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Abstract. We consider a structured metapopulation model describing the dynamics of a sin-
gle species, whose members are located in separate patches that are linked through migration
according to a mean field rule. Our main aim is to find conditions under which its equilibrium
distribution is reasonably approximated by that of the unstructured model of Levins (1969).
We do this by showing that the (positive) equilibrium distribution converges, as the carrying
capacity of each population goes to infinity together with appropriate scalings on the other
parameters, to a bimodal distribution, consisting of a point mass at 0, together with a positive
part which is closely approximated by a shifted Poisson centred near the carrying capacity.
Under this limiting régime, we also give simpler approximate formulae for the equilibrium
distribution. We conclude by showing how to compute persistence regions in parameter space
for the exact model, and then illustrate all our results with numerical examples. Our proofs
are based on Stein’s method.

1. Introduction

A simple model describing the evolution of a metapopulation of animals, which
are distributed over a number of patches that are linked by migration, was formu-
lated by Levins [13] in 1969. He assumed all occupied patches to be equivalent,
irrespective of the number of individuals present, and obtained the single logistic
differential equation

dp

dt
= cLp(1− p)− νLp (1.1)

describing the behaviour of the system: here, p = p(t) represents the proportion of
occupied patches, νL is the extinction rate, and cL is the colonization rate per occu-
pied patch. If cL > νL, the equations have a positive equilibrium, with proportion
νL/cL of patches empty; otherwise, the metapopulation becomes extinct. General-
ization to structured metapopulation models, in which the numbers of individuals
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in the occupied patches also play a part, has been considered in Gyllenberg and
Hanski [9], Casagrandi and Gatto [4], Metz and Gyllenberg [14] and Gyllenberg
and Metz [10], among others.

Our starting point is the generalization studied by Arrigoni [1], who investi-
gates a homogeneous stochastic mean field metapopulation model at the level of
the individual. She proves that its behaviour approximates that of the infinite system
of differential equations

p′i (t) = −
[
(bi + di + γ ) i + ν + ργ S(t)

]
pi(t)

+ [bi−1(i − 1)+ ργ S(t)] pi−1(t)

+ [di+1 + γ
]
(i + 1) pi+1(t); i ≥ 1

p′0(t) = ν (1− p0(t))+ (d1 + γ )p1(t)− ργ S(t)p0(t);
p(0) = p0,

(1.2)

with S(t) = ∑
j≥0
jpj (t), when the number of patches becomes very large. Here,

pi(t) denotes the proportion of patches that are occupied by i individuals, i ≥ 0,
the parameters bi and di represent the per capita birth and death rates in a patch
occupied by i individuals, ν denotes the catastrophe rate in each patch, and the
migration rate is γ per individual, with a proportion ρ of migrants surviving to
reach another patch. These equations are quite natural, and Arrigoni’s results give
a formal justification of their use; Metz and Gyllenberg [14] studied invasibility
conditions for a very similar system, but with an extra compartment for dispersing
individuals, and Casagrandi and Gatto [4] considered approximations to the system
studied here, but allowing for migration rate γ to depend on local abundance.

Unfortunately, the practical implications of the system (1.2) are not immedi-
ately visible. For instance, from the point of view of applications, it is interesting
to ask how habitat loss (expressed in terms of the destruction of a proportion of
the patches, or of the reduction of the carrying capacity in each) affects the per-
sistence of the (meta)population. System (1.2), as it stands, provides no explicit
formula relating persistence to the values of the parameters. In order to circumvent
this problem, the relation between habitat loss and persistence has previously been
studied by inserting habitat loss into Levins’s original model (Nee and May [15]),
by finding semi-empirical relations in stochastic versions of Levins’model (Hanski
and Ovaskainen [11]), or by introducing low-dimensional approximations to (1.2)
(Casagrandi and Gatto [6]) of ‘moment–closure’ type, without mathematical justi-
fication. However, even with these simplifications, the approximations still need to
be calculated numerically.

In this paper, we are interested in improving our understanding of the long term
behaviour of system (1.2), so that it can be used directly in addressing practical
questions. We begin with the results of Barbour and Pugliese [3]; under the addi-
tional assumptions

(H1) ibi is concave and non-decreasing; idi is convex and non-decreasing;
(H2) lim

i→∞
bi < lim

i→∞
di + ν + γ (1− ρ),
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it is shown that system (1.2), which always has the extinction equilibrium π = πex
with π{0} = 1 and π{i} = 0, i ≥ 1, also has exactly one other ‘endemic’ equi-
librium probability distribution π = πen satisfying the condition

∑
j≥0
jπ{j} <∞,

if a certain threshold condition given in (1.5) below is satisfied; and that then, if
also lim

i→∞
di <∞, there is global convergence to this equilibrium from any initial

probability distribution λ satisfying 0 <
∑
j≥0
jλj < ∞. Moreover, the threshold

condition (1.5) is represented by means of an explicit probabilistic formula (1.7).
We exploit these features to obtain more detailed insight.

For instance, returning to the question of relating persistence to habitat loss, we
are able to use the probabilistic form (1.7) of the threshold condition to compute
persistence regions for the system in parameter space. We describe the procedure
in Section 4, and illustrate the results in a specific, numerical example; the calcu-
lations can be made rather quickly. Hence, if such regions are to be numerically
determined, there is actually no need for any of the previous approximations to (1.2).
Note, however, that low-dimensional approximations can be used in conjunction
with existing software for studying general bifurcation structure (see [6]).

Our primary concern is to find conditions under which Levins’s [13] model can
be recovered as a reasonable approximation to the model defined by (1.2), so that
we can use the former as a simple but faithful description of the latter; an approach
to this question based on simulation is also to be found in Keeling [12]. Intuitively,
Levins’ model should be adequate when all occupied patches are roughly equiva-
lent. The qualitative conditions for this are easily understood. First, the birth and
death process in a single patch should have a stable, long term quasi–equilibrium, or
‘carrying capacity’. Secondly, the time taken to reach the carrying capacity from an
initial state consisting of just one individual should typically be short compared to
the time spent there before a catastrophe eliminates the population. With these two
assumptions, suitably formalized, we use the generator approach to Stein’s method
to show that the number of individuals in a randomly chosen patch at equilibrium
is either zero, or approximately at the carrying capacity, so that there are essen-
tially just two distinct sorts of patches (Corollary 1 in Section 2); the analogues of
Levins’s extinction rate νL and colonization rate cL are also determined.

We are actually able to be more precise in the following results, proving an
approximation to the part of the equilibrium distribution near the carrying capacity
in a stronger sense than in the usual approximation with a normal distribution. We
show that the conditional distribution over the occupied patches is closely approxi-
mated in total variation by a shifted Poisson distribution having (almost) the same
mean and variance, and that the approximation error is of the same asymptotic order
as the best that could possibly be obtained for any usual approximation with the
normal distribution: see Remark 1. We accomplish this by using the Stein–Chen
method, together with a local linearization of the generator of an approximating
birth and death process.

In order to determine the parameters νL and cL of the Levins model approxi-
mating (1.2), it is necessary to find the positive solution s∗ of a rather complicated
fixed point equation, which is given in (1.6) below. In Section 3, under the same
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conditions as are used in Section 2 to justify the Levins approximation, we derive
relatively simple approximations to s∗, and show that it then does not introduce
large errors into the approximation of the equilibrium distribution if these approx-
imations are used in place of s∗. We illustrate the efficacy of our approximations
in Section 4, in a particular instance of the model and for a range of parameter
values. These results also indicate that the qualitative picture derived from the ear-
lier, approximate treatments is reasonable, even if the numerical values differ in
detail.

We conclude the introduction by stating the threshold theorem proved in (1.2).
A key observation is that, if the quantity S(t) in (1.2) is replaced by any fixed
value s ≥ 0, then the equations become the Kolmogorov forward differential equa-
tions for an immigration, birth, death and catastrophe process Z(s) with transition
rates

j → j + 1 at rate jbj + ργ s;
j → j − 1 at rate j (dj + γ ); (1.3)

j → 0 at rate ν.

If lim
i→∞

bi − lim
i→∞

di −γ < ν, true a fortiori if (H2) holds, then the process Z(s)

has an equilibrium distribution π(s) which satisfies

G(s) :=
∑
j≥0

jπ(s){j} <∞; (1.4)

furthermore, under Assumptions (H1) and (H2), the function G is increasing and
concave, and, if the threshold condition

G′(0) > 1 (1.5)

is satisfied, then the differential equations (1.2) have π(s
∗) as endemic equilibrium

solution, where s∗ is the unique positive solution to the fixed point equation

s = G(s). (1.6)

Furthermore, the quantity G′(0) has a probabilistic representation:

G′(0) = ργ
∫ ∞

0
E
(1)Z

(0)
t dt. (1.7)

Thus G′(0) is the average of the total number of migrants surviving to reach an-
other patch, emanating from a patch initially colonized by a single immigrant, up
to the time of population extinction in that patch, and when no other migrations
into that patch are allowed. This number may be interpreted as a reproduction
number for colonizers of an empty habitat, analogous to the reproduction num-
bers used in epidemic models (Diekmann et al. [8]). A similar condition has been
given by Chesson [7] and by Casagrandi and Gatto [5]; see also Metz and Gyllen-
berg [14].
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2. Approximations to the invariant distribution

For Levins’s [13] model to be a useful approximation to the solutions to (1.2), we
should require the single patch dynamics to have a stable, long term quasi–equi-
librium, and the time to reach quasi–equilibrium from a single founder individual
to be short compared to the average time between catastrophes. More formally,
we consider a sequence of models as in (1.2), indexed by a parameter K , which
we think of as ‘large’. We first suppose that bi = b(i/K), di = d(i/K) for fixed
functions b, d : R+ → R+ which satisfy

1. xb(x) is nondecreasing and concave.
2. xd(x) is nondecreasing and convex.
3. b(1) = d(1).

