Complete permutation polynomials of monomial type

Giovanni Zini

(joint works with D. Bartoli, M. Giulietti and L. Quoos)
(based on the work of thesis of E. Franzè)

Università di Perugia

Workshop BunnyTN 7

Trento, 16 novembre 2016
Outline

1. Permutation polynomials: an introduction
Outline

1. Permutation polynomials: an introduction
2. Monomial complete permutation polynomials: our results
Outline

1. Permutation polynomials: an introduction

2. Monomial complete permutation polynomials: our results

3. Particular cases: degree 8 and 9 in characteristic 2 and 3
Some definitions

\(\mathbb{F}_\ell: \) finite field with \(\ell = p^h \) elements

Plane curve \(C: F(X, Y, T) = 0 \)

\(\mathbb{F}_\ell \)-rational point of \(C \): \(P = (x, y, z) \in PG(2, \ell) \) such that \(F(x, y, z) = 0 \)

Definition

\(f(x) \in \mathbb{F}_\ell[x] \) is a permutation polynomial (shortly, a PP) of \(\mathbb{F}_\ell \)
if \(x \mapsto f(x) \) is a bijection of \(\mathbb{F}_\ell \) (iff \(x \mapsto f(x) \) is injective over \(\mathbb{F}_\ell \))

Definition

\(f(x) \in \mathbb{F}_\ell[x] \) is a complete permutation polynomial (shortly, a CPP) of \(\mathbb{F}_\ell \)
if both \(f(x) \) and \(f(x) + x \) are PPs of \(\mathbb{F}_\ell \)

Definition

\(f(x) \in \mathbb{F}_\ell[x] \) is an exceptional polynomial over \(\mathbb{F}_\ell \)
if \(f(x) \) is a PP of an infinite number of extensions of \(\mathbb{F}_\ell \)
CPPs and Cryptography

Definition

\(f(x) \in \mathbb{F}_\ell[x] \) is a permutation polynomial (shortly, a PP) of \(\mathbb{F}_\ell \) if \(x \mapsto f(x) \) is a bijection of \(\mathbb{F}_\ell \) (iff \(x \mapsto f(x) \) is injective over \(\mathbb{F}_\ell \)).

\(f(x) \in \mathbb{F}_\ell[x] \) is a complete permutation polynomial (shortly, a CPP) of \(\mathbb{F}_\ell \) if both \(f(x) \) and \(f(x) + x \) are PPs of \(\mathbb{F}_\ell \)

Definition

\(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \) Boolean function is

- **bent** if \(x \mapsto f(x + a) + f(x) \) is balanced \(\forall a \in \mathbb{F}_2^n \) (\(\Leftrightarrow f \) is PNF)
- **bent-negabent** if both \(x \mapsto f(x + a) + f(x) \) and \(x \mapsto f(x + a) + f(x) + Tr(ax) \) are balanced \(\forall a \in \mathbb{F}_2^n \)

LINK:

any PP of \(\mathbb{F}_{2^n} \) gives rise to a bent function over \(\mathbb{F}_2^n \)

any CPP of \(\mathbb{F}_{2^n} \) gives rise to a bent-negabent function over \(\mathbb{F}_2^n \)
Link with curves

\[f(x) \in \mathbb{F}_\ell[x] \quad \mapsto \quad C_f : \frac{f(x) - f(y)}{x - y} = 0 \]

\(f(x) \) is a PP of \(\mathbb{F}_\ell \) \(\iff \) \(C_f \) has no affine \(\mathbb{F}_\ell \)-rational points \((a, b)\) with \(a \neq b \)
Link with curves

\[f(x) \in \mathbb{F}_\ell[x] \implies C_f : \frac{f(x) - f(y)}{x - y} = 0 \]

\(f(x) \) is a PP of \(\mathbb{F}_\ell \iff C_f \) has no affine \(\mathbb{F}_\ell \)-rational points \((a, b)\) with \(a \neq b \)

