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1 Introduction

Standard models for the dynamics of infection disease are based on the as-
sumption of homogeneous mixing among individuals. However, individuals
are generally aggregated in patches (pieces of woodland, farms, households,
villages. . . ) and transmission of infection is much easier within patches than
from one patch to the other.

Different approaches have been used to handle the “patchy” structure of
populations, that run from individual-based simulation models (see, for in-
stance, [11] for avian flu in Thailand) to systems of differential equations for
the infection classes at each patch (see, for instance, [2]). An interesting ap-
proach is the use of “spatially implicit metapopulation models”: in these, the
discrete nature of individual and patches is clearly retained, so that each patch
has always an integer number of infectives; however, the spatial arrangement
of patches is not considered, so that infection transmission is the same to any
other patch.

Following a long tradition of stochastic models for infection transmission
within and between households[5], Ball [4] has derived a deterministic system
for an epidemic of SIS type spreading in a population distributed in an infinite
number of households, each one of size N ; mixing outside the households is
assumed to be random. The system can be obtained [9] as the limit, as M
goes to infinity, of a corresponding stochastic model with a finite number M
of households. This system, which is the focus of this contribution, will be
presented in detail in the next Section. Ball [4] obtains complete results on
the stability of the endemic equilibrium for N = 2 and numerical simulations
are given for N ≥ 3. Arrigoni and Pugliese [3] compute the reproduction ratio
R0 for the limiting system, and study how this depends on the household size
N . Ghoshal et al. [12] show that R0 is indeed the usual threshold quantity
for epidemic models: for R0 < 1 the infection-free equilibrium is stable, and
there are no endemic equilibria; for R0 > 1, the infection-free equilibrium is
unstable, and there is exactly one endemic equilibrium.
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In this contribution, we extend the previous results, by showing that the
endemic equilibrium is globally stable for R0 > 1. The result is not unex-
pected, because S–I–S models have been proved to be stable in populations
with spatial structure [8] or with age structure [7]. The key to these proofs
has been to employ methods from the theory of monotone dynamical systems
(see [15] for a general treatment), thanks to the monotone properties of S–I–S
epidemic models.

Here, we exploit too the monotonicity of the dynamical system (albeit
relative to an appropriate stochastic ordering), together with a probabilistic
interpretation, suggested in [6], of the solutions of the deterministic system.

2 The Model

The main variable in the system under study will be the vector-valued function
ξ(t) = (ξ0(t), . . . , ξN (t)): the j-th component ξj(t) represents the fraction
of households with j infectives at time t (j will be named the state of the

household). The state space is Σ =





N∑

j=0

ξj = 1, ξj ≥ 0, j = 0, . . . , N



 .

When an infective recovers, her household moves from state j to j−1; if γ
is the recovery rate of infectives, the overall rate at which a household moves
from state j to j − 1 is γj.

Conversely, a household moves from j to j+1 when a new infection occurs.
Each susceptible can get infected from an infective in the same household (at
a rate proportional to the fraction of infected individuals, j/N) or from an
infective everywhere in the population (at a rate proportional to the fraction

of infected individuals:
1

N

N∑

l=0

lξl). Overall (in a household at state j, there

are N − j susceptibles), the rate at which households move from state j to

j + 1 is (N − j)

(
c

j

N
+

d

N

N∑

l=0

lξl

)
, where c is the rate of within-household

infection, and d is the rate of between-household infection.
Hence:





ξ̇j(t) = −
[
(N − j)

(
c

j

N
+

d

N

N∑

l=0

lξl

)
+ γj

]
ξj

+γ(j + 1)ξj+1 + (N − j + 1)

(
c
j − 1

N
+

d

N

N∑

l=0

lξl

)

ξ̇0(t) = γξ1 − ξ0d

N∑

l=0

ξll

(1)
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with initial value ξj(0) = yj , j = 0, . . . , N , a probability distribution, so that

y is non-negative and satisfies

N∑

j=0

yj = 1.

Note that system (1) is monotone not relatively to the usual ordering in
R

N+1 but to a natural ordering for probability distributions:

ξ
s
≤η ⇐⇒

N∑

i=0

g(i)ξi ≤
N∑

i=0

g(i)ηi for all non-decreasing functions g.

