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Abstract

The sum rules technique is introduced in the context of the interaction of
atoms with the electromagnetic radiation and used to study rigorous bounds
to the electric dipole polarizability of the hydrogen atom.

(pacs: 32.60.+i; 35.10.Di)

(ICSU-AB: 32.60S; 35.10.D)

riassunto: La tecnica delle regole di somma viene introdotta nel contesto
dell’interazione degli atomi con la radiazione elettromagnetica ed utilizzata
per studiare dei limiti rigorosi per la polarizzabilià elettrica di dipolo dell’atomo
di idrogeno.



1 Introduction

Hydrogen atom is traditionally a privileged system to be used for pedagogical
introduction to the classical or quantum description of many microscopic
phenomena. The response of an atom to a static electric field is one of these
phenomena and represents a first example of linear response of a system to
an external probe leading to the concept of electric polarizability. A classical
estimate of this quantity can be obtained approximating the effect of the
external electric field by a rigid shift of the electron cloud and would give
(e.g. ref.[1]) α = R3 where R is the radius of the uniform electron density
(gaussian units are used).

In quantum mechanics the calculation of α is connected to the change
of the energy levels of the hydrogen caused by the uniform electric field of
strength E and is called Stark effect. The general framework to evaluate these
changes is the (stationary) perturbation theory applied to the Hamiltonian

H(E) = H0 + H ′(E) = H0 − E Dz =
p2

2me

− e2

r
+ e E z , (1)

where the polar axis and the electric field E are in the positive z-direction, e is
the absolute value of the electron charge, me the electron mass, Dz = −ez the
induced electric dipole moment and r the relative coordinate of the electron
with respect to the atomic nucleus [2]. The (negative) lower order correction
to the energy of the hydrogen ground state is quadratic in the perturbative
electric field and defines the electric polarizability

lim
E→0

〈E|H0 + H ′(E) |E〉 = E0 −
1

2
α E2 , (2)

where |E〉 is the ground state of H(E), and E0 = −e2/2a0 is the ground state
energy value of the unperturbed Hamiltonian H0 (a0 ≡ Bohr radius).

The polarizability α can be equivalently defined from the induced electric
dipole moment as in the classical case, namely

α = lim
E→0

〈E|Dz|E〉
E

. (3)

Both eqs.(2) and (3) lead to the well know perturbative expression (we
remind that 〈0|Dz|0〉 = 0 because of parity invariance)

α = 2
∑
n6=0

|〈n|Dz|0〉|2

En − E0

. (4)

The explicit evaluation of eq.(4) involves the sum over the continuous part of
the spectrum which accounts for approximately one-third of the value of α [3].
An elegant alternative solution for eq.(4) has been proposed by Dalgarno and
Lewis in 1955 [4] by looking for an operator F which fulfills the requirement
〈n|Dz|0〉/(En − E0) = 〈n|F |0〉 (for a detailed discussion and a complete list
of references on the solution of eq.(4) see [3, 5]). The exact (analytic) value
of α results

α =
9

2
a3

0 . (5)
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However in order to compare the previous result with the classical prediction
α = R3 one has to note that the hard sphere radius R cannot be identi-
fied with the Bohr radius. Assuming a hard distribution which reproduces
the root-mean-square radius of the hydrogen atom (〈r2〉 = 3a2

0) one obtains
R2 = 5a2

0, and α = 53/2a3
0 which is (approximately) a factor 2.5 larger than

the exact result. The remaining difference can be attributed (from a semi-
classical point of view) to the deformation induced on the electron cloud by
the external electric field.

Aim of the present paper is the introduction of the sum rule technique in
the context of the interaction of the (hydrogen) atom with the electromag-
netic radiation, a path which has also hystorical basis. However, in order to
give a feeling of the power of the method, a specific problem will be investi-
gated: the electric polarizability of the hydrogen atom. Since the solution of
that problem is already well known within alternative and simple approaches
(namely perturbative and variational), one can appreciate the peculiarity of
the sum rule technique. Many aspects of the paper have a general validity
and are not restricted to hydrogen which repesents an illustrative example.
In order to make clear the distinction of what is true in general and what is
special to the hydrogen atom, each section is splitted in two parts: General
Results and Application to the hydrogen.