Theorem

\(C \) absolutely irreducible curve of degree \(d \) defined over \(\mathbb{F}_\ell \)

The number \(N_\ell \) of \(\mathbb{F}_\ell \)-rational points satisfies

\[N_\ell \geq \ell + 1 - (d - 1)(d - 2)\sqrt{\ell} \]

\[\downarrow \]

for \(\ell \) large enough:

\(f(x) \) is a PP of \(\mathbb{F}_\ell \)

\[\downarrow \]

\(C_f \) has no \(\mathbb{F}_\ell \)-rat. abs. irr. components distinct from \(X = Y \)
Conversely:

Theorem (Cohen 1970)

\[C_f \text{ contains no } \mathbb{F}_\ell\text{-rational abs. irr. component distinct from } \ X = Y \]

\[\Downarrow \]

\[f(x) \text{ is an exceptional polynomial over } \mathbb{F}_\ell \]
Conversely:

Theorem (Cohen 1970)

\[\mathcal{C}_f \text{ contains no } \mathbb{F}_\ell\text{-rational abs. irr. component distinct from } X = Y \]

\[\downarrow \]

\[f(x) \text{ is an exceptional polynomial over } \mathbb{F}_\ell \]

It is not difficult to construct PP without any prescribed structure

Remark

\[f(x) \text{ is a PP of } \mathbb{F}_\ell \iff \alpha f(\gamma x + \delta) + \beta \text{ is a PP of } \mathbb{F}_\ell \ (\alpha, \beta, \gamma, \delta \in \mathbb{F}_\ell, \alpha, \gamma \neq 0) \]

PP-equivalence:

\[f(x) \approx \alpha f(\gamma x + \delta) + \beta, \quad \alpha, \beta, \gamma, \delta \in \mathbb{F}_\ell, \alpha, \gamma \neq 0 \]
The monomial case

- $b^{-1}x^d$ is a PP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$
- $b^{-1}x^d$ is a CPP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_ℓ
The monomial case

- $b^{-1}x^d$ is a PP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$
- $b^{-1}x^d$ is a CPP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_ℓ

$f_b(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ has been studied as CPP of \mathbb{F}_{q^n} for $n = 2, 3, 4$ and partially for $n = 6$
The monomial case

- $b^{-1}x^d$ is a PP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$
- $b^{-1}x^d$ is a CPP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_ℓ

$f_b(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ has been studied as CPP of \mathbb{F}_{q^n} for $n = 2, 3, 4$ and partially for $n = 6$

EXPLICIT LIST of all $b \in \mathbb{F}_{q^n}$ such that f_b is a CPP of \mathbb{F}_{q^n}, in the cases:

- $n = 7$, for arbitrary q (E. Franzè, Master Thesis)
- $n = 6$, for arbitrary q (Bartoli-Giulietti-Z., FFA 2016)
The monomial case

- $b^{-1}x^d$ is a PP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$
- $b^{-1}x^d$ is a CPP of $\mathbb{F}_\ell \iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_ℓ

$f_b(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ has been studied as CPP of \mathbb{F}_{q^n} for $n = 2, 3, 4$ and partially for $n = 6$

EXPLICIT LIST of all $b \in \mathbb{F}_{q^n}$ such that f_b is a CPP of \mathbb{F}_{q^n}, in the cases:
- $n = 7$, for arbitrary q (E. Franzè, Master Thesis)
- $n = 6$, for arbitrary q (Bartoli-Giulietti-Z., FFA 2016)

Conjecture (Wu-Li-Helleseth-Zhang 2015)

If $n + 1$ is prime, $n + 1 \neq p$, $\gcd(n + 1, q^2 - 1) = 1$, then:

there exist CPPs of \mathbb{F}_{q^n} of type $b^{-1}x^{\frac{q^n-1}{q-1}+1}$
The monomial case