Alternatively, one can introduce the variables wj(t) =

N∑

k=j

ξk(t) and notice

that w satisfies the system of differential equations:

ẇi = γi(wi+1 − wi) + (N − i + 1)

(
c
(i − 1)

N
+

d

N

N∑

l=1

wl

)
(wi−1 − wi) (2)

Since (2) has to be studied in the set {1 ≥ w1 ≥ w2 · · · ≥ wN ≥ 0}, which
is invariant, it is easy to see that the Kamke condition [15] is satisfied; hence,
(2) is monotone relatively to the standard order.

The overall structure of the model is similar to that studied in [6] where
pj(t) represents the fraction of local populations (within a metapopulation)
with j individuals. The system considered there is





p′i = −


(bi + di + λ) i + ν + ρλ

∞∑

j=0

jpj


 pi

+


bi−1(i − 1) + ρλ

∞∑

j=0

jpj


 pi−1

+ [di+1 + λ] (i + 1) pi+1; i ≥ 1

p′0 = ν




∞∑

j=0

pj − p0


 + (d1 + λ)p1 − ρλ




∞∑

j=0

jpj


 p0,

(3)

where bi and di represent the per capita birth and death rates in a patch
occupied by i individuals, ν is the catastrophe rate (i.e. the rate at which all
individuals in a patch are destroyed), λ is the migration rate, and ρ is the
probability of a migrant to successfully reach another patch.

Under the condition that ibi is concave and non-decreasing, and idi is
convex and non-decreasing, plus some technical assumptions, it was proved
[6] that there exists a threshold quantity R for (3): when R ≤ 1, all solutions
converge to the extinction equilibrium (p0 = 1, pi ≡ 0 for i ≥ 1); when R > 1
all non trivial solutions converge to the unique positive equilibrium.
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Although (1) could be seen as a special case of (3), it is not possible to
directly apply the results of [6]. Hence, we show how the methods used in [6]
can be modified to handle system (1) (and, indeed, any system with similar
assumptions).

The main idea is to analyse system (1) assuming that the average propor-

tion of infectives per household is known. By setting s =
∑N

l=1 lξl in (1), we
obtain a family of linear systems, indexed by the parameter s,

dξ(t)

dt
= Asξ(t). (4)

with (As)k,j =





c(1 − j−1
N )(j − 1) + ds(1 − j−1

N ) k = j − 1

−c(1 − j
N )j − ds(1 − j

N ) − γj k = j
γ(j + 1) k = j + 1

and (As)k,j = 0 for |j − k| > 1, where j, k = 0, . . . , N .

3 Probabilistic Interpretation

We adopt a probabilistic interpretation of the functions ξl(t), used by Barbour
and Pugliese [6]. In this framework, the solution ξ of system (4) represents
the distribution at time t of a birth and death Markov process with finite
state-space S = {0, 1, . . . , N} and initial distribution y. We will denote it by

X
(s)
t , so that ξi(t) = Py[X

(s)
t = i] = P[X

(s)
t = i|X(s)

0 ∼ y]. Its transitions are

{
j → j + 1 at rate cj(1 − j

N ) + ds(1 − j
N )

j → j − 1 at rate γj

X
(s)
t has a stationary distribution π(s) = {π(s)

i }N
j=0:

- if s = 0 then π
(s)
0 = 1 and π

(s)
j = 0 for j ≥ 1;

- if s > 0 then π
(s)
j =

θ
(s)
j∑N

j=0 θ
(s)
j

where

θ
(s)
0 = 1, θ

(s)
j =

j−1∏

k=0

(
1 − k

N

)
(ck + ds)

γjj!
. (5)

Moreover, we can apply to the process X
(s)
t the following theorem (see [1]).

Theorem 1. Let Xt be a birth-and-death process with finite state-space S =
{0, 1, . . . ,m, . . . , N} such that C = {0, 1, . . . ,m} is an ergodic class and T =
{m + 1, . . . , N} is a transient class, every state of which leads to all states in
C. Then there exist non-negative numbers α and ρ < 1 such that
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|pji(t) − πi| < αρt, ∀j ∈ S. (6)

where πi > 0, i ∈ C, πi = 0, i ∈ T and
∑

i∈C

πi = 1.