It is also convenient to assume that both b and d are twice continuously differen-
tiable, that b(0) > d(0), and that b′(0) and d ′(0) are both finite. These conditions
ensure that the population size, if positive, remains close to the value K , if K is
large and γ is small, fulfilling the first of the natural conditions, that of a stable
quasi–equilibrium.

The choice of 1 for the value of x at which b(x) = d(x) merely represents a
convenient standardization for K . This is because, if b(c) = d(c) for some c = 1,
one could replace the functions b and d by the functions bc and dc defined by
bc(x) := b(cx), dc(x) := d(cx) for all x, and then setKc := cK; this would yield
bi = bc(i/Kc) and di = dc(i/Kc) as an equivalent representation of the birth and
death rates bi and di , but now with bc(1) = dc(1). Thus Condition 3 is not essential
in what follows, and can be dispensed with, provided that, in the error bounds that
we establish, K is replaced by cK .

The parameters ρ = ρ(K), γ = γ (K) and ν = ν(K) we allow to depend
on K . We prove qualitative bounds for our approximations which are uniform for
all ρ ≤ 1, and also for all γ ≤ γ0, where γ0 is fixed but chosen to be small enough;
the bounds are expressed in terms of the parameters ν and K , and become small
as K → ∞ so long as ν logK → 0 as K → ∞. With this in mind, we actually
consider our bounds only under the condition that

4. ν logK ≤ η0,

whereη0 depends only on b, d and γ0. Condition 4 requires that the average time ν−1

between catastrophes be sufficiently much larger than the time spent between an ini-
tial immigration and first reaching quasi–equilibrium, which is of orderO(logK).

We do not give an explicit expression for η0, though one could be derived from
inspection of the proof of Lemma 3. For γ0, we assume at least that it is small
enough to ensure that the following conditions are satisfied:

5a. The solution x− < 1 to b(x) = d(x)+ γ0 satisfies x− > 3/4.
5b. The solution x+ > 1 to b(x)+ 2x−1γ0 = d(x) satisfies x+ < 5/4.
5c. γ0 <

1
2 {b(5/8)− d(5/8)}.

5d. c0 := (d(1/2)+ γ0)/b(1/2) < 1; c1 := (b(3/2)+ 2γ0)/d(3/2) < 1.
5e. γ0 <

1
2x−(d

′(x−)− b′(x−)).
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Note that

x−{d ′(x−)− b′(x−)} = d

dx
[x{d(x)+ γ0 − b(x)}]x=x− > 0

is implied by Conditions 1 and 2 and because b(0) > d(0). It will emerge that
the probability of a patch being empty is roughly of order ν/(ργK), so that when
ρ = 1, for instance, Conditions 5a–5e are automatic if this probability is not to be
extremely small.

Under these circumstances, we wish to show that the endemic equilibrium dis-
tribution πen of (1.2) is close to that suggested by Levins’s model; that is, we wish
to show that π concentrates almost all of its mass either at 0 or near some fixed
positive value, and that, setting π{0} =: νL/cL, as in Levins’s model, we obtain a
plausible interpretation for his colonization rate cL.

Now ifG′(0) > 1, the equilibrium distribution πen is just the distribution π(s
∗)

for s∗ the solution to (1.6). Our main task is therefore to show that, under Condi-
tions 1–5 above, for largeK and for any s, the distribution π(s) is concentrated near
two points, one of which is 0. To do this, we start by investigating π0(s), the equilib-
rium distribution of the immigration, birth and death process with the same birth,
death and immigration rates asZ(s), except for having the death and migration rates
from the state 1 set to zero, and with ν = 0. This distribution is our candidate for
approximating the part of π(s) off 0. We show that π0(s) is concentrated near �Kκ�,
where κ is the positive solution of

b(κ)+ ργ s/(Kκ) = d(κ)+ γ, (2.1)

close to 1 if γ is small. In more detail, we show that π0(s) is very close to a
shifted Poisson distribution, whose spread, of orderO(K1/2), is small in compari-
son to �Kκ�. We then prove that π(s) is close to

π ′(s) := π(s){0} {0} + (1− π(s){0})π0(s).

While examining the properties of the distribution π0(s), we temporarily sup-
press the dependence on both s and K , and define, for all i ≥ 1,

λi := ibi + ργ s = ib(i/K)+ ργ s and

µi := i(di + γ ) = i(d(i/K)+ γ ); (2.2)

then π0{i} can be expressed in terms of λi and µi , i ≥ 1, as

π0{i} := wi∑
j≥1wj

, where wi := 1

µi

i−1∏
j=1

(
λj

µj

)
. (2.3)

Note that, from (2.1), λj ≥ µj when j ≤ �Kκ� and λj < µj when j ≥ �Kκ�+1,
and that, for 0 ≤ s ≤ 2K ,

|1− κ| ≤ 1/4, (2.4)
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in view of Conditions 5a and 5b. Thus we haveµiwi ≤ µi+1wi+1 in i ≤ �Kκ� and
µiwi > µi+1wi+1 in i > �Kκ�, with geometrically fast decay far enough away
from i = �Kκ� in either case, so that the probability distribution π0 is strongly
concentrated around �Kκ�. This is the substance of the following lemma; it makes
precise the assertion that the spread of π0 around �Kκ� is of order O(K1/2).

Lemma 1. With the above definitions, given any 0 < η ≤ 1/2, there exists an
α = α(η) > 0 such that

1. π0 [1, �(1− η)Kκ�] = O(K−1/2e−αK);
2. π0 [�(1+ η)Kκ�,∞) = O(K−1/2e−αK).
3.

∑
j≥�2Kκ�+1 jπ

0{j} = O(√Ke−αK)
4.

∑�2Kκ�
j=�Kκ/2�+1 |j − �Kκ�|rπ0{j} = O(Kr/2) for all r ≥ 1.

All these bounds hold uniformly in ρ ≤ 1, γ ≤ γ0 and in s ≤ 2K .

Proof. Because b is non–increasing and d is non–decreasing, we have

(λ�Kκ/2� − µ�Kκ/2�)/�Kκ/2� ≥ (b(5/8)− d(5/8)− γ0)

> 1
2 (b(5/8)− d(5/8))>0,

by (2.4) and Condition 5c. Hence, by the concavity of xb(x) and the convexity
of xd(x), it follows that

λj − µj ≥ (Kκ − j)D′ in �Kκ/2� ≤ j ≤ �Kκ�;
µj − λj ≥ (j −Kκ)D′ in j > �Kκ�,

where D′ = 1
2 (b(5/8)− d(5/8))�Kκ/2�/(Kκ − �Kκ/2�); since, from (2.4),

�Kκ/2�
Kκ − �Kκ/2� ≥ 1− 4

2Kκ + 1
≥ 1− 8

3K + 2
≥ 1

2

in K ≥ 5, we then have

λj − µj ≥ (Kκ − j)D in �Kκ/2� ≤ j ≤ �Kκ�; (2.5)

µj − λj ≥ (j −Kκ)D in j > �Kκ�, (2.6)

with D = 1
4 (b(5/8)− d(5/8)). Similarly, noting that

(µ�2Kκ� − λ�2Kκ�)/�2Kκ� ≤ {d(5/2)− b(5/2)+ γ0},
and that, from (2.4),

�2Kκ�
�2Kκ� −Kκ ≤ 2+ 1

Kκ − 1
≤ 2+ 4

3K − 4
≤ 3

in K ≥ 3, it follows that

λj − µj ≤ (Kκ − j)D1 in 1 ≤ j ≤ �Kκ�; (2.7)

µj − λj ≤ (j −Kκ)D1 in �Kκ� < j ≤ �2Kκ�, (2.8)

with D1 = 3{d(5/2)− b(5/2)+ γ0}.
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First, consider the range �Kκ/2� ≤ j ≤ �Kκ�. Then it follows from (2.5) that

µj

λj
= 1− λj − µj

λj
≤ exp

{
−D

(
Kκ − j
λj

)}
,

and hence, since λl is increasing in l, we have

�Kκ�∏
l=j

µl

λl
≤ exp

{
− 1

2Dλ
−1
�Kκ�(�Kκ� − j)(�Kκ� − j + 1)

}
.

