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Abstract

A simple variational approach to the electric polarizability of the hydrogen
atom is discussed within a classical picture. The deformation of the electron
cloud can be discussed in detail and compared with quantum mechanical
results. Step by step the approach is applied to simple rigid sphere cloud
and developed to include radial dependence and deformation. If applied
consistently to the electron cloud as it emerges from quantum calculations,
the exact predictions for the electric polarizability are reproduced within 3%
of accuracy. Also the deformations induced by the external field are quite
close to the exact results.



1 Introduction

The electric polarizability α of a system measures how easily an electric
dipole moment can be induced on that system by an external (static) electric
field and represents one of its fundamental (electromagnetic) properties. In
particular how easily means how much work is needed to induce the dipole
moment and is related to the basic features of the model description of the
system.

A classical exercise is the evaluation of α for the simplest atom: the
hydrogen, and it represents a first example of linear response of a system to
an external field. Many textbooks (e.g ref.[1]) discuss a classical approach
to α assuming that the hydrogen can be approximated by a static charge
distribution where the electron density is spherically symmetric and uniform
within a radius R, and the pointlike proton occupies, in absence of external
field, the equilibrium position at the center. Assume that when the external
field E is applied (in the positive z-direction) the electron cloud is merely
displaced (keeping its form and density) in such a way that the nucleus
occupies a new equilibrium position at a relative distance ξ with respect the
center of the homogeneous sphere [2]. A simple calculation of the forces
acting on the positive charge gives α = R3 (Gaussian units are used).

The same example could be discussed from a variational point of view
considering the work made to induce the electric dipole moment or, equiv-
alently, the variation of the total energy ∆E(ξ) due to the presence of the
electric field. One can write

∆E(ξ) = Etot − E0 = L(ξ) + Eint(ξ) (1)

where L(ξ) is the work done to shift the relative position of the positive
charge e of a quantity ξ,

L(ξ) =
∫ ξ

0

e2

R3
r dr =

1

2

e2

R3
ξ2 , (2)

and Eint(ξ) the interaction energy of the polarized hydrogen (Dz is the in-
duced dipole moment) with the external field

Eint(ξ) = −DzE = −e ξ E . (3)

E0 is the energy of the isolated hydrogen [3].
The minimum value of the total energy is obtained for dEtot(ξ)/dξ = 0

which gives

ξeq =
R3

e
E (4)

for the equilibrium value of ξ. Consequently the induced dipole moment and
the total energy result

Dz = e ξeq = R3 E ≡ α E

Etot = E0 + Eint(ξeq) + L(ξeq) = E0 −
1

2
R3E2 ≡ E0 −

1

2
αE2 (5)
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which define the electric polarizability

α = R3 . (6)

Even if it has been demonstrated in this particular example, the result
that the total energy is lowered by the interaction with the external field
(cfr.Eq.(5)) is quite general. However the use of a restricted class of defor-
mation induced by the electric field (namely the assumption of a rigid shift
of the electron cloud) makes the variational calculation an approximation
which leads to an upper limit for the energy variation and, consequently, the
estimated polarizability α represents a lower bound to the exact value.

Moreover the simple result (6) does not take into account two relevant
facts, namely: i) the electron density distribution is not uniform; ii) it can
be deformed (with respect its spherical shape) under the influence of the
external field.

2 Classical variational approaches

In order to introduce a more flexible and general formalism including the
contributions due to the density diffuseness and to the induced deformations,
let me assume that the electron density is described by a function ̺0(r) for
E = 0 (no external electric field) and ̺E(r) when E 6= 0 . The total energy
of the system will result [4]

Etot =
∫

dr
e

r
̺E(r) +

1

2

∫

drdr′
̺E(r) ̺E(r

′)

|r − r′| − E
∫

dr z ̺E(r)

= E1 + E2 + Eint , (7)

where the first term (E1) embodies the interaction energy between the point-
like proton and the electron density, the second contribution (E2) is the
work done to build up the electron cloud, and the last contribution (Eint) is
the interaction with the external field of the induced dipole moment Dz =
∫

dr z ̺E(r). (Since ̺0(r), is spherically symmetric,
∫

dr z ̺0(r) = 0).
In order to discuss first the effects of the electron density diffuseness let

me assume ̺E(r) being still spherically symmetric and that the effect of the
external field is again approximated by a rigid shift of the electron cloud. As
a consequence the electron density, in the presence of the external field, is
described by ̺E(r) = ̺0(r+ξẑ) and the total energy variation can be written

