Improved decoding of affine-variety codes

Chiara Marcolla,
Emmanuela Orsini, Massimiliano Sala

University of Trento, Italy
Department of Mathematics

Trento, 2012
Affine-variety codes: decoding and small weight

1. Affine-variety codes

2. Decoding of affine-variety codes
Affine-variety codes

Let \mathbb{F}_q be a finite field.
Let $I \in \mathbb{F}_q[X] = \mathbb{F}_q[x_1, \ldots, x_m]$ be a zero-dimensional and radical ideal. Let $\mathcal{V}(I) = \mathcal{P} = \{P_1, P_2, \ldots, P_n\}$ its variety.

Definition

Let $P_0 = (\overline{x}_{0,1}, \ldots, \overline{x}_{0,m}) \in (\mathbb{F}_q)^m \setminus \mathcal{V}(I)$.
We say that P_0 is an optimal ghost point if there is a $1 \leq j \leq m$ such that the hyperplane $x_j = \overline{x}_{0,j}$ does not intersect the variety.

We call evaluation map

$$ev_P : R = \mathbb{F}_q[x_1, \ldots, x_m]/I \longrightarrow (\mathbb{F}_q)^n$$

$$ev_P(f) = (f(P_1), \ldots, f(P_n)).$$
Affine-variety codes

Let \mathbb{F}_q be a finite field. Let $I \subseteq \mathbb{F}_q[X] = \mathbb{F}_q[x_1, \ldots, x_m]$ be a zero-dimensional and radical ideal. Let $\mathcal{V}(I) = \mathcal{P} = \{P_1, P_2, \ldots, P_n\}$ its variety.

Definition

Let $P_0 = (\overline{x}_{0,1}, \ldots, \overline{x}_{0,m}) \in (\mathbb{F}_q)^m \setminus \mathcal{V}(I)$. We say that P_0 is an optimal ghost point if there is a $1 \leq j \leq m$ such that the hyperplane $x_j = \overline{x}_{0,j}$ does not intersect the variety.

We call evaluation map

$$ev_{\mathcal{P}} : R = \mathbb{F}_q[x_1, \ldots, x_m]/I \longrightarrow (\mathbb{F}_q)^n$$

$$ev_{\mathcal{P}}(f) = (f(P_1), \ldots, f(P_n)).$$
Affine-variety codes

Let $L \subseteq R$ be an \mathbb{F}_q vector subspace of R with dimension r.

Definition

The **affine-variety code** $C(I, L)$ is the image $\text{ev}_P(L)$ and the affine-variety code

$$C^\perp(I, L) = \{ c \in (\mathbb{F}_q)^n \mid c \cdot \text{ev}_P(f) = 0 \text{ and } f \in L \}$$

is its dual code

Let $L = \langle b_1, \ldots, b_r \rangle$, then the parity - check matrix for $C^\perp(I, L)$ is

$$H = \begin{pmatrix}
 b_1(P_1) & b_1(P_2) & \ldots & b_1(P_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 b_r(P_1) & b_r(P_2) & \ldots & b_r(P_n)
\end{pmatrix}$$
Hermitian code

We consider the **Hermitian curve** χ over \mathbb{F}_{q^2}

$$\chi^{q+1} = y^q + y$$

This curve has $n = q^3$ rational points that we call $\mathcal{P} = \{P_1, \ldots, P_n\}$.