2 Electric dipole strength distribution, pho-

toabsorption cross section and sum rules

2.1 General Results

Given a system governed by a Hamiltonian H0, the action of a perturbing
external probe coupled to the system by the operator Dz can be generally
written in terms of the so-called response or strength distribution function of
the system

RD(ω) =
∞∑

n=0

|〈n|Dz|0〉|2 δ(ω − ωn0) , (6)

where |n〉 and En = h̄ωn are the eigenstates and eigenvalues of the Hamilto-
nian H0, (En0 = h̄ωn0 = En − E0), and h̄ω is the energy transferred to the
system. If the state |n〉 is in the continuum, the sum must be replaced by an
integral together with an appropriate density of states.

Interpreting the operator Dz as the electric dipole moment induced by
an external electromagnetic field, eq.(6) describes the strength distribution
of the system to an external radiation of frequency ω in the long- wavelength
approximation where the wavelength of the incident light is assumed to be
large compared with the linear dimensions of the absorbing system. The
δ-function in eq.(6) reflects the frequency condition originally postulated by
Bohr h̄ω = En − E0 (energy conservation). The total photoabsorption cross
section (in long-wavelength or dipole approximation) can be written in terms
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of the distribution function (6) in a rather simple way [6]

σD(ω) =
4π2

h̄c
ω

∞∑
n=0

|〈n|Dz|0〉|2 δ(ω − ωn0) , (7)

where the polarization vector of the external field has been assumed in the
z-direction [7].

Particularly interesting are the integral properties (or moments) of the
strength distribution, defined by

mp =
∫ ∞

0
dω (h̄ω)p RD(ω) =

∞∑
n=0

|〈n|Dz|0〉|2 Ep
n0 , (8)

where p is an integer number. In fact, the use of the closure property

∞∑
n=0

|n〉〈n| = 1 (9)

leads to
mp = 〈0|D†

z (H0 − E0)
p Dz |0〉 . (10)

The application of the closure property has washed out all the complications
of the excited states and left one with quantities which are connected with
basic features of the dynamics of the system (ground state and Hamiltonian)
and of the kind of reaction (coupling operator Dz).

Relation (10), when p ≥ 0, is called sum rule (SR) of order p for the
operator Dz (for reviews see refs. [8]). For Hermitian operators (as in the
dipole case) the evaluation of a SR can be easier because one can write

m0 =
∫

dω RD(ω) =
1

2
〈0| {Dz, Dz} |0〉

m1 =
∫

dω h̄ω RD(ω) =
1

2
〈0| [Dz, [H0, Dz]] |0〉

m2 =
∫

dω (h̄ω)2 RD(ω) =
1

2
〈0| {[Dz, H0] , [H0, Dz]} |0〉

m3 =
∫

dω(h̄ω)3RD(ω) =
1

2
〈0| [[Dz, H0] , [H0, [H0, Dz]]] |0〉

etc... (11)

The odd sum rules involve only commutators [ , ] , while the even ones involve
anticommutators { , } as well. The presence of commutators simplifies the
calculation for systems with many degrees of freedom like the many-body
systems.

As an additional remark one notices that the moments mp of the dipole
strength distribution can be related to the moments of the dipole cross section
σD

p =
∫

dω(h̄ω)pσD(ω), one gets (cfr. eq.(7) and (8))

σD
p =

4π2

h̄2c
mp+1 . (12)
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2.2 Application to the hydrogen

The hydrogen is a particularly simple and instructive example where the cal-
culation of the sum rules introduced in the previous section can be performed
rather easily not only for the odd moments which depend on commutators,
but for the even moments also, although they require the evaluation of anti-
commutators.