Using this theorem (with m = 0 for s = 0; with m = N for s > 0), we see that

the transition probabilities p
(s)
ji = P[X

(s)
t = i|X(s)

0 = j] of the process X
(s)
t

attain their limit π
(s)
i , at an exponential rate. The vector (π

(s)
0 , π

(s)
1 , . . . , π

(s)
N )

is the stationary solution of the system (4).

4 Properties of the Fixed Point Map

Our aim is to show the existence and uniqueness of a non-trivial equilibrium of
the non-linear system (1), when the parameters satisfy the threshold condition
shown below.

For every non-negative value of the parameter s, we have found the station-
ary solution π(s) of the system (4). Letting π(s)(f) be the mean of a function
f relatively to the distribution π(s), we define the map G as

G(s) = π(s)(e) =

N∑

i=1

iπ
(s)
i (e the identity function)

Note that to every positive fixed point s⋆ of G (that is, G(s⋆) = s⋆)
corresponds an endemic equilibrium solution of the non-linear system (1).
The disease-free equilibrium, instead, corresponds to the null fixed point
(G(0) = 0).

It can be shown that G is a continuous, increasing and concave function.
From this, the uniqueness of a positive fixed point follows easily.

The properties of G are established in [6]. Here, we just state some inter-
mediate steps, together with a sketch of the proofs that require small changes.

Proposition 1.
d

ds
π(s)(f) = −dπ(s)(R(f)) with

R(f)(j) = (1 − j

N
)(Θ(s)(f)(j + 1) − Θ(s)(f)(j))

Θ(s)(f)(j) = −
∫ +∞

0

{E(j)f(Z
(s)
t ) − π(s)(f)}dt

Proof (sketch). Let A(s) be the generator of the Markov process Z(s).

A(s)f(j) = (cj(1 − j
N ) + ds(1 − j

N ))[f(j + 1) − f(j)]
+γj[f(j − 1) − f(j)].

By Dynkin’s formula [13], π(s)(A(s)g) = 0 for all g. Hence
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0 = π(s+h)(A(s+h)g) = E
π(s+h)

(
A(s+h)g(Z

(s)
0 )

)

= E
π(s+h)

{
A(s)g(Z

(s)
0 ) + dh(1 − Z

(s)
0

N
)∆g(Z

(s)
0 )

}

Set g = Θ(s)(f) (as defined in the thesis, thanks to (6)) and note that Θ(s)(f)
satisfies the equation

A(s)(Θ(s)(f))(j) = f(j) − π(s)(f).

Then

0 = E
π(s+h){f(Z

(s)
0 ) − π(s)(f) + dh(1 − Z

(s)
0

N
)∆Θ(s)(f))(Z

(s)
0 )}

so that
|π(s+h)(f) − π(s)(f) + dhπ(s)(R(f))| ≤ d|h|o(1)

and the thesis follows. ⊓⊔

Applying the previous proposition to the identity function e, we obtain

G′(s) = dπ(s)(R(e)) = dπ(s)(g) with

g(j) = (1 − j

N
)

∫ +∞

0

{E(j+1)(Z
(s)
t ) − E

(j)(Z
(s)
t )} dt.

In the next Section we will prove, through coupling methods, the rather intu-

itive fact that E
(j+1)(Z

(s)
t ) ≥ E

(j)(Z
(s)
t ). It will then follow that G′(s) ≥ 0.

The quantity G′(0) = d
∫ +∞
0

E
(1)(Z

(0)
t ) dt will be shown to be the threshold

quantity for system (1).
The following proposition can be proved with a similar technique (see [6])

Proposition 2. G′′(s) = 2d2π(s)(R(R(e))) = 2d2π(s)(h) where

h(m) =
(
1 − m

N

) ∫ ∞

0

[
E

(m+1)Q(X
(s)
t ) − E

(m)Q(X
(s)
t )

]
dt

Q(j) =

(
1 − j

N

)∫ ∞

0

(E(j+1)X(s)
w − E

(j)X(s)
w ) dw.