Thus

ŵj := 1

µj

�Kκ�∏
l=j

µl

λl
≤ 1

µj
exp
{
− 1

2Dλ
−1
�Kκ�(�Kκ� − j)(�Kκ� − j + 1)

}
(2.9)

in �Kκ/2� ≤ j ≤ �Kκ�. Then, in similar fashion, starting from (2.7), we have

µj

λj
≥ max

{
0, 1−D1

(
Kκ − j
λj

)}
,

so that

ŵj ≥ 1

µj

1−
�Kκ�∑
l=j

D1

(
Kκ − l
λl

)
≥ 1

µj

(
1− 1

2D1λ
−1
j (�Kκ� − j + 1)(�Kκ� − j + 2)

)
in �Kκ/2�≤j≤�Kκ�;

this implies that, for those j in the interval

�Kκ� ≥ j ≥ �Kκ� −max

{
0,

(⌊√
D−1

1 λ�Kκ/2�
⌋
− 2

)}
,

we have ŵj ≥ 1/2µj . Now

λ�Kκ/2� ≥ �Kκ/2�b(κ/2) ≥ �Kκ/2�b(3/4) ≥ �3K/8�γ0,

by (2.4) and Condition 5a, and so⌊√
D−1

1 λ�Kκ/2�
⌋
− 2 ≥ c∗

√
K

for some c∗ > 0 and for all K ≥ K0 large enough. Then, for j ≤ �Kκ�, we have

µ�Kκ� ≤ Kκ(d(κ)+ γ ) ≤ Kκ(b(κ)+ 2γ0/κ) ≤ K{(5/4)b(5/4)+ 2γ0},
again by (2.4) and the properties of b and d . Hence, in the sum

∑
j≥1 ŵj , there are

at least c∗
√
K terms each of size at least [2K{(5/4)b(5/4) + 2γ0}]−1, implying

that ∑
j≥1

ŵj ≥ C1K
−1/2, (2.10)
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for some C1 > 0, uniformly for all γ ≤ γ0 and 0 ≤ s ≤ 2K . Also,

ŵj−1

ŵj
= µj

λj−1
≤ jµj

(j − 1)λj

and µj/λj is increasing in j ≤ �Kκ�, so that, since also j/ l ≤ j − l + 1 in
1 ≤ l ≤ j , we have

j∑
l=1

ŵl ≤ 1

µj

(
λj

λj − µj

)2

exp
{
− 1

2Dλ
−1
�Kκ�(�Kκ� − j)(�Kκ� − j + 1)

}
(2.11)

for �Kκ/2� ≤ j ≤ �Kκ�. In particular, taking j = �(1 − η)Kκ� in (2.11), we
have

�(1−η)Kκ�∑
l=1

ŵl = O(K−1e−α1K), (2.12)

for some α1 = α1(η) > 0.
For the range �Kκ� + 1 ≤ j ≤ �2Kκ�, a similar argument based on (2.6)

shows that

ŵj := 1

µj

j−1∏
l=�Kκ�+1

λl

µl
≤ 1

µj
exp{− 1

2Dµ
−1
�2Kκ�(j − �Kκ�)(j − �Kκ� − 1)},

(2.13)

and that therefore, since

ŵj+1

ŵj
= λj

µj+1
≤ λj+1

µj+1
(2.14)

and λj/µj is decreasing in j > �Kκ�, it follows that

∞∑
l=�(1+η)Kκ�+1

ŵl = O(K−1e−α2K), (2.15)

again for some α2 = α2(η) > 0. But, for any set A ⊂ N,

π0{A} =
∑
j∈A

ŵj

/∑
j≥1

ŵj

 , (2.16)

so that parts 1 and 2 follow from (2.10), (2.12) and (2.15).
Next, from (2.14), for j ≥ �2Kκ�, we have

ŵj ≤ ŵ�2Kκ�(λ�2Kκ�+1/µ�2Kκ�+1)
j−�2Kκ�,
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in which, from (2.6),

λ�2Kκ�+1

µ�2Kκ�+1
≤ 1− 1

2D{d(2κ)+ γ0}−1 ≤ 1− 1
2D{d(5/2)+ γ0}−1 =: c1 < 1;

part 3 is now immediate.
For part 4, we just use (2.16), (2.10), (2.9) and (2.13) to give an upper bound

of the required order for the sum
∑�2Kκ�
j=�Kκ/2�+1 |j − �Kκ�|rπ0{j}. ��

The previous lemma gives broad bounds on the concentration ofπ0 around �Kκ�.
The next theorem shows that π0 is actually rather close to a shifted Poisson distri-
bution, in the sense of total variation. Once again, order statements are understood
to be uniform in ρ ≤ 1, γ ≤ γ0 and in s ≤ 2K .

Theorem 1. Let B = B(s) := �Kβ1/β2�, where

β1=β(s)1 :=κb(κ)+ ργ s/K and β2=β(s)2 :=κ(d ′(κ)− b′(κ))+ ργ s/(Kκ).
Then dT V (π0, {�Kκ�}∗P̂o (B)) = O(K−1/2), where, for integer λ, P̂o (λ) denotes
the centred Poisson distribution with variance λ,  {j} denotes the point mass at j
and ∗ denotes convolution.

Proof. An essential feature of the Stein–Chen method is that, for each C ⊂ Z+,
the function gC solving

1C(j)− Po (λ){C} = λgC(j + 1)− jgC(j), j ≥ 0, (2.17)

satisfies the bounds

‖g‖ ≤ min{1, λ−1/2}; ‖ g‖ ≤ min{1, λ−1} :

see Barbour [2], p.84. Hence, ifW is any (possibly negative) integer valued random
variable and C ∈ Z+, and if 0 < η ≤ 1, we can use (2.17) when |W − λ| ≤ ηλ to
obtain

|P[W ∈ C]− Po (λ){C}| = |E{1C(W)− Po (λ){C}}|
≤ |E{(λgC(W + 1)−WgC(W))I [|W − λ| ≤ ηλ]}| + P[|W − λ| > ηλ].

Thus, if it can be shown that

|E{(λg(W + 1)−Wg(W)) I [|W − λ| ≤ ηλ]}| ≤ ε1 (2.18)

for any function g which is bounded as above, and that

P[|W − λ| > ηλ] ≤ ε2, (2.19)

then it follows that

dT V (L(W),Po (λ)) := sup
C⊂Z

|P [W ∈ C]− Po (λ){C}| ≤ ε1 + ε2.
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We apply this estimate with λ = B to a random variable V − �Kκ� + B, where
V ∼ π0.

Since π0 is just the equilibrium distribution for the birth and death process on N

with birth rates λj , j ≥ 1, and death rates µj , j ≥ 2, we have

µJg(J )π
0{J } +

N∑
j=J
{λjg(j + 1)− µjg(j)}π0{j} − λNg(N + 1)π0{N} = 0

(2.20)

for all bounded g and all 1 ≤ J < N , by detailed balance. Now, for j = �Kκ�+ l,
we have the expansion

λ�Kκ�+l = (�Kκ� + l)b
(�Kκ� + l

K

)
+ ργ s

= �Kκ�b
(�Kκ�
K

)
+ ργ s + l

{
b

(�Kκ�
K

)
+ �Kκ�

K
b′
(�Kκ�
K

)}
+O(K−1l2),

uniformly in |l| ≤ �Kκ� − 1; similarly,

µ�Kκ�+l = �Kκ�
{
d

(�Kκ�
K

)
+ γ

}
+ l
{
d

(�Kκ�
K

)
+ γ + �Kκ�

K
d ′
(�Kκ�
K

)}
+O(K−1l2),

in the same range of l. Thus it follows that

λ�Kκ�+l g(�Kκ� + l + 1)− µ�Kκ�+l g(�Kκ� + l)
= Kβ1{g(�Kκ� + l + 1)− g(�Kκ� + l)} − lβ2g(�Kκ� + l)

+O((1+ |l|)‖ g‖)+O(K−1|l|(1+ |l|)‖g‖),

uniformly in |l| ≤ �Kκ� − 1. Hence we have

λ�Kκ�+l g(�Kκ� + l + 1)− µ�Kκ�+l g(�Kκ� + l)
= β2 {(Kβ1/β2)g(�Kκ� + l + 1)− (l +Kβ1/β2)g(�Kκ� + l)}

+O((1+ |l|)‖ g‖)+O(K−1|l|(1+ |l|)‖g‖)
= β2 {Bg(j + 1)− (j − A)g(j)}

+O((1+ |l|)‖ g‖)+O(K−1|l|(1+ |l|)‖g‖), (2.21)

uniformly in 1 ≤ j ≤ 2�Kκ�− 1, with B = �Kβ1/β2� as before, A = �Kκ�−B
and with j = �Kκ� + l. Note that, under π0, the ‘typical’ values of l satisfy
|l| = O(K1/2).

Suppose that 0 < η ≤ 1 satisfies Bη ≤ �Kκ� − 1. Then it follows from (2.21)
by taking g̃(j) = g(j+A) that, for all g̃ satisfying ‖g̃‖ ≤ B−1/2 and ‖ g̃‖ ≤ B−1,
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we have

B+�ηB�∑
m=B−�ηB�

π0{m+ A}(Bg̃(m+ 1)−mg̃(m))

=
K+B∑
j=K−B

π0{j}{Bg(j + 1)− (j − A)g(j)}

= 1

β2

K+B∑
j=K−B

π0{j}{λjg(j + 1)− µjg(j)}

+O

 K+B∑
j=K−B

π0{j}{K−1|j − �Kκ�| +K−3/2(j − �Kκ�)2}

 , (2.22)

where K+B := �Kκ� + �ηB� and K−B := �Kκ� − �ηB�. To estimate (2.22), first
use (2.20) to get∣∣∣∣∣∣∣

K+B∑
j=K−B

π0{j}{λjg(j + 1)− µjg(j)}

∣∣∣∣∣∣∣
=
∣∣∣λK+B g(K+B + 1)π0{K+B } − µK−B g(K

−
B )π

0{K−B }
∣∣∣

≤ 2β1K‖g‖π0 {K+B }+ β1K‖g‖π0 {K−B } , (2.23)

where the last line follows because xb(x) is concave and xd(x) is increasing, and
from (2.1). Hence, in view of Lemma 1.1 and the bound ‖g‖ ≤ B−1/2, this quantity
is exponentially small with K , and hence of order O(K−1/2), uniformly in ρ ≤ 1,
γ ≤ γ0 and 0 ≤ s ≤ 2K , for any fixed η > 0. Also, from Lemma 1.4, the order
term in (2.22) is of order O(K−1/2) if

�Kκ/2� ≤ �Kκ� − �ηB� < �Kκ� + �ηB� ≤ �2Kκ�. (2.24)

Now β1/(κβ2) is bounded below by

C− := b(5/4)/{x+(d ′(x+)− b′(x+))+ 2γ0/x+},
and above by

C+ := {b(3/4)+ 8γ0/3}/{x−(d ′(x−)− b′(x−))},
uniformly in ρ ≤ 1, γ ≤ γ0 and 0 ≤ s ≤ 2K , since b(x) + ργ s/(Kx) is
non–increasing in x and