- $b^{-1}x^d$ is a PP of \mathbb{F}_ℓ $\iff (d, \ell - 1) = 1$
- $b^{-1}x^d$ is a CPP of \mathbb{F}_ℓ $\iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_ℓ

$f_b(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ has been studied as CPP of \mathbb{F}_{q^n} for $n = 2, 3, 4$ and partially for $n = 6$

GOAL: to characterize for any n the $b \in \mathbb{F}_{q^n}$ such that $f_b = b^{-1}x^{\frac{q^n-1}{q-1}+1}$ is a CPP of \mathbb{F}_{q^n}
The monomial case

- $b^{-1}x^d$ is a PP of \mathbb{F}_ℓ $\iff (d, \ell - 1) = 1$
- $b^{-1}x^d$ is a CPP of \mathbb{F}_ℓ $\iff (d, \ell - 1) = 1$ and $x^d + bx$ is a PP of \mathbb{F}_ℓ

$f_b(x) = b^{-1}x^{\frac{q^n-1}{q-1}}+1$ has been studied as CPP of \mathbb{F}_{q^n} for $n = 2, 3, 4$ and partially for $n = 6$

GOAL: to characterize for any n the $b \in \mathbb{F}_{q^n}$ such that $f_b = b^{-1}x^{\frac{q^n-1}{q-1}}+1$ is a CPP of \mathbb{F}_{q^n}

WE OBTAIN: complete classification for $n^4 < q = p^m$ with the exception of the cases

- $n + 1 = p^r$, with $r > 1$
- $n + 1 = p^r(p^r - 1)/2$, with $p \in \{2, 3\}$, $r > 1$, $\gcd(r, 2m) = 1$
$b \in \mathbb{F}_{q^n} \iff A_i(b) := \sum_{0 \leq j_1 < j_2 < \ldots < j_i \leq n-1} b^{q^{j_1} + q^{j_2} + \ldots + q^{j_i}} \in \mathbb{F}_q$

i-th elementary symmetrical polynomial in $b, b^q, \ldots, b^{q^{n-1}}$
\[b \in \mathbb{F}_{q^n} \implies A_i(b) := \sum_{0 \leq j_1 < j_2 < \ldots < j_i \leq n-1} b^{q^{j_1} + q^{j_2} + \ldots + q^{j_i}} \in \mathbb{F}_q \]

\textit{i-th elementary symmetrical polynomial in } b, b^q, \ldots, b^{q^{n-1}}

Proposition (Wu-Li-Helleseth-Zhang 2013)

If \(n^4 < q \), then:

\[b^{-1} x^{\frac{q^n-1}{q-1}} + 1 \]

is a CPP of \(\mathbb{F}_{q^n} \) \iff \(x^{n+1} + A_1(b)x^n + \cdots + A_n(b)x \)

is an exceptional polynomial over \(\mathbb{F}_q \).
Let \(b \in \mathbb{F}_{q^n} \) imply \(A_i(b) := \sum_{0 \leq j_1 < j_2 < \ldots < j_i \leq n-1} b^{q^{j_1} + q^{j_2} + \ldots + q^{j_i}} \in \mathbb{F}_q \)

\(i \)-th elementary symmetrical polynomial in \(b, b^q, \ldots, b^{q^{n-1}} \)

Proposition (Wu-Li-Helleseth-Zhang 2013)

If \(n^4 < q \), then:

\[
\begin{align*}
&b^{-1}x \left(\frac{q^n}{q-1} \right) + 1 \\
is a CPP of \mathbb{F}_{q^n} &\iff \gcd(n + 1, q - 1) = 1, \\
&x^{n+1} + A_1(b)x^n + \cdots + A_n(b)x \\
is an exceptional polynomial over \mathbb{F}_q
\end{align*}
\]