5 Coupling Methods

In this Section, we prove by coupling methods (see, for instance, [14]) some
results, needed to prove the properties of G, about rather general birth-and-
death processes We consider a birth-and-death process X := (Xt, t ≥ 0)
with birth and death rates λ(i) and µ(i) respectively and state space S =
{0, 1, 2, . . . , N}. Assume that the function λ(i) is concave in i and that the
function µ(i) is convex and non-decreasing (and that µ(0) = 0).
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Proposition 3. Let X be as above. Let E
(m)(Xt) = E(Xt|X0 = m). Then for

all m ≥ 0,
E

(m+1)Xt − E
(m)Xt > 0

Proof. We consider a two-dimensional pure jump Markov process (F t =
(Yt,Wt), t ≥ 0); the processes X1 = Y , X2 = Y +W will be Markov and have
the same generator as X. Setting Y (0) = m,W (0) = 1, E

(m+1)Xt = EX1
t and

E
(m)Xt = EX2

t , so that E
(m+1)Xt − E

(m)Xt = EWt.
The transitions of the process F t are the following, letting n = (i, j) and

e(i) the i-th coordinate vector. :

n → n − e(1) at rate µ(i)
n → n − e(2) at rate µ(i + j) − µ(i)
n → n + e(1) at rate min(λ(i), λ(i + j)
n → n + e(2) at rate λ(i + j) − min(λ(i), λ(i + j))
n → n + e(1) − e(2) at rate λ(i) − min(λ(i), λ(i + j)).

It is easy to see that X1 and X2 have the required properties, and that
V (t) ≥ 0.

Propositions 1 and 3 show that the function G, defined in the previous Section,
is non-decreasing.

The assumptions on the concavity and convexity of birth and death rates
play a key-role in the proof of the following proposition. This rather long
construction represents the main paper of this contribution relatively to [6].

Proposition 4. Let X as above. Then, for all m ≥ 0,

E
(m+1)Xt − E

(m)Xt > E
(m+2)Xt − E

(m+1)Xt.

Proof. We consider a four dimensional pure jump Markov process (Dt =
(Yt,Wt, Ut, Vt), t ≥ 0); the aim of this construction is to have four processes
X1 = Y , X2 = Y +W , X3 = Y +U , X4 = Y +W +V which are Markov and
have the same generator as the process X. Setting Y (0) = m,W (0) = U(0) =
V (0) = 1, we will have X1(0) = m, X2(0) = X3(0) = m + 1, X4(0) = m + 2.

The state-space of the four dimensional process is

S = {(i, j, k, l) : i ≥ 0, j ≥ 0, k ≥ l ≥ 0, }

Letting n = (i, j, k, l) , we describe the transitions of the process Dt together
with the relative rates. First those representing deaths

• if k 6= l

n → n − e(1) µ(i) n → n − e(2) µ(i + j) − µ(i)
n → n − e(3) µ(i + k) − µ(i) n → n − e(4) µ(i + j + l) − µ(i + j)
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• if k = l
n → n − e(1) µ(i) n → n − e(2) µ(i + j) − µ(i)
n → n − e(3) − e(4) µ(i + k) − µ(i)
n → n − e(4) µ(i + j + k) − µ(i + j) − µ(i + k) + µ(i)

The transition rates representing births are as follows:

• if k > l
– if j, k, l > 0

n → n + e(1) − e(2) − e(3) λ(i) n → n + e(3) λ(i + k)
n → n + e(2) − e(4) λ(i + j) n → n + e(4) λ(i + j + l)

– if 0 = j < l < k n → n + e(1) − e(3) − e(4) λ(i)
n → n + e(4) λ(i + l) n → n + e(3) λ(i + k)

– if 0 = l < j, k n → n + e(1) − e(2) − e(3) λ(i)
n → n + e(2) λ(i + j) n → n + e(3) λ(i + k)

– if j = l = 0 < k
n → n + e(1) − e(3) λ(i) n → n + e(3) λ(i + k)

• if k = l
– if j, k > 0

n → n + e(2) λ(i + j + k) − min(λ(i + k), λ(i + j + k))

n → n + e(3) λ(i + k) − min(λ(i) + λ(i + j + k), λ(i + k))

n → n + e(1) − e(3) − e(4) λ(i) + min(λ(i + k), λ(i + j + k))
−min(λ(i) + λ(i + j + k), λ(i + k))

n → n + e(3) + e(4) min(λ(i + k), λ(i + j + k))

n → n + e(1) − e(2) min(λ(i) + λ(i + j + k), λ(i + k))
−min(λ(i + k), λ(i + j + k))

n → n + e(2) − e(4) λ(i + j) + min(λ(i) + λ(i + j + k), λ(i + k))
−λ(i) − λ(i + j + k)

– if 0 = j < k
n → n + e(1) − e(3) − e(4) λ(i) n → n + e(3) + e(4) λ(i + k)

– if 0 = k < j
n → n + e(1) − e(2) λ(i) n → n + e(2) λ(i + j)

– if j = k = 0 n → n + e(1) | λ(i).