κ{d ′(κ)− b′(κ)} + ργ s/(Kκ) = d

dx
{x(d(x)+ γ − b(x))}|x=κ
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is non–decreasing in κ , so that

x−(d ′(x−)− b′(x−)) ≤ κ{d ′(κ)− b′(κ)} + ργ s/(Kκ)
≤ x+(d ′(x+)− b′(x+))+ 2γ0/x+. (2.25)

Thus we can ensure that (2.24) is satisfied for all ρ ≤ 1, γ ≤ γ0 and 0 ≤ s ≤ 2K
if we choose η = 1/(4C+), provided that �Kκ� ≥ 1; hence it follows from the
previous paragraph that

B+�ηB�∑
m=B−�ηB�

π0{m+ A}(Bg(m+ 1)−mg(m)) = O(K−1/2), (2.26)

uniformly in 0 ≤ s ≤ 2K , ρ ≤ 1 and γ ≤ γ0.
Furthermore, with this choice of η, we have

�ηB�/�Kκ� ≥ C−/(8C+) =: η1, (2.27)

uniformly in the same range of ρ, γ and s, provided that �ηB� ≥ 1; hence, again
from Lemma 1, taking α = α(η1), we have∑

m<B−�ηB�
π0{m+ A} = π0[1, �Kκ� − �ηB� − 1] = O(K−1/2) (2.28)

and ∑
m>B+�ηB�

π0{m+ A} =
∑

j>�Kκ�+�ηB�
π0{j} = O(K−1/2); (2.29)

the theorem now follows from (2.18), (2.19) and (2.26)–(2.29). ��
Remark 1. The shifted Poisson approximation of Theorem 1 is as simple to under-
stand as the more usual normal approximation, but is much stronger, being ex-
pressed in terms of the total variation metric. Despite this, the order O(K−1/2) of
the error bound is as good as the best that could ever be attained using a normal
approximation, since then the discretization error alone would have to be of this
order; the discrete distribution being approximated has point probabilities of or-
der O(K−1/2), whereas the normal distribution is continuous on R. The choice of
shifted Poisson is found by matching its mean and variance to those of π0, asymp-
totically asK →∞. Note that any match has to take into account that the shift can
only be by an integer amount, because the resulting distribution must take values
in the integers.

Having established the detailed form of π0(s) for any 0 ≤ s ≤ 2K , we now
need to show that, indeed, the equilibrium distribution π(s) of Z(s) is close to the
distribution π(s){0} {0} + (1− π(s){0})π0(s). In order to do this, we need bounds
for some absorption probabilities and mean recurrence times associated with the
process Z(s), again uniformly in ρ ≤ 1, γ ≤ γ0 and s ≤ 2K , and now, addition-
ally, in ν ≥ 0. Once more, we suppress the dependence on s and K , and let τ {0}
denote the time of first hitting the state 0, τ {0,�Kκ�} the time of first hitting the set
{0, �Kκ�}.
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Lemma 2. Under Conditions 1–5,

E
j τ {0,�Kκ�} = O(ν−1 ∧ log(1+ |j − �Kκ�|) for all j ≥ 1.

Proof. Writing ej := E
j τ {0,�Kκ�}, it is immediate that ej ≤ ν−1. Observe also that

(ej )j≥0 is the finite solution to the equations

(λj + µj + ν)ej = 1+ λj ej+1 + µjej−1, j ≥ 1, j = �Kκ�, (2.30)

which also satisfies e0 = e�Kκ� = 0. In j > �Kκ�, we write these equations as

ej − ej−1 = λj

µj
(ej+1 − ej )+ 1− νej

µj
, j > �Kκ�,

where 0 ≤ 1 − νej ≤ 1, since νej = 0 if ν = 0 and e−1
j ≤ ν−1 otherwise,

entailing

ej − ej−1 ≤
∑
r≥0

1

µj+r

r−1∏
l=0

λj+l
µj+l

≤ 1

µj − λj , j ≥ �Kκ� + 1. (2.31)

Thus, by (2.6) and because ej =
∑j
l=�Kκ�+1(el − el−1), the claim is proved in the

case j > �Kκ�.
For 1 ≤ j < �Kκ�, we rewrite (2.30) as

ej − ej+1 = µj
λj
(ej−1 − ej )+ 1− νej

λj
, 1 ≤ j < �Kκ�,

together with the side conditions

�Kκ�−1∑
j=0

(ej − ej+1) = e0 − e�Kκ� = 0;

this in particular yields

ej − ej+1 =
j−1∑
r=0

(
1− νej−r
λj−r

) r∏
l=1

µj−l+1

λj−l+1
− e1

j∏
l=1

µj−l+1

λj−l+1

≤
j−1∑
r=0

(
1

λj−r

) r∏
l=1

µj−l+1

λj−l+1
, 1 ≤ j < �Kκ�. (2.32)

Now, since µj/λj is non–decreasing in j , the bound in (2.32) is at most

1

λj

j−1∑
r=0

j

j − r
(
µj

λj

)r
≤ 1

λj

(
λj

λj − µj

)2

.

Hence, for j ≤ �Kκ/2�, we have µj/λj ≤ {d(1/2) + γ0}/b(1/2) = c0 < 1 by
Condition 5d, and thus

ej − ej+1 ≤ 1

λj (1− c0)2
, j ≤ �Kκ/2�;
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for �Kκ/2� < j < �Kκ�, we use (2.32) to give the bound

ej − ej+1 ≤ 1

λ�Kκ/2�

(
λj

λj − µj

)
+ 1

λ�Kκ/2�(1− c0)2

(
µj

λj

)j−�Kκ�
≤ 1

λ�Kκ/2�

(
λj

λj − µj +
1

(1− c0)2

)
.

Invoking (2.5), and because ej =
∑�Kκ�−1
l=j (el − el−1), the proof is complete. ��

In the next Lemma, where again all order statements are uniform in ρ ≤ 1,
γ ≤ γ0, s ≤ 2K and ν ≥ 0, we consider

p0(j ; �Kκ�) = p(s)0 (j ; �Kκ�) := P
j [Z(s)(τ {0,�Kκ�}) = 0]. (2.33)

Lemma 3. Defining cjj :=∏j−1
l=1

µl
λl

, we have

1− p0(1; �Kκ�) =
�Kκ�∑
j=1

cjj

−1

{1+O(ν logK)}.

If �Kκ/2� ≤ j < �Kκ�, then

p0(j ; �Kκ�) = O(ν log(1+ |�Kκ� − j |)+Ke−α0K)

for α0 such that e−α0 = c3/8
0 , where c0 is as defined in Condition 5d.

If j > �Kκ�, then

p0(j ; �Kκ�) = O(ν log(1+ |�Kκ� − j |)).
Proof. Writing pj for p0(j ; �Kκ�), observe that (pj )j≥0 satisfy the equations

(λj + µj + ν)pj = λjpj+1 + µjpj−1 + ν, j ≥ 1, (2.34)

with the side conditions p0 = 1, p�Kκ� = 0. Now (2.34) gives

pj − pj+1 = λ−1
j {µj (pj−1 − pj )+ ν(1− pj )}

= ν
j−1∑
r=0

1− pj−r
λj−r

r−1∏
l=0

µj−l
λj−l

+ (1− p1)

j−1∏
l=0

µj−l
λj−l

. (2.35)

Adding (2.35) over 1 ≤ j ≤ �Kκ� − 1 and adding (1− p1) gives

1 = (1− p1)

�Kκ�∑
j=1

cjj + νη, (2.36)

where

0 ≤ η ≤
�Kκ�−1∑
j=1

j−1∑
r=0

(
1

λj−r

) r∏
l=1

µj−l+1

λj−l+1
= O(logK),
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since the inner sum may be bounded as in the previous lemma. This proves the first
part of the lemma.

Note also that

cjj ≤ c(j−1)∧�Kκ/2�
0 , (2.37)

so that

1 <
�Kκ�∑
j=1

cjj < (1− c0)
−1 + (�Kκ/2� + 1)c�Kκ/2�0

< (1− c0)
−1 + 1+ {log(1/c0)}−1 =: 1/(2p̄) <∞. (2.38)

Hence it follows that

1− p0(1; �Kκ�) ≥ p̄ > 0, (2.39)

uniformly in ν logK ≤ η0, for suitable choice of η0 > 0; this lower bound is also
uniform in ρ ≤ 1, γ ≤ γ0 and s ≥ 0, in the above range of ν.

For the second part, add (2.35) over J ≤ j ≤ �Kκ� − 1 to give

pJ = (1− p1)

�Kκ�∑
j=J+1

cjj +O(ν log(1+ |�Kκ� − J |))

= O(|�Kκ� − J |c�Kκ/2�0 + ν log(1+ |�Kκ� − J |))
for all �Kκ/2� ≤ J ≤ �Kκ� − 1, by (2.37), completing the proof of the second
part for such J .

If j > �Kκ�, the proof is similar:

pj − pj−1 = λj

µj
(pj+1 − pj )+ ν

µj
(1− pj )

≤ ν
∑
r≥0

1

µj+r

r∏
l=1

λj+l−1

µj+l−1

≤ ν/(µj − λj ),
which is enough. ��

With these preparatory results, we can turn to the proof of the main approxima-
tion to the equilibrium distribution of Z(s).