Let m be a natural number, then we define

$$\mathcal{B}_{m,q} = \{x^r y^s \mid qr + (q + 1)s \leq m, \ 0 \leq s \leq q - 1, \ 0 \leq r \leq q^2 - 1\}.$$

So we consider

$$E_m = \langle \text{ev}_{\mathcal{P}}(f) \ | \ f \in \mathcal{B}_{m,q} \rangle.$$

Therefore

$$C_m = (E_m)^\perp = \{c \in (\mathbb{F}_q)^n \mid c \cdot \text{ev}_{\mathcal{P}}(f) = 0 \ \text{and} \ f \in \mathcal{B}_{m,q}\}$$

is called **Hermitian code**. The parity-check matrix H of $C(m, q)$ is

$$H = \begin{pmatrix}
 f_1(P_1) & \ldots & f_1(P_n) \\
 \vdots & \ddots & \vdots \\
 f_i(P_1) & \ldots & f_i(P_n)
\end{pmatrix} \quad \text{where} \ f_j \in \mathcal{B}_{m,q}.$$
We consider the Hermitian curve χ over \mathbb{F}_{q^2}

$$\chi^{q+1} = y^q + y$$

This curve has $n = q^3$ rational points that we call $\mathcal{P} = \{P_1, \ldots, P_n\}$. Let m be a natural number, then we define

$$\mathcal{B}_{m,q} = \{x^r y^s \mid qr + (q+1)s \leq m, \ 0 \leq s \leq q-1, \ 0 \leq r \leq q^2 - 1\}.$$

So we consider

$$E_m = \langle \text{ev}_\mathcal{P}(f) \mid f \in \mathcal{B}_{m,q} \rangle.$$

Therefore

$$C_m = (E_m)\perp = \{c \in (\mathbb{F}_q)^n \mid c \cdot \text{ev}_\mathcal{P}(f) = 0 \text{ and } f \in \mathcal{B}_{m,q}\}$$

is called Hermitian code. The parity-check matrix H of $C(m, q)$ is

$$H = \begin{pmatrix}
 f_1(P_1) & \ldots & f_1(P_n) \\
 \vdots & \ddots & \vdots \\
 f_i(P_1) & \ldots & f_i(P_n)
\end{pmatrix} \quad \text{where } f_j \in \mathcal{B}_{m,q}.$$
We consider the Hermitian curve \mathcal{X} over \mathbb{F}_{q^2}

$$x^{q+1} = y^q + y$$

This curve has $n = q^3$ rational points that we call $\mathcal{P} = \{P_1, \ldots, P_n\}$. Let m be a natural number, then we define

$$\mathcal{B}_{m,q} = \{x^r y^s \mid qr + (q + 1)s \leq m, \ 0 \leq s \leq q - 1, \ 0 \leq r \leq q^2 - 1\}.$$

So we consider

$$E_m = \langle ev_{\mathcal{P}}(f) \text{ such that } f \in \mathcal{B}_{m,q} \rangle.$$

Therefore

$$C_m = (E_m)^\perp = \{c \in (\mathbb{F}_q)^n \mid c \cdot ev_{\mathcal{P}}(f) = 0 \text{ and } f \in \mathcal{B}_{m,q}\}$$

is called Hermitian code. The parity-check matrix H of $C(m, q)$ is

$$H = \begin{pmatrix}
 f_1(P_1) & \ldots & f_1(P_n) \\
 \vdots & \ddots & \vdots \\
 f_i(P_1) & \ldots & f_i(P_n)
\end{pmatrix}$$

where $f_j \in \mathcal{B}_{m,q}$.
Affine-variety codes: decoding and small weights

1. Affine-variety codes

2. Decoding of affine-variety codes
Let $J \subset \mathbb{K}[S, A_L, \ldots, A_1, T] = \mathbb{K}[S, A, T]$ be a zero-dimensional ideal, with

$$S = \{s_1, \ldots, s_N\}, \quad \mathcal{A}_j = \{a_{j,1}, \ldots, a_{j,m}\}, \quad \mathcal{T} = \{t_1, \ldots, t_K\}.$$