Note that all transitions are within the state space S, and that the assumptions
on µ and λ guarantee that all rates are nonnegative.

We obtain E
(m+1)Xt − E

(m)Xt = EUt and E
(m+2)Xt − E

(m+1)Xt = EVt.
By construction, Ut ≥ Vt, and we obtain the thesis. ⊓⊔

These two propositions allow us to conclude that G is concave. In fact, we
can compute h(m), defined in Proposition 2, using the process (Yt,Wt) used
in the proof of Proposition 3. We obtain, in the notation of Proposition 2 and

with g(j, w) = E
(j)X

(s)
w :
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E
(m+1)Q(X

(s)
t ) − E

(m)Q(X
(s)
t ) = E(Q(Yt + Wt) − Q(Yt))

= E

∫ ∞

0

[(
1 − Yt + Wt

N

)
(g(Yt + Wt + 1, w) − g(Yt + Wt, w))

−
(

1 − Yt

N

)
(g(Yt + 1, w) − g(Yt, w))

]
dw

= E

∫ ∞

0

[(g(Yt + Wt + 1, w) − g(Yt + Wt, w)) − (g(Yt + 1, w) − g(Yt, w))] dw

×
(

1 − Yt

N

)
− E

∫ ∞

0

Wt

N
(g(Yt + Wt + 1, w) − g(Yt + Wt, w)) dw.

Proposition 4 yields g(m+k+1, w)−g(m+k,w))−(g(m+1, w)−g(m,w)) <
0 for all m, k ≥ 0 and w ≥ 0; hence the first integral is negative. Similarly
Proposition 3 shows that g(m + 1, w) − g(m,w) > 0. Hence h(m) < 0 for all
m ≥ 0 and G′′(s) < 0.

6 Equilibria and Asymptotic Behavior

The results of Section 4 show that the function G is continuous and differen-
tiable and satisfies G(0) = 0. Moreover, Propositions 1 and 2, together with
Propositions 3 and 4 show that G is non-decreasing and concave.

It is then easy to obtain

Theorem 2. If G′(0) > 1, then there exists a unique positive fixed point s⋆

of G; if G′(0) ≤ 1, then G(s) < s for all s > 0.

Proof. The proof is straightforward. If G′(0) ≤ 1, from the concavity of G it
follows that G(s) < s. Otherwise, since it is clear that G(s) < N for all s,
there exists a unique s ∈ (0, N) such that G(s) = s. ⊓⊔

The quantity

G′
+(0) = d

∫ ∞

0

E
(1)Z

(0)
t dt.

is then the threshold quantity for (1), and will be named R0 (see [3] for a
derivation of this quantity following the lines of [10]).

Remark 1. It is possible to obtain an explicit expression for G′(0). In fact from

G′(s) =

N∑

j=1

j
d

ds

(
π

(s)
j

)
and using (5), we obtain, after lengthy computations,

R0 = G′
+(0) =

N∑

j=1

jπ′
j(0) =

d

c

N∑

j=1

(
c

γN
)j

(
N

j

)
j!.
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In [6], stochastic comparison arguments, together with arguments from the
theory of the dynamical systems are used to prove that all solutions converge
to an equilibrium: the trivial equilibrium for R0 ≤ 1, the positive equilibrium
for R0 > 1. The same arguments would apply (more easily, because the system
is finite-dimensional) to (1). It is, however, easier to use results from the

theory of monotone dynamical systems either to (1) (relatively to
s
≤) or to (2)

(relatively to the standard order).
Indeed, Theorem 2.3.1 from [15] shows that, for R0 ≤ 1, all solutions

converge to the infection-free equilibrium. For R0 > 1, one can use Theorem
2.3.2 from [15] to see that all solutions converge to an equilibrium; further,
studying the linearization of (1) (restricted to the components 1 to N) at the
infection-free equilibrium, it is easy to see that no solution starting with a
non-zero fraction of infectives can converge to the infection-free equilibrium.
This proves the main result of this paper:

Theorem 3. If R0 ≤ 1, all solutions of (1) converge to the infection-free

equilibrium; if R0 > 1, all solutions of (1) with
∑N

j=1 yj > 0 converge to the
unique positive equilibrium.