Theorem 2. Let π := π(s) denote the equilibrium distribution ofZ(s). Then, under
Conditions 1–5,

π{0} = {1+ ργ sEK(1− p0(1; �Kκ�))}−1{1+O(ε0(K, ν))},
uniformly in 0 ≤ s ≤ 2K , ρ ≤ 1, γ ≤ γ0 and ν logK ≤ η0, where

EK := E(s)K := E
�Kκ�τ {0} and ε0(K, ν) := E−1

K logK,
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and where η0 is as in (2.39). Furthermore, if

π ′ := π{0} {0} + (1− π{0})π0,

where π0 is as defined in (2.3), then dT V (π, π ′) = O(ε1(K, ν)), with

ε1(K, ν) := ε0(K, ν)+Ke−α1K,

and α1 := min(α0, α(1/2)), the latter defined in Lemmas 1 and (3). Finally,

G(s) = Kκ(1− π(s){0}){1+O(ε2(K, ν))},
where ε2(K, ν) := ε0(K, ν)+K−1/2.

Proof. If ργ s = 0, then π =  {0} is degenerate at 0, and all the statements of the
theorem are immediate; in what follows, we therefore assume that ργ s > 0.

For any bounded f : Z+ → R, define θ(f ) by

θ(f )(j) := −
∫ ∞

0

{
E
j f (Zt )− π(f )

}
dt, j ≥ 0. (2.40)

Taking j = 0, it follows that

θ(f )(0) = −E
0(τ (1))(f (0)− π(f ))+ θ(f )(1)

= −(1/ργ s)(f (0)− π(f ))+ θ(f )(1),
where τ (1) denotes the time of first hitting the state 1; thus

ργ s{θ(f )(1)− θ(f )(0)} = f (0)− π(f ). (2.41)

Next, taking j ≥ 1, it follows that

θ(f )(j) = −E
j

∫ τ {0,�Kκ�}

0
(f (Zt )− π(f )) dt + p0(j ; �Kκ�)θ(f )(0)

+(1− p0(j ; �Kκ�))θ(f )(�Kκ�). (2.42)

For j = 1, (2.42) gives

|{θ(f )(�Kκ�)− θ(f )(0)}(1− p0(1; �Kκ�))− {θ(f )(1)− θ(f )(0)}|
≤ max

1≤j<�Kκ�
|f (j)− π(f )|E1τ {0,�Kκ�} = O (logK‖f ‖d) , (2.43)

by Lemma 2, where ‖f ‖d := supj,j ′ |f (j)−f (j ′)|; for f = 1{0}, and using (2.41),
this strengthens to∣∣{θ(1{0})(�Kκ�)− θ(1{0})(0)}(1− p0(1; �Kκ�))− (1− π{0})/(ργ s)

∣∣
≤ π{0}E1τ {0,�Kκ�} = O (π{0} logK) . (2.44)

The first statement of the theorem is now proved, by what is essentially a renewal
argument, using (2.44) together with an alternative expression for the difference
θ(1{0})(�Kκ�)− θ(1{0})(0), which is derived from (2.40) by writing

θ(f )(�Kκ�) = −E
�Kκ�

∫ τ {0}

0
(f (Zt )− π(f )) dt + θ(f )(0),
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with f = 1{0}. This, with (2.41), gives

(1− p0(1; �Kκ�))−1 ({1− π{0}}/(ργ s)+O(logK)π{0}) = π{0}E�Kκ�τ {0}
(2.45)

so that

(1− π{0})/π{0} = ργ sEK(1− p0(1; �Kκ�)){1+O(ε0(K, ν))}. (2.46)

This establishes the first part of the theorem.
For the second part, fix any bounded f , and note that the function h := θ(f )

satisfies the equation Ah = f − π(f ), as shown in the proof of [3], Theorem 2.4.
Taking expectations with respect to the probability measure π ′ thus gives

π ′(f )− π(f ) = π ′(Ah) = π{0}ργ s{h(1)− h(0)} + (1− π{0}) (2.47)

×
∑
j≥1

π0{j} {λj (h(j + 1)− h(j))+ µj (h(j − 1)− h(j))+ ν(h(0)− h(j))} .
Now, for j ≥ 2, the coefficient of h(j) in (2.47) is

λj−1π
0{j − 1} − (λj + µj )π0{j} + µj+1π

0{j + 1} − ν = −ν,
by the definition of π0, leaving

π ′(f )− π(f ) = π{0}ργ s{h(1)− h(0)} − (1− π{0}){h(1)− h(0)}µ1π
0{1}

−(1− π{0})ν
∑
j≥1

π0{j}{h(j)− h(0)}. (2.48)

Now, from (2.42), for �Kκ/2� ≤ j ≤ �2Kκ�, we have

|h(�Kκ�)− h(j)| ≤ p0(j ; �Kκ�)|h(�Kκ�)− h(0)| + E
j τ {0,�Kκ�}‖f ‖d ,

and |h(j)−h(0)| ≤ ν−1‖f ‖d for all j , from the definition of h in (2.40) and a cou-
pling of two Z(s)–processes, one starting in j and one in equilibrium, by matching
them at the first catastrophe. Hence it follows that

ν|h(�Kκ�)− h(j)| = O(p0(j ; �Kκ�)+ νEj τ {0,�Kκ�})‖f ‖d
= O(ν logK +Ke−α0K)‖f ‖d ,

from Lemmas 2 and (3). Invoking (2.43), we thus have

(1− π{0})ν|{h(j)− h(0)} − (1− p0(1; �Kκ�))−1{h(1)− h(0)}|
= O

(
ν logK +Ke−α0K

)
‖f ‖d ,

for all �Kκ/2� ≤ j ≤ �2Kκ�, uniformly in ν logK ≤ η0. Also, once again since
|h(j)− h(0)| ≤ ν−1‖f ‖d for all j , it follows that

(1− π{0})ν
�Kκ/2�−1∑

j=1

+
∑

j≥�2Kκ�+1

π0{j}|h(j)− h(1)|

= O
(
K−1/2e−α(1/2)K

)
‖f ‖d ,
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from Lemma 1. Combining these estimates with (2.48) thus yields

π ′(f )− π(f ) = π{0}ργ s{h(1)− h(0)} (2.49)

− (1− π{0}){ν + µ1π
0{1}(1− p0(1; �Kκ�))}

(1− p0(1; �Kκ�)) {h(1)− h(0)}
+O(ε1(K, ν))‖f ‖d .

However, from (2.49) and (2.41), taking f = 1{0}, it follows that

0 = (1− π{0})
{
π{0} − 1

ργ s

(
(1− π{0}){ν + µ1π

0{1}(1− p0(1; �Kκ�))}
(1− p0(1; �Kκ�))

)}
+O(ε1(K, ν)); (2.50)

this, combined with (2.49) and because

ργ σ {h(1)− h(0)}/(1− π{0}) ≤ ‖f ‖d ,

gives

|π ′(f )− π(f )| = O(ε1(K, ν))‖f ‖d , (2.51)

completing the second part of the proof.
For the last part, write

G(s) =
∑
j≥1

jπ{j}=

�2Kκ�∑
j=1

jπ ′{j} +
�2Kκ�∑
j=1

j (π{j} − π ′{j})
+ ∑

j>�2Kκ�
jπ{j}.

The total variation approximation (2.51) just established shows that

K−1
�2Kκ�∑
j=1

j |π{j} − π ′{j}| = O(ε1(K, ν)),

and

K−1
�2Kκ�∑
j=1

jπ0{j} = κ{1+O(K−1/2)},

from parts 1, 2 and 4 of Lemma 1, which, with π ′{j} = (1 − π{0})π0{j}, estab-
lishes the main contribution to G(s). Finally, a simple coupling argument shows
that

∑
j>�2Kκ� jπ{j} ≤

∑
j>�2Kκ� jπ0{j}, so that, by Lemma 1.3,

K−1
∑

j>�2Kκ�
jπ{j} = O

(
e−αK

)
,

for some α > 0. This completes the proof of the theorem. ��
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Remark 2. Combining (2.50) and the formula for π(s){0}, it follows that

1/E(s)K = (ν + µ1π
0(s){1}(1− p0(1; �Kκ�))){1+O(ε1(K, ν))}. (2.52)

Now µ1π
0(s){1} = O(K1/2e−α(1/2)K) from Lemma 1; hence E(s)K can mostly be

replaced by ν−1 in the formulae. Note also that, in any case, E(s)K ≤ ν−1.

Provided that ε2(K, ν) is small enough, Theorem 2 implies a corresponding re-
sult for the non–degenerate equilibrium solution of the differential equations (1.2),
which is the equilibrium distribution π(s

∗) corresponding to that value s∗ > 0 of s
which solves the equation s = G(s).
Corollary 1. Suppose that Conditions 1–5 hold, and that G′(0) > 1. Let s∗ be
the positive solution of the equation G(s) = s. Then there exist K1, η1 > 0 such
that, uniformly in ρ ≤ 1, γ ≤ γ0, K ≥ K1 and ν ≤ η1/ logK , the non–trivial
equilibrium distribution π := πen := π(s∗) to (1.2) satisfies

(1) π{0} = {�Kκ�ργEK(1− p0(1; �Kκ�))}−1{1+O(ε2(K, ν))};
(2) dT V (π, π ′) = O(ε1(K, ν));
(3) dT V (π, π ′′) = O(ε2(K, ν)).