Definition

We say that J is a **weakly stratified ideal** if

$$\Sigma_{j,i}^{i,l} \neq \emptyset \quad \text{for } 1 \leq l \leq \eta(j, i), \ 1 \leq i \leq m, \ 1 \leq j \leq L.$$

where $\eta(j, i)$ is the maximum number of extensions at any level $\Sigma_{j,i}^{i,l}$ and

$$\Sigma_{j,i}^{i,l} = \{(\bar{S}, \bar{A}_L, \ldots, \bar{A}_{j+1}, \bar{a}_{j,1}, \ldots, \bar{a}_{j,i-1}) \in \mathcal{V}(J_{(j,i-1)}) \mid \exists \text{ exactly } l \text{ distinct values } \{\bar{a}_{j,i}^{(1)}, \ldots, \bar{a}_{j,i}^{(l)}\} \text{ s.t. } (\bar{S}, \bar{A}_L, \ldots, \bar{A}_{j+1}, \bar{a}_{j,1}, \ldots, \bar{a}_{j,i-1}, \bar{a}_{j,i}^{(\ell)}) \text{ is in } \mathcal{V}(J_{(j,i)}), \ 1 \leq \ell \leq l\}, \quad i = 2, \ldots, m, \ j = 1, \ldots, L - 1.$$
Example \((L = 2, m = 1)\)

Let \(S = \{s_1\}\), \(A_1 = \{a_{1,1}\}\), \(A_2 = \{a_{2,1}\}\) and \(T = \{t_1\}\). Let \(J = \mathcal{I}(Z)\) with \(Z = \{(0, 0, 0, 0), (0, 1, 1, 0), (0, 2, 2, 0)\}\).

\[
\mathcal{V}(J_S) = \{0\}, \quad \mathcal{V}(J_{S,a_{2,1}}) = \{(0, 0), (0, 1), (0, 2)\}, \\
\mathcal{V}(J_{S,a_{2,1},a_{1,1}}) = \{(0, 0, 0), (0, 1, 1), (0, 2, 2)\}.
\]

Let us consider the projection

\[
\pi_2 : \mathcal{V}(J_{S,a_{2,1}}) \to \mathcal{V}(J_S).
\]

Then \(|\pi_2^{-1}(\{0\})| = 3\) and we have \(\sum_{3}^{2,1} = \{0\}\). So \(\eta(2, 1) = 3\).

But \(\sum_{1}^{2,1} = \emptyset, \sum_{2}^{2,1} = \emptyset\) and \(J\) is not a weakly stratified ideal.
Example \((L = 2, m = 1)\)

Let \(S = \{s_1\}\), \(A_1 = \{a_{1,1}\}\), \(A_2 = \{a_{2,1}\}\) and \(T = \{t_1\}\). Let \(J = \mathcal{I}(Z)\) with \(Z = \{(0, 0, 0, 0), (0, 1, 1, 0), (0, 2, 2, 0)\}\).

\[
\mathcal{V}(J_S) = \{0\}, \quad \mathcal{V}(J_{S,a_{2,1}}) = \{(0, 0), (0, 1), (0, 2)\},
\]

\[
\mathcal{V}(J_{S,a_{2,1},a_{1,1}}) = \{(0, 0, 0), (0, 1, 1), (0, 2, 2)\}.
\]

Let us consider the projection

\[
\pi_2 : \mathcal{V}(J_{S,a_{2,1}}) \to \mathcal{V}(J_S).
\]

Then \(|\pi_2^{-1}(\{0\})| = 3\) and we have \(\sum_3^{2,1} = \{0\}\). So \(\eta(2, 1) = 3\).

But \(\sum_1^{2,1} = \emptyset, \sum_2^{2,1} = \emptyset\) and \(J\) is not a weakly stratified ideal.
Example \((L = 2, m = 1)\)

Let \(S = \{s_1\}, A_1 = \{a_{1,1}\}, A_2 = \{a_{2,1}\}\) and \(T = \{t_1\}\). Let \(J = \mathcal{I}(Z)\) with \(Z = \{(0, 0, 0, 0), (0, 1, 1, 0), (0, 2, 2, 0)\}\).

\[
\mathcal{V}(J_S) = \{0\}, \quad \mathcal{V}(J_{S,a_1}) = \{(0, 0), (0, 1), (0, 2)\},
\]

\[
\mathcal{V}(J_{S,a_2,a_1}) = \{(0, 0, 0), (0, 1, 1), (0, 2, 2)\}.
\]

Let us consider the projection

\[
\pi_2 : \mathcal{V}(J_{S,a_2}) \rightarrow \mathcal{V}(J_S).
\]

Then \(|\pi_2^{-1}(\{0\})| = 3\) and we have \(\sum_{3}^{2,1} = \{0\}\). So \(\eta(2, 1) = 3\).