Let us now calculate the first few sum rules for the dipole operator:

Dz =
∑
k

ek zk = −e (ze − zp) = −e z (13)

where z is the relative distance (in the direction of the external field) of the
electron with respect to the proton.

i) m0 gives the total integrated response function

m0 =
1

2
〈0| {Dz, Dz} |0〉 = e2 〈0|z2|0〉 = e2a2

0 , (14)

and is related to the rms radius of the hydrogen (3 〈z2〉 = 〈r2〉 = 3 a2
0);

ii) m1 is probably the most popular SR and is known as the Thomas-Reiche-
Kuhn sum rule [9]. It relates the total integrated photoabsorption cross sec-
tion (in long-wavelength approximation) to the classical radius of the electron
r0 = e2/mec. In fact one has

m1 =
1

2
〈0| [Dz, [H0, Dz]] |0〉 =

1

2
e2〈0|

[
z,

[
p2

2me

, z

]]
|0〉 =

h̄2e2

2me

[
≡ e4a0

2

]
(15)

where the result

[H0, Dz] = −e

[
p2

2me

, z

]
= − e

2me

{pz [pz, z] + [pz, z] pz} = − e

me

i h̄ pz (16)

has been used. The simplicity of the previous commutators has basically due
to the fact that the Coulomb potential commutes with the dipole operator,
and the use of the canonical commutation relations yields the result (16).

The connection of the first moment with the photoabsorption cross section
is obtained using (12), one gets

σD
0 =

4π2

h̄2c
m1 = 2π2 e2

mec
. (17)

For more complex atoms eq.(17) still holds becoming σD
0 = 2π2Ze2/mec

where Z is the atomic number. The last relation (in square-brackets in the
eq.(15) and in the equations (18) and (19)) is obtained by using the definition
of the Bohr radius a0 = h̄2/e2me.

iii) Also m2 and m3 are rather easily calculated by noting that [H0, Dz] =
[p2/2me, Dz]. One obtains

m2 =
1

2
〈0| {[Dz, H0] , [H0, Dz]} |0〉
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= e2 h̄2

m2
e

〈p2
z〉 =

2

3
e2 h̄2

me

〈 p2

2me

〉

= e2 h̄4

3m2
ea

2
0

[
≡ e6

3

]
, (18)

and

m3 =
1

2
〈0| [[Dz, H0] , [H0, [H0, Dz]]] |0〉

=
1

2
e2 h̄2

m2
e

〈[pz, [H0, pz]]〉 =
1

2
e2 h̄2

m2
e

〈
[
pz,

[
−e2

r
, pz

]]
〉

= e2 h̄4

2m2
e

〈∇2
z

(
−e2

r

)
〉 = e2 h̄4

2m2
e

1

3
〈~∇2

(
−e2

r

)
〉 = e4 h̄4

6m2
e

〈4πδ(r)〉

=
2

3
e4 h̄4

m2
e

1

a3
0

[
≡ 2

3

e8

a0

]
. (19)

To calculate the m3 sum rule a point like proton has been assumed. More gen-
erally m3 = −4πe2(h̄4/6m2

e)
∫

d3r ρp(r)ρe(r) where ρp and ρe are the proton
and electron charge densities respectively (

∫
d3rρp(r) = −

∫
d3rρe(r) = e).

Higher SR (m4, m5 etc.) would diverge if the proton is again assumed point
like (see Jackiw in ref.[8]).

3 Bounds on the electric polarizability

3.1 General Results

For p < 0 relation (10) has only a formal meaning, nevertheless inverse
energy-weighted sum rules may also have interesting applications and indeed
one can easily check that for p = −1 eq.(8) leads to (cfr. also eq.(4))

m−1 =
∫

dω
RD(ω)

h̄ω

=
∑
n6=0

|〈n|Dz|0〉|2

En − E0

≡ 1

2
α , (20)

showing that the electric polarizability is related to a particular moment of
the dipole strength distribution, namely m−1. Such a moment cannot be
written, in general [10], in a closed form as it is for the p ≥ 0 moments.
However general inequalities and upper and lower bounds to m−1 (and con-
sequently on α) can be established and they are founded on the positivity of
the distribution function RD(ω). In the following we will discuss few exam-
ples.
i) Since RD(ω) is a positive defined function the following inequality∫ ∞