Here

π ′ := π{0} {0} + (1− π{0})π0,

with π0 given by (2.3), and

π ′′ := π{0} {0} + (1− π{0})( �Kκ� ∗ P̂o (B)),

with B as in Theorem 1. Throughout, the quantities π, π0, κ, EK, p0 and B are to
be understood with s = s∗.
Proof. The corollary follows from Theorems 2 and 1, so long as s∗ ≤ 2K and
η1 ≤ η0, because then

s∗ = G(s∗) = Kκ(1− π(s∗){0}){1+O(ε2(K, ν))}.
But, from (2.4), we have κ(s) ≤ 5/4 for all 0 ≤ s ≤ 2K , and it thus follows from
Theorem 2 thatG(s) ≤ 2K for all 0 ≤ s ≤ 2K , and hence that s∗ ≤ 2K , whenever
ε2(K, ν) is small enough. The conditions of the corollary relating to ν and K are
chosen to ensure this. ��
Remark 3. The parallel with Levins’s theorem is now apparent. If Conditions 1–5
hold, and if K is large enough and ν logK small enough, then there is a propor-
tion π{0} of empty patches, and the remaining patches have populations of compa-
rable sizesKκ+O(K1/2). The rôle of Levins’s extinction rate νL is played byE−1

K ,
incorporating extinction both through catastrophe and through demographic fluc-
tuation, and is close to the catastrophe rate ν so long as ν−1Ke−α1K is small.
The analogue of Levins’s colonization rate cL is thus ργKκ(1 − p0(1; �Kκ�)),
by the formula for π{0}; the product γKκ represents the rate at which migrants
leave an occupied patch, a proportion ρ of these survive to reach a new patch,
and a proportion p0(1; �Kκ�) of migrations into empty patches then fail to result
in subsequent colonization, because of extinction occurring by chance before the
population becomes established.



Convergence of a structured metapopulation model to Levins’s model 21

3. Approximations to the equilibrium colonization rate

We now establish approximations to the solution s∗ of the fixed point equation (1.6)
under Conditions 1–5. Since the dependence on s is important here, we shall carry
it in the notation, but, now and in all that follows, by way of the variable σ = s/K ,
0 ≤ σ ≤ 2; as before, the K–dependence is suppressed, and order terms are to be
understood as being uniform in ρ ≤ 1 and γ ≤ γ0. Except in the next lemma, we
also assume that ν logK ≤ η0.

We begin by recalling that κ(σ) is the solution to the equation

κb(κ)+ ργ σ = κ(d(κ)+ γ ), (3.1)

so that κ(σ) is increasing in σ ; from Conditions 5a and 5b, it thus follows that

3/4 < x− = κ(0) ≤ κ(σ) ≤ κ(2) = x+ < 5/4. (3.2)

It also follows from (3.1) and (2.25) that

dκ(σ)

dσ
= γ

κ(d ′(κ)− b′(κ))+ ργ σ/κ ≤
γ

x−(d ′(x−)− b′(x−)) < 1/2, (3.3)

this last by Condition 5e.
The first Lemma concerns the approximation of p(σ)0 (1; �Kκ(σ)�), defined in

(2.33), with the simpler decreasing function p(σ)0 defined by

(1− p(σ)0 )−1 :=
∑
j≥0

ζ j
j∏
l=1

(
1+ Kργσ

b(0)l

)−1

, (3.4)

where

0 < ζ := (d(0)+ γ )/b(0) ≤ (d(0)+ γ0)/b(0) =: c2 < 1. (3.5)

Note that 0 ≤ p(σ)0 ≤ ζ .

Lemma 4. We have

|p(σ)0 − p(σ)0 (1; �Kκ(σ)�)| = O(K−1)+O(ν logK), (3.6)

uniformly in 0 ≤ σ ≤ 2 and in ν ≥ 0.

Proof. In the following argument, we make frequent use of (2.4), together with the
properties of the functions b and d , and the fact that b(x) + ργ σ/x > d(x) + γ
for all x < κ(σ).

By Lemma 3, we can write

(1− p(σ)0 (1; �Kκ(σ)�))−1 =
�Kκ(σ)�∑
j=1

j−1∏
l=1

al{1+O(ν logK)}, (3.7)
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while, by definition,

(1− p(σ)0 )−1 =
∞∑
j=1

j−1∏
l=1

a′l , (3.8)

where

a′l =
d(0)+ γ

b(0)+Kργσ l−1 <
d(l/K)+ γ

b(l/K)+Kργσ l−1 = al.

It is easy to see that al and a′l are increasing with l, and satisfy

al − a′l ≤
lM

K
, (3.9)

where

M := b(0)−1

{
sup

0≤x≤5/4
d ′(x)+ sup

0≤x≤5/4
|b′(x)|

}
;

furthermore,

a�Kκ(σ)� ≤
d(κ(σ))+ γ

b(κ(σ))+ ργ σ/κ(σ) = 1.

We now compute

�K/2�∑
j=1

j−1∏
l=1

al −
j−1∏
l=1

a′l

 = �K/2�∑
j=2

j−1∑
m=1

(am − a′m)
m−1∏
l=1

al

j−1∏
k=m+1

a′k

≤
�K/2�∑
j=2

j−1∑
m=1

(am − a′m)
j−1∏
l=1
l =m

al =
�K/2�−1∑
m=1

(am − a′m)
�K/2�∑
j=m+1

j−1∏
l=1
l =m

al

≤
�K/2�−1∑
m=1

(am − a′m)
�K/2�∑
j=m+1

c
j−2
0 ≤ 1

1− c0

�K/2�−1∑
m=1

(am − a′m)cm−1
0

≤ M
K
(1− c0)

−3, (3.10)

using (3.9), where

0 < c0 = d(1/2)+ γ0

b(1/2)
< 1,

by Condition 5d. Moreover, we also have

�Kκ(σ)�∑
j=�K/2�+1

j−1∏
l=1

al ≤ cK/2−2
0 K(κ(σ) − η) ≤ (5K/4)cK/2−2

0 , (3.11)
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while

∞∑
j=�K/2�+1

j−1∏
l=1

a′l ≤
ζK/2−1

1− ζ . (3.12)

Using (3.10), (3.11) and (3.12) together with (3.7) and (3.8), and becauseK2cK0 is
bounded, we now see that

|(1− p(σ)0 (1; �Kκ(σ)�))−1 − (1− p(σ)0 )−1| = O(K−1)+O(ν logK),

and the lemma follows. ��

Now, using Lemma 4 together with (2.46) and (2.52), we have

(1− π(σ){0}) = σg(σ )

1+ σg(σ ) {1+O(ε0(K, ν)+K−1 + ν−1K1/2e−α1K)},
(3.13)

where

g(σ ) := Kργ ν−1(1− p(σ)0 ), (3.14)

and hence, from Theorem 2,

G(Kσ) =
(
Kκ(σ)σg(σ )

1+ σg(σ )

)
{1+O(ε2(K, ν))}, (3.15)

provided that ν−1K1/2e−α1K ≤ K−1/2. Thus, ifG′(0) > 1, the positive solution s∗
to s = G(s) is such that σ ∗ := s∗/K satisfies

σ ∗ =
(
κ(σ

∗)σ ∗g(σ ∗)
1+ σ ∗g(σ ∗)

)
{1+O(ε2(K, ν))}. (3.16)

The next lemma shows that omitting the order term when solving this equation
makes little difference to the solution.

Lemma 5. Suppose, in addition to Conditions 1-5, that κ(0)g(0) > 1. Then, when-
ever ν is small enough, the equation

κ(σ)g(σ )

1+ σg(σ ) = 1 (3.17)

has a unique solution σ̂ in 0 < κ(0) − 1/g(0) < σ < 5/4, and |σ ∗ − σ̂ | =
O(ε2(K, ν)) if G′(0) > 1 and Ke−α1K ≤ ν.
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Proof. Write (3.17) as

σ + {1/g(σ )} − κ(σ) = 0, (3.18)

noting that the left hand side is negative for σ = 0 and exceeds 3/4 for σ = 2.
From (3.3), dκ(σ)/dσ < 1/2; also, from (3.4) and (3.5),∣∣∣∣ ddσ

(
1

g(σ )

)∣∣∣∣ ≤ ( ν

ργK

)∑
j≥1

c
j
2

(
ργK

b(0)

) j∑
l=1

1

l
≤ c3ν, (3.19)

for c3 := {b(0)}−1∑
j≥1 c

j
2(1+ log j) <∞. Hence, for c3ν < 1/2, the solution σ̂

to (3.17) in (0, 2) is unique. Similar considerations then show that any σ ∗ satisfying

κ(σ)g(σ )

1+ σg(σ ) = 1+ ε

also satisfies |σ̂ − σ ∗| ≤ c4ε uniformly for all |ε| ≤ ε0 small enough; for instance,
provided that c3ν < 1/8, one can take ε0 = 1

4 ∧ (κ(0)g(0)− 1) and

1/c4 = (1/10)(1− ε0){7(1− ε0)− 4},
as follows by considering the σ–derivative of κ(σ)/{σ + 1/g(σ )}. ��

Hence, if κ(0) and g(0) = Kργ ν−1(1− ζ ) are such that κ(0)g(0) > 1, and if
G′(0) > 1, approximating σ ∗ by the solution σ̂ of (3.17) usually entails little error.
What is more, if κ(0)g(0) is big enough and ε2(K, ν) small enough, thenG′(0) > 1
is automatic. The following theorem collects these facts.

Theorem 3. Suppose that Conditions 1-5 hold, that c3ν < 1/8, and that γ,K
and ν are such that Ke−α1K ≤ ν ≤ η1/ logK and that κ(0)g(0) > 1 + δ0 for
some fixed δ0 > 0, where κ(σ) and g are as in (3.1) and (3.14) respectively. Let σ̂
be the solution to (3.17). Then the differential equations (1.2) have a non–trivial
equilibrium solution π provided that |ε2(K, ν)| ≤ ε0 for some ε0 small enough.
The solution π satisfies

π{0} = π ′{0}{1+O(ε2(K, ν))},

whereπ ′{0} =
(

1
1+σ̂ g(σ̂ )

)
. Furthermore, definingπ ′ := π ′{0} {0}+(1−π ′{0})π0,

whereπ0 is as defined in (2.3) with s = Kσ̂ , we havedT V (π, π ′) = O(γ
√
Kε2(K, ν)).