But \(\sum_{1}^{2,1} = \emptyset, \sum_{2}^{2,1} = \emptyset\) and \(J\) is not a weakly stratified ideal.
Example \((L = 3, m = 1)\)

Let \(S = \{s_1\}, A_1 = \{a_{1,1}\}, A_2 = \{a_{2,1}\}, A_3 = \{a_{3,1}\}, T = \{t_1\}.

Let \(J = \mathcal{I}(Z) \subset \mathbb{C}[s_1, a_{3,1}, a_{2,1}, a_{1,1}, t_1]\) with

\[
Z = \{(0, 1, 0, 0, 0), (0, 2, 1, 1, 2), (2, 2, 2, 0, 0)\}.
\]

The order \(<\) is \(s_1 < a_{3,1} < a_{2,1} < a_{1,1} < t_1\) and the varieties are

\[
\mathcal{V}(J_S) = \{0, 2\}, \quad \mathcal{V}(J_{S,a_{3,1}}) = \{(0, 1), (0, 2), (2, 2)\},
\]

\[
\mathcal{V}(J_{S,a_{3,1},a_{2,1}}) = \{(0, 1, 0), (0, 2, 1), (2, 2, 2)\},
\]

\[
\mathcal{V}(J_{S,a_{3,1},a_{2,1},a_{1,1}}) = \{(0, 1, 0, 0), (0, 2, 1, 1), (2, 2, 2, 0)\}.
\]
Example \((L = 3, m = 1)\)

Let us consider the projection

\[
\pi_3 : \mathcal{V}(\mathcal{J}_S, a_{3,1}) \to \mathcal{V}(\mathcal{J}_S).
\]

where

\[
\mathcal{V}(\mathcal{J}_S) = \{0, 2\},
\mathcal{V}(\mathcal{J}_S, a_{3,1}) = \{(0, 1), (0, 2), (2, 2)\}.
\]
Example \((L = 3, m = 1)\)

Let us consider the projection

\[\pi_3 : V(J_S, a_{3,1}) \rightarrow V(J_S). \]

where

\[V(J_S) = \{0, 2\}, \]
\[V(J_S, a_{3,1}) = \{(0, 1), (0, 2), (2, 2)\}. \]

Then

\[|\pi_3^{-1}(\{0\})| = 2 \quad \text{and} \quad |\pi_3^{-1}(\{2\})| = 1. \]

So \(\sum_{2}^{3,1} = \{0\}.\)
Example \((L = 3, m = 1)\)

Let us consider the projection

\[\pi_3 : \mathcal{V}(\mathcal{J}_S, a_{3,1}) \to \mathcal{V}(\mathcal{J}_S). \]

where

\[\mathcal{V}(\mathcal{J}_S) = \{0, 2\}, \]
\[\mathcal{V}(\mathcal{J}_S, a_{3,1}) = \{(0, 1), (0, 2), (2, 2)\}. \]

Then

\[|\pi_3^{-1}(\{0\})| = 2 \quad \text{and} \quad |\pi_3^{-1}(\{2\})| = 1. \]

So \(\sum_{2}^{3,1} = \{0\}, \sum_{1}^{3,1} = \{2\}. \)
Example ($L = 3, m = 1$)