0
dω

RD(ω)

h̄ω
(1 + β h̄ω)2 ≥ 0 (21)

holds for any real number β. As a consequence one gets

m−1 ≥ −(2βm0 + β2m1) , (22)
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where the definition of the moments (8) has been used. Now one can vary the
parameter β in order to maximize the right-hand-side of eq.(22) obtaining
β = −m0/m1 and consequently

m−1 ≥
m2

0

m1

, (23)

which establishes a lower bound for the inverse moment.
In a similar way one can find an upper bound to m−1 considering that

the first excited dipole state has energy E1 = h̄ω1 and consequently h̄ω ≥
h̄ω10 = E1 − E0 in the definition of m−1 (see eq.(20)). One can, thus, write

∫ ∞

0
dω

RD(ω)

h̄ω
≤
∫ ∞

0
dω

RD(ω)

h̄ω10

(24)

which implies

m−1 ≤
m0

h̄ω10

. (25)

The lower bound (23) is often called Feynmann approximation because
he applied it to the excitations of the superfluid helium, the upper bound
(25) represents the most intuitive way of approximating α and is discussed
in many text books (e.g. [11]).
ii) The bounds previously discussed have been recently generalized to include
additional sum rules, by Dalfovo and Stringari [12] for the study of the static
response function in superfluid helium. Following these authors one could
define the following inequality

∫ ∞

0
dω

RD(ω)

h̄ω
(1 + β h̄ω + γ h̄2ω2)2 ≥ 0 (26)

valid for any real β and γ. As before one can write eq.(26) as a lower bound
for m−1 and vary the parameters β and γ. One gets:

m−1 ≥
(m0)

2/m1

1−∆/Γ
, (27)

where
∆ =

m2

m1

− m1

m0

(28)

and

Γ =

[
m3

m1

+
(

m1

m0

)2

− 2
m2

m0

] (
m2

m1

− m1

m0

)−1

. (29)

As to the upper bound one generalizes eq.(24) in the following way

∫ ∞

0
dω

RD(ω)

h̄ω
(1 + ε h̄ω)2 ≤

∫ ∞

0
dω

RD(ω)

h̄ω10

(1 + ε h̄ω)2 , (30)

or, equivalently,

m−1 ≤
m0

h̄ω10

+ 2 ε
[

m1

h̄ω10

−m0

]
+ ε2

[
m2

h̄ω10

−m1

]
, (31)
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and minimizing with respect to ε the right-hand side, one has

m−1 ≤
m0

h̄ω10

[
1− m0

m1

(
m1

m0

− h̄ω10

)2 (m2

m1

− h̄ω10

)−1
]

. (32)

iii) An additional way of estimating the inverse moment m−1, founded again
on the positivity of the strength distribution, is based on the Schwartz in-
equality and makes use of ratios of different SR. Let us first consider the
expression m1/m0 =

∫
dω h̄ω RD(ω)/

∫
dω RD(ω) ≡ Ē1,0, this ratio defines

a mean value of the excitation energy. Other mean values can be defined
making use of different energy-weighted SR: Ē3,2 = m3/m2; Ē2,1 = m2/m1

...., or inverse energy-weighted sums: Ē−1,−2 = m−1/m−2; Ē0,−1 = m0/m−1 ,
etc. They fulfill the following properties:

m3

m2

≥ m2

m1

≥ m1

m0

. . . . (33)

and, equivalently,
m1

m0

≥ m0

m−1

≥ m−1

m−2

. . . . (34)

The previous inequalities collapse to identity in the case of a very narrow
spectrum only, i.e. when one state exhausts all the strength.

