The sequence RY is non-decreasing:
in fact, by a coupling argument, one can show that X*(¢) is stochastically dominated by
XN+, thus BN (XY (2)) < E' (XNTL(2).

Moreover, one can also see that X* (¢) is stochastically dominated by a linear birth and
death process X (¢) with per capita birth rate ¢ and per capita death rate .

By applying a result of Kurtz for sequences of Markov chains (Ex. n.8, p. 262 in [14]),
one can show that Xy converge in distribution to X as N — oo. For every fixed ¢t > 0
the sequence of random variable { X n(2)}, is uniformly integrable, because P[X¥(t) > o] <
P[X (%) > a), thus limy_,o, E1 (X¥(¢)) = E!' (X (t)). Hence, by Lebesgue’s theorem, we obtain

too 4 forec <.

+00
lim RY = lim d [ E(XY@)dt=d f et gy — § 7
N—+o00 Natoo  fy ) +co fore >y andd > 0.

Note that there is an undetermined case if ¢ > v and d = 0, when then there is no transmis-
sion of infection between patches.

In a sense, we could say that the definition of Ry for the model of Section 6 depends on the
order of the limits by which it was obtained: if we first let the number ¥ of individuals per
patch go to infinity, and then the number M of patches, we can define the basic reproduction
ratio as Rf = c"'d On the other hand, if first M goes to infinity, and then N, we can use

Ri = Tdc for ~ > ¢ or RZ = +oo if ¢ > -y and d > 0. However, in either case we see that
R} > 1 corresponds to ¢ +d > +, the condition we found in Section 6 for disease persistence.
The limiting system has been introduced to approximate the more complex systems with
finite M and/or N. In order to evaluate the approximation, we found it useful to study
numerically how quickly R{Y converge to RZ. In Figure 1, we show the values of RY for

some values of N and five different combinations of values for the parameters ¢ and d (we
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10 100 1000 10000 100000
N

c=095d=0.10,R2=2 —o— e=101,d=004,R2 =00 —x—

c=080,d=040,R2=2 —— c=0.80,d=0.25 R = 1.25 —A—

c=099,d=002,R2=2 —a—

Figure 1: The value of Ry for different values of N, c and d; in all cases v = 1.

always kept v = 1). The numerical results show that the Ry indeed tends to R for large
N; however, if the value of the d is small, RZ gives a good approximation of R only for
large local populations (for d = 0.02, we can say N at least 10,000) while the approximation
is better for larger values of d. Going to the other extreme, if N = 1, the metapopulation
model reduces to an epidemic model consisting of individuals, instead of patches: in that
case, the basic reproduction number is d/v: indeed, when we compare the values of Ry’ for
small N in the five different parameter combinations, we can see (see Fig. 1) that their order
depends on the value of d/7.
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8 Appendix

Applying results of Kurtz ([14], Theorem 7.3, page 223) about existence and uniqueness of
the martingale problem for some kind of pure jump Markov processes with non-homogenous
transition rates, one can slightly extend Definition 3.1 and Theorem 3.1 of [22] as follows.

Definition A family of continuous-time Markov chains {J¥(t)} yen with values in Sy =
{0,1,2,..., N} C Z and transition rates ¢” (4,k,t), 4.k € Sw,t € [0,7] is said asymp-
totically density dependent if there exists an open set F € R and a family of continuous
functions {#V} : E x Z x [0, T] such that

Pk +L = NI (10 140,
6% (z,1,t) < oo for all (z,2) € E x [0,T) and there exists a function F' such that
F¥(z,t) = %,18%(z,1,t) converges to F(z,t) on E x [0,T).
Theorem 8.1 If |F(z,t) — F(y,t)| < M|z — y| and for all N

sup Y HBw(z,t,1) < o

{z,t)e EX[0,T]
lim  sup s UBn(2,2,0) =0

8300 (5 e Ex[0,T]

lim sup |F¥(z,t)— F(z,t)] =0
N=oo Ex[0,T

and limy_q0 ?N(O) =z, (with deterministic initial datum J&(0)) then
JN
Alrl_r}%o ﬁ}lj}% F(t) - Zw(t)’ =0 ae
where ]
Za(t)=z + /{; F(Z,(s),s)ds
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