Proof. First, from (3.15), for s = Kσ , we have∣∣∣∣s−1G(s)

( {1+ σg(σ )}
κ(σ)g(σ )

)
− 1

∣∣∣∣ ≤ φε2(K, ν),

for some φ and for all γ ≤ γ0, 0 < σ ≤ 2 and ν logK ≤ η0. Now, since
κ(0)g(0) > 1+ δ0, it follows that

lim
σ↓0

(
κ(σ)g(σ )

{1+ σg(σ )}

)
> 1+ 1

2δ0 > 1,
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and hence that s−1G(s) > 1 for s small enough, provided that ε2(K, ν) <

δ0/{φ(4 + 2δ0)}. Thus G′(0) > 1 so long as κ(0)g(0) > 1 + δ0 and K and ν
satisfying the conditions of the theorem are such that ε2(K, ν) ≤ ε′2, for some
ε′2 = ε′2(δ0) > 0.

By Corollary 1, (3.6), (3.14) and (3.16), it follows that

π{0} =
(

1

1+ σ ∗g(σ ∗)
)
(1+O(ε2(K, ν))).

Then ∣∣∣∣ dds
{

1

1+ σg(σ )
}∣∣∣∣ = ∣∣∣∣g(σ )+ σg′(σ )(1+ σg(σ ))2

∣∣∣∣
≤ {g(σ )}−1 + σ |g′(σ )|{g(σ )}−2

(σ + 1/g(σ ))2
.

The numerator is clearly bounded in 0 ≤ σ ≤ 2; the denominator is uniformly
bounded away from zero in any small neighbourhood of σ̂ , because σ + 1/g(σ )
has bounded derivative and σ̂ + 1/g(σ̂ ) = κ(σ̂ ) > 3/4. Hence the function 1/(1+
σg(σ )) is uniformly Lipschitz near σ̂ , and the first part follows from Lemma 5.

For the second, we just need the distance between the two distributions π0(σ ∗)

and π0(σ̂ ), which, to the given order, can be estimated using the approximations in
Lemma 1 instead. Setting

B := B(σ) = κ(σ)b(κ(σ))+ ργ σ
κ(σ)(d ′(κ(σ))− b′(κ(σ)))+ ργ σ/κ(σ) ,

note that both B(σ) and κ(σ) have derivative uniformly of order γ near σ̂ , in view
of (3.3), and because both b and d are twice continuously differentiable. Now
dT V (P̂o (λ), P̂o (λ + δ)) ≤ δ{λ + δ}−1, so that this element in the approximat-
ing distribution leads to a distance of order O(γ ε2(K, ν)). However, the mean
shift of �Kκ(σ̂ )�−�Kκ(σ ∗)� is of orderO(Kγ ε2(K, ν)), and dT V (Po (λ),Po (λ+
δ)) is genuinely of order O(δ{λ + δ}−1/2), so that dT V (π0(σ̂ ), π0(σ ∗)) is of order
O{γ√Kε2(K, ν)}, as claimed. ��
Remark 4. The proof of the theorem actually shows that π and π ′ differ only by
orderO(γ ε2(K, ν)), apart from a mean difference of �Kκ(σ̂ )�−�Kκ(σ ∗)� between
the positive parts of the distributions, this being of order O(Kγ ε2(K, ν)). How-
ever, since the means of the positive parts are of order O(K), the relative error of
this difference is also only of order O(γ ε2(K, ν)).

4. Numerical examples and discussion

Equation (3.17) is still rather complicated, with g(σ ) defined in (3.14) and κ(σ) as
in (2.1). However, if γ is small, κ(σ) = 1+O(γ ) uniformly in 0 ≤ σ ≤ 2. Then,
from (3.19),

1/g(σ ) = 1/g(0)+O(ν) = ν/{Kργ (1− ζ )} +O(ν).
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Thus, instead of (3.17), we can replace (3.18) by the formula

σ̂ = 1− ν/{Kργ (1− ζ )} +O(ν + γ ), (4.1)

uniformly in K ≥ K0, Ke−α1K ≤ ν ≤ η1/ logK and Kργ ν−1(1 − ζ ) ≥ δ0, for
any δ0 > 0; here, ζ is as in (3.5). This approximation can readily be computed from
the parameters of the process. Combining it with (3.13), one immediately obtains,
in this approximation

π(σ̂ ){0} ≈ νb(0)

Kργ (b(0)− d(0)− γ ) . (4.2)

For this quantity to be less than 1, one needs

Kργ

νb(0)
(b(0)− d(0)− γ ) > 1. (4.3)

This is the approximate threshold condition κ(0)g(0) > 1 as in Theorem 3, which
reduces at our level of approximation to g(0) > 1, because κ(0) ≈ 1 when γ is
small.

The approximation (4.2) also makes clear that, if this justification of Levins’s
model is to be used, and if πen{0} is not to be close to 0, thenKργ/ν cannot be too
big. This in turn implies a rather small migration rate, especially in view of the fact
that the approximations are proved with ν logK small; the quantityKργ represents
the overall rate of successful migrations from a typical occupied patch, and this can-
not be of larger order than the (small) catastrophe rate ν, without making πen{0}
very small, and thus unoccupied patches very rare.

We now present some numerical results for a simple case which has already
been used in the literature: pure logistic growth, with density-dependence only in
the death rate. Hence, we take b(x) ≡ 1+ r and d(x) = 1+ rx; setting d(0) = 1
merely determines the time scale. For this example, the simplified threshold con-
dition (4.3) becomes

Kργ (r − γ )
ν(1+ r) > 1 (4.4)

which shows the typical feature that, for the metapopulation to persist, the dispersal
rate γ must lie in an intermediate region.

The first thing that we explored was how the exact threshold conditionG′(0) > 1
depends on the parameters, and how well it can be approximated by simpler con-
ditions such as (4.4). Now, from (1.7), the threshold condition can be written as
γ I1 > 1/ρ, where

Ij := Ij (γ, r) :=
∫ ∞

0
E
(j)Z

(0)
t dt.

The quantities Ij satisfy the system of linear equations

Ij = {λj Ij+1 + µjIj−1 + j}/{λj + µj + ν}, j ≥ 1, (4.5)
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Fig. 1. Level curves G′(0) = 1 in the (γ, r)–plane. The different solid lines, from top to
bottom, correspond to ρ = 0.2, 0.4, 0.6, 0.8, 1; the dashed line is the curve obtained from
(4.4) for ρ = 0.2. Other parameter values are K = 100 and ν = 0.01. The lower figure is a
detail of the upper one.

with I0 = 0, where, as in (2.2) with s = 0, λj = j (1 + r) and µj = j (1 +
r(j/K)+ γ ). Thus

Ij ≤ Ij+1 ≤ Ij + {(qj − pj )(2+ r(1+ j/K)+ γ )}−1, (4.6)

where pj = λj/(λj +µj ), qj = µj/(λj +µj ) and the second inequality follows
from a simple random walk comparison. This enables lower and upper estimates
I
(M)
j of Ij to be determined, 1 ≤ j ≤ M , by solving the finite set of linear equa-

tions (4.5) in which 1 ≤ j ≤ M − 1, together with anM–equation in which IM+1
is replaced by either the lower or the upper bound from (4.6). ForM large enough,
the lower and upper estimates are very close to each other, so that the computation
of γ I1 is reliable.

The curves in Fig. 1 show the persistence region in the (γ, r)–plane; they rep-
resent the 1/ρ contours of the function γ I (γ, r) for different values of ρ ≤ 1. The
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overall shape of the level curves shows that persistence occurs only for intermedi-
ate values of γ (unless ρ = 1), as has already been found for this metapopulation
model when the catastrophe rate ν = 0 [6].

It can also be seen that the approximation (only the one for ρ = 0.2 is shown)
Kργ (r−γ )
ν(1+r) = 1 works very well when γ is very close to 0, but quantitavely differs

from (4.4) for larger γ . Indeed, it is clear that the approximation (4.4) requires
r > γ , while, if ρ is close to 1, a metapopulation may also persist with r < γ . Note
that Condition 5a is violated if r ≤ 4γ , so that in fact none of the approximations
in this paper are justified unless r > 4γ ; however, the conditions imposed in this
paper are not necessary for the exact conditionG′(0) > 1 for persistence to be true.

We now turn to the properties of the equilibrium distribution πen in the per-
sistence region. We begin by calculating π(σ) for any given σ . Once again, for
any M , we can determine upper and lower bounds for the probabilities π(σ){j},
0 ≤ j ≤ M . First, we calculate bounds for the mean occupation times in states
1 ≤ j ≤ M between visits to the state 0, by solving the equations

λj−1xj−1 − (λj + µj + ν)xj + µj+1xj+1 = 0, 1 ≤ j ≤ M − 1,

with x0 = (Kργ σ)−1, taking the upper boundary condition

λM−1xM−1 = (λM + µM + ν)xM
for the lower bound x(1), and taking

λM−1xM−1 = (µM + ν)xM
for the upper bound x(2); these equations correspond to processes which replace
jumps from M to M + 1 by jumps to 0 and M , respectively. The quantities λj
and µj are as in (2.2). The sum T (1) := ∑M

j=0 x
(1)
j is then a lower bound for the

mean recurrence time for the state 0, and

T (2) :=
M∑
j=0

x
(2)
j + x(2)M λM/(µM − λM)

is an upper bound, derived from a simple random walk comparison. Hence it follows
that

x
(1)
j /T

(2) ≤ π(σ){j} ≤ x(2)j /T (1) for 0 ≤ j ≤ M.