Remark

\[
\begin{align*}
b^{-1}x \left(\frac{q^n}{q-1} \right) + 1 &\text{ is a CPP of } \mathbb{F}_{q^n} \iff b^{-q^i}x \left(\frac{q^n}{q-1} \right) + 1 &\text{ is a CPP of } \mathbb{F}_{q^n}
\end{align*}
\]
Proposition (Wu-Li-Helleseth-Zhang 2013)

If \(n^4 < q \), then:

\[
b^{-1} x \frac{q^n-1}{q-1} + 1 \quad \iff \quad \gcd(n + 1, q - 1) = 1,
\]

is a CPP of \(\mathbb{F}_{q^n} \) if and only if

\[
x^{n+1} + A_1(b)x^n + \cdots + A_n(b)x^n+1 + A_1(b)x^n + \cdots + A_n(b)x
\]

is an exceptional polynomial over \(\mathbb{F}_q \).

Definition

Let

\[
g(x) = x^{n+1} + \lambda_1 x^n + \cdots + \lambda_{n-1} x^2 + \lambda_n x \in \mathbb{F}_q[x], \ \lambda_n \neq 0,
\]

be a PP of \(\mathbb{F}_q \).

\(g(x) \) is good if the roots of

\[
v_g(x) := \frac{g(-x)}{-x} = x^n - \lambda_1 x^{n-1} + \cdots + (-1)^{n-1} \lambda_{n-1} x + (-1)^n \lambda_n
\]

form a unique orbit under the Frobenius map \(z \mapsto z^q \).
Proposition

If \(n^4 < q \), then:

\[
b \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q \text{ is such that } b^{-1}x^{\frac{q^n-1}{q-1}} + 1 \text{ is a CPP of } \mathbb{F}_{q^n} \iff b \text{ is a root of } v_g(x) = \frac{g(-x)}{-x}
\]

for some \(g \) good exceptional pol.

of degree \(n + 1 \) over \(\mathbb{F}_q \)

with \(g(0) = 0 \) and \(g'(0) \neq 0 \)

Definition

An exceptional polynomial \(g \) is decomposable if \(g(x) = g_1(g_2(x)) \) with \(g_1, g_2 \) exceptional pol., \(\deg(g_1), \deg(g_2) > 1 \)
Proposition

If $n^4 < q$, then:

$b \in \mathbb{F}_{q^n} \setminus \mathbb{F}_q$ is such that $b^{-1} x^{\frac{q^n-1}{q-1}} + 1$ is a CPP of \mathbb{F}_{q^n}

b is a root of $v_g(x) = \frac{g(-x)}{-x}$

for some g

good exceptional pol.

of degree $n + 1$ over \mathbb{F}_q

with $g(0) = 0$ and $g'(0) \neq 0$

Definition

An exceptional polynomial g is decomposable if

$g(x) = g_1(g_2(x))$ with g_1, g_2 exceptional pol., $\text{deg}(g_1), \text{deg}(g_2) > 1$

Proposition

g good exceptional polynomial \implies g indecomposable
Idea

In order to classify all CPPs of type \(f(x) = b^{-1} x^{\frac{q^n-1}{q-1}} + 1 \)
take all the good indecomposable exceptional polynomials
and determine the roots of \(v_g(x) \)
Idea

In order to classify all CPPs of type $f(x) = b^{-1}x^{\frac{q^n-1}{q-1}+1}$
take all the good indecomposable exceptional polynomials
and determine the roots of $v_g(x)$

Unfortunately:

the complete classification of indecomposable exceptional polynomials
is not known!
Remark

\(f(x) \) is a good PP of \(\mathbb{F}_\ell \) \iff \(\alpha f(\gamma x) + \beta \) is a good PP of \(\mathbb{F}_\ell \) (\(\alpha, \beta, \gamma \in \mathbb{F}_\ell, \alpha, \gamma \neq 0 \))