Among other possible inequalities, one can write [13]

mk+2

mk

≥ mk

mk−2

; Ē2
k+2,k ≥ Ē2

k,k−2 (35)

which evaluated for k = −1 and k = 1 lead to a further estimate of the
electric polarizability, namely

2
m2

1

m3

≤ α ≤ 2
√

m1 m−3 . (36)

Eq.(36) contains the inverse cubic moment

m−3 =
∑
n6=0

|〈n|Dz|0〉|2

(En − E0)3
, (37)

which has no closed form in terms of commutators and anticommutators.
Nevertheless, because of the rather large value of the exponent in the de-
nominator, it can be easily estimated including the first excited state only:
m−3 ≈ |〈1|Dz|0〉|2/(E1 − E0)

3.

3.2 Application to the hydrogen

The three examples of bounds to the inverse-energy-weighted sum m−1 or,
equivalently, to the polarizability α = 2 m−1 discussed in the previous section
can be rather easily applied to the hydrogen atom to check the degree of
approximation they imply in comparison with the exact quantum prediction
(5). In order to obtain numerical estimates one has to use the sum rule
calculation of section(II B) for m0, m1, m2 and m3.
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i) A first example is given by the bounds (23) and (25), namely

2
m2

0

m1

≤ α ≤ 2
m0

h̄ω10

, (38)

where h̄ω10 = E1 −E0 = 3e2/8a0 from the energy spectrum of the hydrogen.
By using results of section(II B) one gets

4 a3
0 ≤ α ≤ 16

3
a3

0 . (39)

Both the bounds are rather simple and surprisingly good. In particular the
lower bound has an elegant interpretation because it is related to a variational
wave function approach. One can, in fact, demonstrate that approximating
the perturbed ground state |E〉 of eq.(2) by applying on the unperturbed
ground state |0〉 a simple transformation of the form

|E〉 ≈ (1 + a Dz) |0〉 (40)

and minimizing the energy variation with respect the parameter a, one gets
α = 4 a3

0 exactly corresponding to the lower bound due to Feynmann. The
most simple, semiclassical, interpretation is that the deformation induced by
the external electric field on the electron cloud is nicely approximated by the
eq.(40) [14].

ii) The bounds (38) can be improved by means of the generalization discussed
by Dalfovo and Stringari [12] and summarized in the equations (27) and (32)
leading to the inequalities

33

8
a3

0 ≤ α ≤ 100

21
a3

0 . (41)

The lower bound is improved only slightly, but the upper bound is signifi-
cantly decreased in much better agreement with the exact result.

iii) As third example one can apply the inequalities (36). Within this ap-
proximation one gets

3

4
a3

0 ≤ α ≤ 4.59 a3
0 . (42)

The upper bound is particularly good, while the lower value is rather unsat-
isfactory. The reason is related to the use of moments like m1 and m3 which
emphasize the role of the high energy part of the excitation spectrum, while
m−1 is connected to the low-ω properties of the distribution function. A
different way of understanding that is, again, connected with the variational
approaches. The prediction α = 3/4 a3

0 corresponds to the variational wave
function [14]

|E〉 ≈ e−i a pz |0〉 (43)

which assumes that the global effect of the external electric field is only a
rigid translation of the electron cloud (driven by the translational operator
pz) without any additional deformation. Such an assumption reproduces the
actual effect rather poorly and the resulting polarizability is quite low.

8



4 Conclusions

The calculation of the electric polarizability of the hydrogen is a classical
problem in quantum mechanics. Most of the textbooks discuss it as an
example of perturbative calculation. Aim of the present paper is emphasizing
the fact that the polarizability is also connected to the moments of the dipole
strength distribution function entering the cross section for absorption and
stimulated emission of electromagnetic radiation. A point of view which has
also an historical basis since the sum rule technique has been introduced for
the study of the interaction of the light with the atoms. The aspect which
makes the hydrogen a privileged system to introduce and evaluate the sum
rules lies in the simplicity of calculating commutators and anticommutators
for one-electron atom. In addition the value of its electric polarizability is
well known and can be used to asses the inequalities which fix rigorous bound
to the inverse energy-weighted moments.
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