By choosingM large enough, the upper and lower bounds can be brought as close
as desired.

The value of the positive solution s∗ to the equation s = G(s) is now found
using the recursion

sn+1 = G(sn) =
∑
j≥0

jπ(sn/K){j}.
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Table 1. Computation of some quantities of interest when the values ofK , γ and ν are those
listed in the first three columns. In all cases, r = 1 and ρ = 0.4. The columns headed (3.17)
and (4.1) refer to the corresponding approximations to σ ∗; those headed (3.13) and (4.2)
refer to approximations to πen{0}.
K γ ν σ ∗ (3.17) (4.1) πen{0} (3.13) (4.2)
25 0.016 0.04 0.225 0.493 0.492 0.707 0.69 0.508
50 0.004 0.02 0.361 0.502 0.498 0.586 0.579 0.502

100 0.001 0.01 0.425 0.502 0.499 0.543 0.539 0.501
200 0.00025 0.005 0.459 0.501 0.5 0.522 0.521 0.5
400 6.25× 10−5 0.0025 0.478 0.501 0.5 0.512 0.511 0.5
800 1.56× 10−5 0.00125 0.488 0.5 0.5 0.506 0.506 0.5

The inequality above shows that G(Kσ) ≥ ∑M
j=0 jx

(1)
j /T

(2); a simple random
walk comparison then shows that

G(Kσ) ≤
M∑
j=0

jx
(2)
j /T

(1)

+Mx(2)M {λM/(µM − λM)}
{

1+ Kργσ

M{2+ r(1+M/K)+ γ }
}
.

The value of M can also be chosen to ensure that the differences between these
lower and upper bounds for G(Kσ) are small enough, for all 0 ≤ σ ≤ 2. Using
these numerical procedures, we were then able to compare σ ∗ and some properties
of πen = π(σ ∗) with the corresponding approximations developed in this paper.

We started (see Table 1) by progressively increasing K , while decreasing ν
and γ , so that πen{0} would roughly remain constant. First of all (Figs. 2 and 3),
we show the distribution πen compared to the distributions π ′ and π ′′ presented in
Corollary 1. It can be seen that, already for K = 100 (Fig. 2), the Poisson approx-
imation is remarkable: π ′′ is almost indistinguishable from π ′, and both closely
resemble πen. For K = 800 (Fig. 3), the three distributions are almost coincident.

We then considered in more detail how well πen{0} and σ ∗ are approximated.
In addition to Table 1, in whichK , ν and γ all vary in such a way that ν logK → 0
andK →∞ (as required for our approximations to become exact), while keeping
πen{0} roughly constant, we give three other tables. In Table 4, K is kept constant
at 100, while ν decreases and γ also, to keep πen{0} roughly constant; here, com-
paring with Table 1, it can be seen that the value ofK has little effect on the quality
of the approximations for K ≥ 100. In Table 4, ν decreases but γ is kept fixed, so
that now πen{0} decreases fast, but once again the quality of the approximations is
unaffected; and in Table 4, K is increased and ν decreased. In each table, we start
from the values on the third line of Table 1.

We can see that approximation (3.13) works remarkably well in all cases con-
sidered; indeed, we do not show computations of the approximation stated in The-
orem 2, since it yields negligible improvements over (3.13) at a higher computa-
tional cost. Both of these approximations are computed with σ = σ ∗ = K−1s∗,
where s∗ is the exact solution to the fixed point equation G(s) = s. In contrast,
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Fig. 2. Distributions πen (labelled pi), π ′ (pi’) and π ′′ (pi”) for the parameter values in the
third line of Table 1. The value πen{0} ≈ 0.543 is out of the scale.
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Fig. 3. Distributions πen (labelled pi), π ′ (pi’) and π ′′ (pi”) for the parameter values in the
last line of Table 1. The value πen{0} ≈ 0.506 is out of the scale.

formula (4.2), which uses the approximation σ̂ from Lemma 5 and also (4.1) in
its derivation, approaches the correct value πen{0} rather fast in Table 1, where the
conditions K →∞ and γ, ν → 0 required for these approximations are satisfied,
but only slowly in Table 4, whereK is held fixed; in all cases, (3.13) performs much
better.

That (4.2) performs less well is not surprising, inasmuch as the tables show that
the approximation of the equilibrium value σ ∗ obtained by solving (3.17) is not
entirely satisfactory, and generally gives little improvement over simply comput-
ing (4.1). This can also be seen by looking at the approximation of the functionG,
which we plot for some of the combinations of parameter values given in Table 1.
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Table 2. Computation of some quantities of interest with decreasing γ and ν. In all cases,
r = 1 and ρ = 0.4.

K γ ν σ ∗ (3.17) (4.1) πen{0} (3.13) (4.2)
100 0.001 0.01 0.425 0.502 0.499 0.543 0.539 0.501
100 0.0005 0.005 0.446 0.501 0.5 0.532 0.528 0.5
100 0.00025 0.0025 0.457 0.501 0.5 0.527 0.522 0.5
100 0.000125 0.00125 0.463 0.5 0.5 0.524 0.519 0.5
100 6.25× 10−5 0.000625 0.466 0.5 0.5 0.523 0.518 0.5

Table 3. Computation of some quantities of interest with decreasing ν. In all cases, r = 1
and ρ = 0.4.

K γ ν σ ∗ (3.17) (4.1) πen{0} (3.13) (4.2)
100 0.001 0.01 0.425 0.502 0.499 0.543 0.539 0.501
100 0.001 0.005 0.701 0.752 0.75 0.264 0.261 0.25
100 0.001 0.0025 0.84 0.876 0.875 0.13 0.128 0.125
100 0.001 0.00125 0.909 0.938 0.937 0.0648 0.0636 0.0626
100 0.001 0.000625 0.944 0.969 0.969 0.0323 0.0317 0.0313

Table 4. Computation of some quantities of interest with increasingK and decreasing ν. In
all cases, r = 1 and ρ = 0.4.

K γ ν σ ∗ (3.17) (4.1) πen{0} (3.13) (4.2)
100 0.001 0.01 0.425 0.502 0.499 0.543 0.539 0.501
200 0.001 0.005 0.838 0.877 0.875 0.128 0.127 0.125
400 0.001 0.0025 0.949 0.97 0.969 0.0305 0.0304 0.0313
800 0.001 0.00125 0.981 0.992 0.992 0.0072 0.00719 0.00782

The approximation ofG(s) given in Theorem 2 works reasonably well (left part of
Fig. 4) with the parameter values used in Fig. 2 (moderately large K , moderately
small γ and ν), very well (right part of Fig. 4) when they are all made more extreme
as in Fig. 3, and also (left part of Fig. 5) when γ is increased relative to the value
for the lower part of Fig. 4; but rather poorly (right part of Fig. 5) whenK is large,
but γ and ν are only moderately small. The approximation (3.15) cannot do any
better, since it is based on substituting the approximation (3.13) for 1− π(σ){0} in
Theorem 2.

Expressed in terms of the result proved in Lemma 5, both K−1/2 and ν logK
must become small to guarantee that σ̂ approaches σ ∗, and the difference between
the curves in the two parts of Fig. 5 highlights the effect of increasing ν. In terms
of the underlying rationale of the approximations, the error arises from the fact that
the distributions π(σ) not only have a point mass at 0, in addition to the Poisson-like
peak around Kκ(σ), but also a decreasing part close to 0, as can clearly be seen in
Fig. 2 and also to some extent in Fig. 3. If one sums πen{i} up to J s , where J s is
the minimal j such that πen{j +1} > πen{j}, one obtains a value rather larger than
π(σ̂ ){0}, even if the difference is still of order O(ν logK). We found empirically
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Fig. 4. The functionG(s), the approximation given in Theorem 2 (labelled appr. Thm. 2.6),
the approximation (3.15) (appr. (3.15)) and the approximation (4.7) (appr. SUMS), together
with the bisectrix. The points of crossing of the several curves with the bisectrix correspond
to the values of σ ∗ and its approximations, listed in Table 1. Left, the parameters are as in
Fig. 2; right, as in Fig. 3.
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Fig. 5. The function G(s) and its approximations, as in Fig. 4. Left, the parameter values
are as in the last line of Table 4; right, they are the same, except that ν = 0.01.

that, by replacing the approximationG(s) ≈ Kκ(σ)(1−π(σ){0}) of Theorem 2 by

G(s) ≈ Kκ(σ)
1−

J s∑
j=0

π(σ){j}
 , (4.7)

we consistently obtained a much better approximation to G.

Of course, computing the sum
J s∑
j=0
π(σ){j} involves first finding the stationary

distribution π(σ), so that any computational saving in using approximations has
been lost, whereas the qualitative advantages of the more accurate approximations
over those given in this paper would seem to be slight. Thus it may be of interest to
develop accurate approximations to

∑
i≤J π(σ){i} that do not require computation

of π(σ). An approximation of this kind would be helpful when K is large, but ν
and γ are only moderately small: for such parameters, the other approximations
are very good, but that of σ ∗ is not.

To conclude, we remark that Casagrandi and Gatto [6] present several approx-
imations for a model very similar to the one considered here, based on the a priori
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assumption that the distribution of pi(t) is Poisson or negative binomial at each
time t . Their main interest was in studying the parameter region in which the per-
sistence condition G′(0) > 1 holds; it appears that, at least in this respect, their
approximations perform rather well. It would be interesting to study the relations
between their heuristically derived results and ours; and to see whether one can
exploit the Poisson approximation shown in Theorem 1 to improve the approxima-
tion of the region G′(0) > 1.
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