Let us consider the projection

$$\pi_2 : \mathcal{V}(J_S, a_3, 1, a_2, 1) \rightarrow \mathcal{V}(J_S, a_3, 1).$$

where

$$\mathcal{V}(J_S, a_3, 1) = \{(0, 1), (0, 2), (2, 2)\}$$
$$\mathcal{V}(J_S, a_3, 1, a_2, 1) = \{(0, 1, 0), (0, 2, 1), (2, 2, 2)\}.$$

Then

$$\sum_{1}^{2,1} = \{(0, 1), (0, 2), (2, 2)\} \text{ and } \eta(2, 1) = 1.$$
Example \((L = 3, m = 1)\)

Let us consider the projection

\[\pi_1 : \mathcal{V}(J_{S}, a_{3,1}, a_{2,1}, a_{1,1}) \to \mathcal{V}(J_{S}, a_{3,1}, a_{2,1}). \]

where

\[\mathcal{V}(J_{(2,1)}) = \{(0, 1, 0), (0, 2, 1), (2, 2, 2)\}, \]
\[\mathcal{V}(J_{(1,1)}) = \{(0, 1, 0, 0), (0, 2, 1, 1), (2, 2, 2, 0)\}. \]

Then

\[\sum_{1,1}^{1,1} = \{(0, 1, 0), (0, 2, 1), (2, 2, 2)\} \quad \text{and} \quad \eta(1, 1) = 1. \]

So \(J\) is a weakly stratified.
Stuffed ideal

Let \(\mathcal{R} = \mathbb{K}[S, A_L, \ldots, A_{j+1}, a_{j,1}, \ldots, a_{j,i-1}] \). Let \(K \subset \mathcal{R}[a_{j,i}] \) be a zero-dimensional ideal and let \(P_h \in \Sigma_{j,i}^h \) where \(1 \leq h \leq \delta - 1 \), then exist \(g \in G = GB(K) \) such that

\[
g(P_h, a_{j,i}) = a_{j,i}^{\delta} + \alpha_{j,i-1} a_{j,i}^{-1} + \ldots + \alpha_0 \in \mathbb{K}[a_{j,i}]
\]

where \(\alpha_i \in \mathbb{K} \) and \(\delta = \eta(j, i) \).

Definition

We say that \(K \) is stuffed if for any \(1 \leq h \leq \delta - 1 \) and for any \(P_h \in \Sigma_{j,i}^h \), the equation

\[
g(P_h, a_{j,i}) = 0
\]

has \(h \) distinct solutions in \(\mathbb{K} \).
Let $C = C^\perp(I, L)$ be an affine-variety code.
Let P_0 be a ghost point and let $t_i = \min\{t, |\{\pi_i(P) | P \in \mathcal{V}(I) \cup P_0\}|\}$
where $\pi_i(\bar{x}_1, \ldots, \bar{x}_m) = \bar{x}_i$.
We consider

$$\mathcal{L}_i(S, x_1, \ldots, x_i) = x_i^{t_i} + a_{t_i-1}x_i^{t_i-1} + \ldots + a_0,$$

where $S = \{s_1, \ldots, s_r\}$ and $a_j \in \mathbb{F}_q[S, x_1, \ldots, x_{i-1}]$.
Let e be an error s.t. $w(e) = \mu \leq t$, $s \in (\mathbb{F}_q)^r$ is the corresponding syndrome and $(\bar{x}_{1,1}, \ldots, \bar{x}_{1,m}), \ldots, (\bar{x}_{\mu,1}, \ldots, \bar{x}_{\mu,m})$ are error locations.
Let $x^j = (\bar{x}_{j,1}, \ldots, \bar{x}_{j,i-1})$. Then, if the roots of

$$\mathcal{L}_i(s, x^j, x_i)$$

are $\{\bar{x}_{h,i} | \bar{x}_h^j = \bar{x}_i^j, 1 \leq h \leq \mu, \text{ when } \mu = t \text{ or } 0 \leq h \leq \mu, \text{ when } \mu \leq t - 1\}$,
then $\{\mathcal{L}_i\}_{1 \leq i \leq m}$ is a set of multi-dimensional general error locator polynomials for C.
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1,1)$ is the ghost point and Hermitian points are

- $P_1 = (0,0)$,
- $P_2 = (0,1)$,
- $P_3 = (1,\alpha)$,
- $P_4 = (1,\alpha^2)$,
- $P_5 = (\alpha,\alpha)$,
- $P_6 = (\alpha,\alpha^2)$,
- $P_7 = (\alpha^2,\alpha)$,
- $P_8 = (\alpha^2,\alpha^2)$.