CPP-equivalence:

\[
 f(x) \approx \alpha f(\gamma x) + \beta, \quad \alpha, \beta, \gamma \in \mathbb{F}_\ell, \alpha, \gamma \neq 0
\]
Remark

\[f(x) \text{ is a good PP of } \mathbb{F}_\ell \iff \alpha f(\gamma x) + \beta \text{ is a good PP of } \mathbb{F}_\ell \ (\alpha, \beta, \gamma \in \mathbb{F}_\ell, \alpha, \gamma \neq 0) \]

CPP-equivalence:

\[f(x) \approx \alpha f(\gamma x) + \beta, \quad \alpha, \beta, \gamma \in \mathbb{F}_\ell, \alpha, \gamma \neq 0 \]

\[\downarrow \]

We use the known partial classification of indecomposable exceptional polynomial, up to CPP-equivalence.
Classification of indecomposable exceptional polynomials, up to CPP-equivalence

A) $n + 1 \nmid q - 1$ is a prime different from p and

A1) \(g(t) = (t + e)^{n+1} - e^{n+1}, \ e \in \mathbb{F}_q \)

A2) \(g(t) = D_{n+1}(t + e, a) - D_{n+1}(e, a), \)
\[a, e \in \mathbb{F}_q, \ a \neq 0, \ n + 1 \nmid q^2 - 1 \]
\[D_{n+1}(t, a) \quad \text{Dickson polynomial of degree } n + 1 \]

B) $n + 1 = p$ and \(g(t) = (t + e) \left((t + e)^{\frac{p-1}{r}} - a \right)^r - e \left(e^{\frac{p-1}{r}} - a \right)^r \)
\[r \mid p - 1, \ a, e \in \mathbb{F}_q, \ a^{r(q-1)/(p-1)} \neq 1. \]

C) $n + 1 = s(s - 1)/2$
\[p \in \{2, 3\}, \ q = p^m, \ r > 1, \ s = p^r > 3 \ and \ (r, 2m) = 1. \]

D) $n + 1 = p^r$ with $r > 1$.
Case A1

\(n + 1 \) is prime, \(n + 1 \neq p \), \(n + 1 \) does not divide \(q - 1 \)

\(\zeta_{n+1} := (n+1)\)-th primitive root of unity

Proposition

Let \(e \in \mathbb{F}_q^* \). Then

\[
g(t) = (t + e)^{n+1} - e^{n+1}
\]

is good exceptional over \(\mathbb{F}_q \) \iff \(\text{ord}_{n+1}(q) = n \)

If \(\text{ord}_{n+1}(q) = n \), then for each \(e \in \mathbb{F}_q^* \) and \(i \in \{1, \ldots, n\} \)

\[
(e(\zeta_{n+1}^i - 1))^{-1} \times \frac{q^n-1}{q-1} + 1
\]

is a CPP of \(\mathbb{F}_{q^n} \)
Case A2

$n + 1$ is prime, $n + 1 \neq p$, $n + 1$ does not divide $q^2 - 1$

(Dickson polynomials)

$$D_{n+1}(t, a) = \sum_{k=0}^{n/2} \frac{n+1}{n+1-k} \binom{n+1-k}{k} (-a)^k t^{n+1-2k}$$

Proposition

$$g(x) = D_{n+1}(x + e, a) - D_{n+1}(e, a), \ e, a \in \mathbb{F}_q, \ a \neq 0, \ D_{n+1}'(e, a) \neq 0,$$

is good exceptional over \mathbb{F}_q if and only if one of the following cases occurs:

i) $4 \mid n$ and $\text{ord}_{n+1}(q) = n$

ii) $4 \nmid n$ and

$$\begin{cases} e^2 - 4a \notin \square_q, & \text{ord}_{n+1}(q) = n/2 \\ e^2 - 4a \in \square_q, & \text{ord}_{n+1}(q) = n \end{cases}$$
Case B

\[n + 1 = p \]

\[\mathbb{N}_{\mathbb{F}_q/\mathbb{F}_p} : \text{the norm map } \mathbb{F}_q \rightarrow \mathbb{F}_p, \ x \mapsto x^{1+p+p^2+\cdots+q/p}. \]