7 Different Household Sizes

The modelling assumption that all households are of the same size N seems
rather unrealistic. More reasonably, we can let ni, i = 1, . . . , N be the fraction
of households with i individuals. Now N is the maximum number of individu-
als per household: this assumption allows us to deal with a finite-dimensional
space, and is reasonable from the biological point of view.

We introduce the variables ξi
l , i = 1, . . . , N, l = 0, . . . , i: ξi

l (t) is the fraction

of households of size i that at time t have l infectives, so that

i∑

l=0

ξi
l = 1.

In this framework, the system of differential equations (1) becomes




ξ̇i
j(t) = −

[
(i − j)

(
c j

i + ds(t)
)

+ γj
]
ξi
j

+γjξi
j+1 + (i − j + 1)

(
c j−1

i + ds(t)
)
ξi
j−1

ξ̇i
0(t) = γξi

1 − ξi
0ds(t)

(7)

with initial value ξi
j(0) = yi

j where

i∑

j=0

yi
j = 1 and yi

j ≥ 0. The term

s(t) =

(
N∑

i=1

ni

i∑

l=0

ξi
l (t)l

)

N∑

i=1

ini
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represents the average infective fraction in the population, and drives the
infection transmission among different households. It is the only nonlinear
term in the system, and indeed is the only term that ’mixes’ the equations for
households of different sizes.
If we assume that the quantity s is known, we deal with N different systems:
each of them has the same structure as system (4) with di = di instead of d:

dξi(t)

dt
= Ai

sξ
i(t), i = 1, . . . , N. (8)

The i-th system (8) has an equilibrium solution π(s)i and the function Gi(s) =
i∑

l=0

lπ
(s)i
l is increasing and concave.

It is easy to see that the function G(s) =
d

∑N
i=1 iniG

i(s)
∑N

i=1 ini

shares the same

properties. Theorem 2 guarantees that, if G′(0) > 1, there exists a unique
positive fixed point s⋆, and, thus, an endemic equilibrium for the system (7).
On the other hand, when G′(0) ≤ 1, there is no positive equilibrium.

As in the previous Section, arguments from the theory of monotone dynam-
ical systems (or the same arguments used in [6]) guarantee that all solutions
of (7) converge to the infection-free equilibrium, below the threshold, and to
the endmic equilibrium, above the threshold.

8 Discussion

We have shown here how the monotone structure of S–I–S epidemic models
can be used, also in a metapopulation setting, to prove global convergence to
the equilibria, thus yielding a sharp threshold result.

In order to obtain complete results, we had to establish the uniqueness
of positive equilibria. This has been proved interpreting the solutions of the
equations as the probabilities of a birth-and-death process; the required prop-
erties were obtained by studying the stationary distributions of the processes,
extending the results of [6]. On the other hand, Ghoshal et al. [12] had proved
uniqueness by direct computation.

We believe that our approach is more general, being easy to extend to the
case of households of different size (Section 7), to nonlinear infection rules, and
possibly to S–I–R models. The last extension would require us to consider the
properties not of birth-and-death processes, but of two-dimensional stochastic
epidemic models. Clearly, these have no monotonicity properties, but perhaps
the fact that the function G is non-decreasing and concave might still hold.

A great limitation of this kind of metapopulation models is that the trans-
mission of infection is the same among all patches. This is, however, an as-
sumption inherent to the method, and cannot be relaxed. At the moment,
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metapopulation models with a real spatial (or network) structure can be stud-
ied only through simulations. The study of spatially implicit metapopulation
models may shed some light on the relevance of the discrete nature of individ-
uals and patches for the overall epidemic dynamics, and constitute a standard,
against which to compare the result of spatially structured metapopulation
simulation models.
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