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.
Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points . The syndrome is .
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

\[
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),
\]

\[
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
\]

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is $s = (0, 1, 1, 1, 0)$.

\[
P_x(S, x) = x^2 + f(S) x
\]

\[
P_{xy}(S, x, y) = y^2 + f_1(S) y + f_2(S) x + f_3(S)
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

\[P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \]
\[P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2). \]

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$. Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is

$s = (0, 1, 1, 1, 0)$.

\[P_x(s, x) = x^2 + x = x(x - 1) \]
\[P_{xy}(S, x, y) = y^2 + f_1(S)y + f_2(S)x + f_3(S) \]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$$
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \\
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
$$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is $s = (0, 1, 1, 1, 0)$.

$$
\begin{align*}
\mathcal{P}_x(s, x) &= x^2 + x = x(x - 1) \\
\mathcal{P}_{xy}(s, 0, y) &= y^2 + y = y(y - 1)
\end{align*}
$$
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

\[
\begin{align*}
P_1 &= (0, 0), & P_2 &= (0, 1), & P_3 &= (1, \alpha), & P_4 &= (1, \alpha^2), \\
P_5 &= (\alpha, \alpha), & P_6 &= (\alpha, \alpha^2), & P_7 &= (\alpha^2, \alpha), & P_8 &= (\alpha^2, \alpha^2).
\end{align*}
\]

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is $s = (0, 1, 1, 1, 0)$.

\[
\begin{align*}
P_x(s, x) &= x^2 + x = x(x - 1) \\
P_{xy}(s, 0, y) &= y^2 + y = y(y - 1)
\end{align*}
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

\[
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \\
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
\]

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.
Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is $s = (0, 1, 1, 1, 0)$.

\[
P_x(s, x) = x^2 + x = x(x - 1) \\
P_{xy}(s, 0, y) = y^2 + y = y(y - 1)
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

\[
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \\
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
\]

Let C be the Hermitian code with $B_{m, 2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is

$s = (0, 1, 1, 1, 0)$.

\[
\begin{align*}
P_x(s, x) & = x^2 + x = x(x - 1) \\
P_{xy}(s, 1, y) & = y^2 + y = y(y - 1)
\end{align*}
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$$P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),$$

$$P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).$$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is

$s = (0, 1, 1, 1, 0)$.

$$P_x(s, x) = x^2 + x = x(x - 1) \quad \implies (1, 0) \notin \chi$$

$$P_{xy}(s, 1, y) = y^2 + y = y(y - 1)$$
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

- $P_1 = (0, 0)$,
- $P_2 = (0, 1)$,
- $P_3 = (1, \alpha)$,
- $P_4 = (1, \alpha^2)$,
- $P_5 = (\alpha, \alpha)$,
- $P_6 = (\alpha, \alpha^2)$,
- $P_7 = (\alpha^2, \alpha)$,
- $P_8 = (\alpha^2, \alpha^2)$.

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $\mathcal{P}_x(s_1, \ldots, s_5, x)$ and $\mathcal{P}_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is $s = (0, 1, 1, 1, 0)$.

$$
\mathcal{P}_x(s, x) = x^2 + x = x(x - 1) \quad \implies (1, 0) \notin \chi \\
\mathcal{P}_{xy}(s, 1, y) = y^2 + y = y(y - 1) \quad \implies (1, 1) \notin \chi
$$
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),\n
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).

Let C be the Hermitian code with $\mathcal{B}_{m,2} = \{1, x, y, x^2, xy\}$.