Theorem

Let \(n^4 < q \). Then

\[b^{-1} x^{\frac{q^n-1}{q-1}+1} \]

is a CPP of \(\mathbb{F}_{q^n} \)

\[\Downarrow \]

for some \(r \mid n \), one of the following cases occurs:

i) \(b \in \{ \zeta_{q-1}^{i} \mid \gcd(r, i) = 1 \} \)

ii) \(b \in \{ (v_0 - \lambda u_0)^r - e \mid \lambda \in \mathbb{F}_p^*, \ e, u_0^{p-1} \in \mathbb{F}_q^*, \ u_0^r \neq 1, \quad v_0^r = e, \ \text{ord} \left(\mathbb{N}_{\mathbb{F}_q/\mathbb{F}_p} \left(\frac{u_0^{p-1}}{e^{(p-1)/r}} \right) \right) = p - 1 \} \)
\[n + 1 = 8, \ p = 2 \]

\[F(x) \in \mathbb{F}_q[x] \text{ monic of degree } 8 \]

Proposition

\(F(x) \) is good exceptional over \(\mathbb{F}_q \) if and only if

\[F(x) = x^8 + ax^4 + bx^2 + cx \text{ is additive and} \]

\[x^7 + ax^3 + bx + c \text{ is irreducible over } \mathbb{F}_q. \]
\[n + 1 = 9, \quad p = 3 \]

No classification is known!

When is
\[F(x) = x^9 + A_1x^8 + A_2x^7 + A_3x^6 + A_4x^5 + A_5x^4 + A_6x^3 + A_7x^2 + A_8x \]
good exceptional?

Theorem (Cohen 1970)
\[C_F \text{ contains no } \mathbb{F}_\ell\text{-rational component distinct from } X = Y \]
\[\downarrow \]
\[F(x) \text{ is an exceptional polynomial over } \mathbb{F}_\ell \]

- Determine when
\[C_F := \frac{F(x) - F(y)}{x - y} = 0 \]

has only non-rational components (other than \(x - y \))
- Study when the roots of \(v_F(x) \) are in a unique orbit under Frobenius
Proposition

\[F(x) \text{ is good exceptional over } \mathbb{F}_q \text{ if and only if} \]

i) \[F(x) = x^9 + A_6x^3 + A_8x \]
and \[x^8 + A_6x^2 + A_8 \] irreducible over \(\mathbb{F}_q \);

ii) \[F(x) = x^9 + A_3x^6 + A_4x^5 + A_5x^4 + \left(A_2^3 + A_3 \frac{A_5}{A_3} + \frac{A_5^2}{A_4} \right)x^3 \]
\[+ \left(2A_3A_4 + 2\frac{A_5^3}{A_4^2} \right)x^2 + \left(2A_3A_5 + A_4^2 + 2\frac{A_5^4}{A_3^3} \right)x, \]

1. \(A_4 \neq 0 \),
2. the polynomial \[x^8 + 2A_3x^2 + 2A_4 \in \mathbb{F}_q[x] \] has no roots in \(\mathbb{F}_{q^4} \);

iii) \[F(x) = x^9 + A_2x^7 + A_3x^6 + A_5x^4 + \left(A_2^3 + \frac{A_3A_5}{A_2} \right)x^3 + \]
\[\left(2A_2A_5 + 2\frac{A_3^3}{A_2^2} \right)x^2 + \left(A_2^4 + A_3A_5 + \frac{A_5^2}{A_2} + \frac{A_3^3}{A_2^2} \right)x, \]

1. \(2A_2 \) is not a square in \(\mathbb{F}_q \),
2. the polynomial \(v_F(x) = F(-x)/(-x) \) is irreducible over \(\mathbb{F}_q \).
Thank you for your attention!