∆E(ξ) = e
∫

dr

[

̺E(r)

r
− ̺0(r)

r

]

− E
∫

dr z ̺E(r) . (8)

The first term is the variation of the interaction energy between the point-
like proton and the electron cloud, and the last term is the contribution due
to the interaction of the system with the external field. It should be stressed
that the E2 term of Eq.(7) does not contribute to the energy variation (8). In
fact if the effect of the external field is approximated by a rigid displacement,
no additional work is needed to deform the electron cloud.
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For small ξ the following expansion up to second order holds

̺E(r) = ̺0(r + ξ ẑ) = ̺0(r) + ξ∇z̺0(r) +
1

2
ξ2∇2

z̺0(r) , (9)

and consequently one gets

∆E(ξ) = ∆E1(ξ) + ∆Eint(ξ) =
1

6
e ξ2

∫

dr
1

r
∇2̺0(r) − ξ E

∫

dr z (∇z̺0(r))

= −1

6
e ξ24π̺0(0) − e ξ E , (10)

where the relation ∇2(1/r) = −4πδ(r) have been used together with the
assumption of spherical symmetry for ̺0(r). Once again minimizing the
total energy variation (10) one obtains the equilibrium parameter ξeq and
the polarizability

α = − 3

4π

e

̺0(0)
. (11)

The results (11) generalizes Eq.(6) and reduces to α = R3 in the limit-
ing case of constant density (̺0(r) = ̺0(0) = −e 3/4πR3). Assuming for
the functional form of the electron density the quantum solution ̺0(r) =
(−e/πa3

0) exp(−2r/a0), one has ̺0(0) = −e/πa3
0 and, consequently,

α =
3

4
a3

0 . (12)

The previous result is quite far from the exact quantum mechanical prediction
[5]

αexact =
9

2
a3

0 . (13)

and the discrepancy cannot be ascribed to the fact that one did not make
use of quantum mechanics, but to the neglected deformation of the electronic
density. Indeed the same prediction (12) can obtained within a rigorous
quantum framework assuming a rigid shift of the spherical electron density
[6].

2.1 Effects of the density deformation

In order to introduce the effects due to the density deformation induced by
the external field one can make the assumption

̺E(r) =
1

N
[1 + aF (r)]2 ̺0(r) (14)

with
∫

dr̺0(r) =
∫

dr̺E(r) = −e and consequently N =
∫

dr[1+aF (r)]2̺0(r) =
1 + a2〈F 2〉 where 〈F 2〉 =

∫

drF 2(r)̺0(r) and
∫

drF (r)̺0(r) = 0 [7]. Eq.(14)
is assumed to be valid up to second order corrections in the variational pa-
rameter a, and therefore

̺E(r) =
{

1 + 2aF (r) + a2
[

F 2(r) − 〈F 2〉
]}

̺0(r)

= ̺0(r) + δ̺E(r) . (15)
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The total energy variation and the induced dipole moment can be written
(cfr. Eq.(7))

∆Etot =
∫

dr
e

r
δ̺E(r) +

∫

dr dr′

|r − r′|

[

̺0(r)δ̺E(r
′) +

1

2
δ̺E(r)δ̺E(r

′)
]

− E
∫

dr z δ̺E(r)

= ∆E1 + ∆E2 + ∆Eint , (16)

and
Dz =

∫

dr z δ̺E(r) . (17)

The internal energy variation (∆E1 + ∆E2) must result quadratic in the
variational parameter a. In fact ̺0(r) is the equilibrium density for E = 0
and consequently the minimum value of ∆E1 + ∆E2 must be recovered at
a = 0. In contrast the variation of the interaction energy will be linear in the
same parameter. This feature is common to all the variational calculations
of the form (14) and leads to

∆Etot =
a2

2
Caa − 2 a E Ca . (18)

Minimizing the energy variation one finally gets

α = 4
C2

a

Caa
. (19)

In the following I will discuss results obtained for different choices of F (r).