Let $\mathcal{P}_x(s_1, \ldots, s_5, x)$ and $\mathcal{P}_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is $s = (\alpha + 1, 0, \alpha, 0, 0)$.

\[
\mathcal{P}_x(S, x) = x^2 + f(S) x \\
\mathcal{P}_{xy}(S, x, y) = y^2 + f_1(S) y + f_2(S) x + f_3(S)
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

- $P_1 = (0, 0)$,
- $P_2 = (0, 1)$,
- $P_3 = (1, \alpha)$,
- $P_4 = (1, \alpha^2)$,
- $P_5 = (\alpha, \alpha)$,
- $P_6 = (\alpha, \alpha^2)$,
- $P_7 = (\alpha^2, \alpha)$,
- $P_8 = (\alpha^2, \alpha^2)$.

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $\mathcal{P}_x(s_1, \ldots, s_5, x)$ and $\mathcal{P}_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is

$s = (\alpha + 1, 0, \alpha, 0, 0)$.

- $\mathcal{P}_x(s, x) = x^2 + x + 1 = (x - \alpha)(x - \alpha^2)$
- $\mathcal{P}_{xy}(S, x, y) = y^2 + f_1(S)y + f_2(S)x + f_3(S)$
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$$
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \quad P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
$$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is

$$
s = (\alpha + 1, 0, \alpha, 0, 0).
$$

\[
P_x(s, x) = x^2 + x + 1 = (x - \alpha)(x - \alpha^2) \\
P_{xy}(s, \alpha, y) = y^2 + y + 1 = (y - \alpha)(y - \alpha^2)
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$$P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),$$

$$P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).$$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1, \ldots, s_5, x)$ and $P_{xy}(s_1, \ldots, s_5, x, y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is

$s = (\alpha + 1, 0, \alpha, 0, 0)$.

$$P_x(s, x) = x^2 + x + 1 = (x - \alpha)(x - \alpha^2)$$

$$P_{xy}(s, \alpha, y) = y^2 + y + 1 = (y - \alpha)(y - \alpha^2)$$
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

\[
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \\
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
\]

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $P_x(s_1,\ldots,s_5,x)$ and $P_{xy}(s_1,\ldots,s_5,x,y)$ be the polynomials in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is

\[
s = (\alpha + 1, 0, \alpha, 0, 0).
\]

\[
P_x(s,x) = x^2 + x + 1 = (x - \alpha)(x - \alpha^2)
\]

\[
P_{xy}(s,\alpha,y) = y^2 + y + 1 = (y - \alpha)(y - \alpha^2)
\]
Example (Hermitian code \(q = 2 \))

Let \(x^3 = y^2 + y \) be the Hermitian curve over \(\mathbb{F}_4 \).

The \(P_0 = (1, 1) \) is the ghost point and Hermitian points are
\[
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),
\]
\[
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
\]

Let \(C \) be the Hermitian code with \(B_{m,2} = \{ 1, x, y, x^2, xy \} \).

Let \(\mathcal{P}_x(s_1, \ldots, s_5, x) \) and \(\mathcal{P}_{xy}(s_1, \ldots, s_5, x, y) \) be the weakly locators in the Gröbner basis \(G \).

Two errors occur at the points \(P_6 \) and \(P_7 \). The syndrome is
\[
s = (\alpha + 1, 0, \alpha, 0, 0).
\]

\[
\mathcal{P}_x(s, x) = x^2 + x + 1 = (x - \alpha)(x - \alpha^2)
\]
\[
\mathcal{P}_{xy}(s, \alpha^2, y) = y^2 + y + 1 = (y - \alpha)(y - \alpha^2)
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$$
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \\
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).$$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$. Let $\mathcal{L}_x(s_1, \ldots, s_5, x)$ and $\mathcal{L}_{xy}(s_1, \ldots, s_5, x, y)$ be the locators in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is

$$s = (\alpha + 1, 0, \alpha, 0, 0).$$

$$
\mathcal{L}_x(S, x) = x^2 + a(S) x + b(S) \\
\mathcal{L}_{xy}(S, x, y) = y^2 + A(S) y + B(S) x + C(S)
$$

We stuff the ideal I.

Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),$

$P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.
Let $L_x(s_1, \ldots, s_5, x)$ and $L_{xy}(s_1, \ldots, s_5, x, y)$ be the locators in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is

$s = (\alpha + 1, 0, \alpha, 0, 0).$

$L_x(s, x) = x^2 + x + 1 = (x - \alpha)(x - \alpha^2)$

$L_{xy}(S, x, y) = y^2 + A(S)y + B(S)x + C(S)$
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

\[
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \quad P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
\]

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.

Let $L_x(s_1, \ldots, s_5, x)$ and $L_{xy}(s_1, \ldots, s_5, x, y)$ be the locators in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is $s = (\alpha + 1, 0, \alpha, 0, 0)$.

\[
L_x(s, x) = x^2 + x + 1 = (x - \alpha)(x - \alpha^2)
\]
\[
L_{xy}(s, \alpha, y) = y^2 + \alpha = (y - \alpha^2)^2
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),$

$P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$. Let $\mathcal{L}_x(s_1, \ldots, s_5, x)$ and $\mathcal{L}_{xy}(s_1, \ldots, s_5, x, y)$ be the locators in the Gröbner basis G.

Two errors occur at the points P_6 and P_7. The syndrome is $s = (\alpha + 1, 0, \alpha, 0, 0)$.

\[
\begin{align*}
\mathcal{L}_x(s, x) &= x^2 + x + 1 = (x - \alpha)(x - \alpha^2) \\
\mathcal{L}_{xy}(s, \alpha^2, y) &= y^2 + \alpha^2 = (y - \alpha)^2
\end{align*}
\]
Example (Hermitian code $q = 2$)

Let $x^3 = y^2 + y$ be the Hermitian curve over \mathbb{F}_4.

The $P_0 = (1, 1)$ is the ghost point and Hermitian points are

$$P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2),$$
$$P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).$$

Let C be the Hermitian code with $B_{m,2} = \{1, x, y, x^2, xy\}$.
Let $\mathcal{L}_x(s_1, \ldots, s_5, x)$ and $\mathcal{L}_{xy}(s_1, \ldots, s_5, x, y)$ be the locators in the Gröbner basis G.

Two errors occur at the points P_1 and P_2. The syndrome is $s = (0, 1, 1, 1, 0)$.

$$\mathcal{L}_x(s, x) = x^2$$
$$\mathcal{L}_{xy}(S, x, y) = y^2 + A(S)y + B(S)x + C(S)$$
Example (Hermitian code \(q = 2 \))

Let \(x^3 = y^2 + y \) be the Hermitian curve over \(\mathbb{F}_4 \).

The \(P_0 = (1, 1) \) is the ghost point and Hermitian points are

\[
P_1 = (0, 0), \quad P_2 = (0, 1), \quad P_3 = (1, \alpha), \quad P_4 = (1, \alpha^2), \\
P_5 = (\alpha, \alpha), \quad P_6 = (\alpha, \alpha^2), \quad P_7 = (\alpha^2, \alpha), \quad P_8 = (\alpha^2, \alpha^2).
\]

Let \(C \) be the Hermitian code with \(B_{m,2} = \{1, x, y, x^2, xy\} \).
Let \(L_x(s_1, \ldots, s_5, x) \) and \(L_{xy}(s_1, \ldots, s_5, x, y) \) be the locators in the Gröbner basis \(G \).

Two errors occur at the points \(P_1 \) and \(P_2 \). The syndrome is

\[
\mathbf{s} = (0, 1, 1, 1, 0).
\]

\[
L_x(s, x) = x^2 \\
L_{xy}(s, 0, y) = y^2 + y = y(y - 1)
\]
Thank you for your attention!