i) F (r) = z = rP1(cos θ). In this case

δ̺E(r) =
{

2az + a2
[

z2 − a2
0

]}

̺0(r) (20)

and one gets (the appendix contains the relevant formulas needed for the
evaluation of the ∆E2 contribution)

∆E1 =
1

2
a2e2a0; ∆E2 = a2e2a0

[

− 3

16
+

7

48

]

; ∆Eint = 2 a E e a2
0 . (21)

and the polarizability

α =
48

11
a3

0 , (22)

a result which improves the prediction (12) (which neglects the deformation
induced on the electron cloud) by almost a factor 6, and is only 10% larger
than the quantum calculation obtained imposing the same deformation [6].

ii) F (r) = rz = r2P1(cos θ). In this case

δ̺E(r) =
{

2 a r z + a2
[

r2 z2 − 15

2
a2

0

]}

̺0(r) (23)

and one obtains

∆E1 = 5 a2e2a3
0; ∆E2 = a2e2a3

0

[

−585

256
+

185

384

]

; ∆Eint = 5 a E e a3
0

(24)
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Table 1: Summary of the contributions to the energy variation coming from
the various terms of Eq.(16) and for different choices of the deformation
operator F (r). The ∆E2 part has been separated in the two contributions
as in Eq.(16).

F (r) = z F (r) = r z F (r) = r2 z F (r) = r3 z

∆E1/a
2 1

2
e2a0 5 e2a3

0
315
4

e2a5
0 1890 e2a7

0

∆E2/a
2

(

− 3
16

+
(

−585
256

+
(

−40635
1024

+
(

−4119255
4096

+

+ 7
48

)

e2a0 +185
384

)

e2a3
0 +165

64

)

e2a5
0 +41685

2048

)

e2a7
0

∆Eint/aE 2 e a2
0 5 e a3

0 15 e a4
0

105
2

e a5
0

α/a3
0

48
11

1920
491

7680
2843

53760
35291

and the polarizability

α =
1920

491
a3

0 . (25)

iii) The values (22) and (25) represent rather good lower bound to the exact
result and one can guess that increasing the power of r would improve the
agreement. Assume then F (r) = rnz = rn+1P1(cos θ). The results are sum-
marized in table 1. The closest predictions with respect to the exact result
are obtained for n = 0 and n = 1 (i.e. for the choices discussed in i) and ii)),
while for larger values of n the polarizability is strongly underestimated.

iv) As final example a linear combination of the most favorable assumptions
i) and ii) can be made, namely

a F (r) → az + b rz , (26)

where a and b are variational parameters.The generalization of Eq.(18) for
the total energy variation reads

∆Etot ≡ ∆E1 + ∆E2 + ∆Eint =

=
a2

2
Caa +

b2

2
Cbb + abCab − 2E [a Ca + bCb] . (27)

Minimizing the total energy variation (27) with respect to both the pa-
rameters a and b, one finds the equilibrium values

aeq = 2
CaCbb − CbCab

CaaCbb − C2
ab

E

beq = 2
CbCaa − CaCab

CaaCbb − C2
ab

E , (28)

which leads to the polarizability

α =
2

E (aeq Ca + beq Cb) . (29)
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In our particular case one obtains

∆E1 = e2
[

1

2
a2a0 + 5 b2a3

0 +
4

3
a b a2

0

]

∆E2 = e2
[(

− 3

16
+

7

48

)

a2a0 +
(

−585

256
+

185

384

)

b2a3
0 +

(

− 43

192
+

77

96

)

a b a2
0

]

∆Eint = e
[

2 a a2
0 + 5 b a3

0

]

E (30)

and for the polarizability

α =
126080

27117
a3

0 ≈ 4.65 a3
0 . (31)

The result (31) is the (classical) counterpart of the quantum exact prediction
and it differs from that by 3% only. In fact the quantum value (13) can be
found also within quantum variational approach which assumes a density
deformation of the form given in Eq.(26) [8]. However the equilibrium values
of the variational parameters as well as the normalization coefficient N differ
in quantum and classical calculations. Specifically in the quantum calculation
one gets

aeq = −a0
E
e

and beq = −1

2
a0

E
e

, (32)

and

̺E(r) = − 1

N

[

1 − E
e

(

a0 +
1

2
r
)

z
]2

̺0(r) , (33)

where N = 1 + 43
8

(

E

e

)2
a4

0.
In the classical calculation the same parameters result

aeq = −39680

27117
a0

E
e
≈ −1.463 a0

E
e

and beq = − 9344

27117

E
e
≈ −0.345 a0

E
e

,

(34)
and

̺E(r) = −e|φE(r)|2 =
1

N

[

1 − E
e

(1.463 a0 + 0.345 r) z
]2

̺0(r) , (35)

respectively. In the present case N = 1 + 5.553
(

E

e

)2
a4

0.
Of course if one assume for the classical density the deformation obtained

from the quantum calculation, one would reproduce exactly the prediction
(13). However one cannot expect to reproduce the same value when the
energy variation is evaluated classically. The reason has to do with the
different assumptions on the kinetic energy variation. In fact the classical
model is static and does not consider the motion of the electron, on the
contrary the quantum calculation includes kinetic energy variations due to
the deformation of the electron density (or wave function) [9].

2.2 Charge density distribution

The differences (and analogies) between the classical and quantum results
can be better appreciated comparing the charge density distribution of the
electron as predicted in the two cases.
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The classical solution (35) for the deformed electron density and the anal-
ogous quantum result (33) differ only slightly as can be seen from Figs. 1,
where the polar plots (PE(r, θ), θ) for both classical and quantum solutions,
are compared with the analogous results for the spherical unperturbed so-
lution P0(r) for r =

√
3/2 a0, r =

√
3 a0, r = 2

√
3 a0, and r = 3

√
3 a0

(note that
√

〈r2〉 =
√

3 a0). P0(r) represents the one-dimensional density
probability

P0(r) =
(

1

−e

)

4 π r2 ̺0(r) . (36)

Normalization is such that
∫ P0(r)

dΩ
4π

dr = 1, and PE(r, θ) is its deformed
analogous

PE(r, θ) =
(

1

−e

)

4 π r2 ̺E(r, θ) (37)

normalized in the same way
∫ PE(r, θ)

dΩ
4π

dr = 1. In order to show clearly the
effects of deformations, PE(r, θ) is calculated assuming a rather strong exter-
nal electric field, which, however, still fulfills the requirement of perturbation
theory. In practice the typical value of the energy interaction E Dz ≡ e Ea0

must be much less than the total unperturbed ground state energy e2/2a0.
The choice of Fig. 1 is e Ea0 = 0.1×e2/2a0 = 0.1×13.6 eV which defines the
value of the electric field E .

In Fig. 2 the spherical probability density P0(r) is also shown to visualize
the points of the polar plots (asterisks).

One can easily conclude that the classical (and quantum) solutions are
more and more deformed increasing the radial distance, and that the classical
calculation approximate the quantum exact solution in a quite good way.

Appendix

In order to evaluate the term

∆E2 =
∫

dr dr′

|r− r′|

[

̺0(r) δ̺E(r
′) +

1

2
δ̺E(r) δ̺E(r

′)
]

(1)

of Eq.(16) one should use the expansion

1

|r− r′| =
1

r

∞
∑

n=0

(

r′

r

)n

Pn(cos θ)Pn(cos θ′) if r > r′

=
1

r′

∞
∑

n=0

(

r

r′

)n

Pn(cos θ) Pn(cos θ′) if r′ > r ,

the integral properties of the Legendre polynomials Pn(u)

∫ +1

−1
du Pn(u) Pm(u) = δnm

2

2n + 1
(2)

and the equalities

z = r P1(cos θ); P 2
1 (u) =

1

3
[2 P2(u) + 1] . (3)
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An example

∆E
(1)
2 =

∫

dr dr′

|r − r′| ̺0(r) δ̺E(r
′) . (4)

Only the second order terms in δ̺E(r) will contribute and one gets:

∆E
(1)
2 = a2

(

−e

πa3
0

)2

(2π)2
∫

1

|r− r′| e−2r/a0 e−2r′/a0 ×

×
[

2

3
r2P2(cos θ) −

(

a2
0 −

1

3
r′

2
)]

d(cos θ)d(cos θ′)r2dr r′
2
dr′

= a2

(

−e

πa3
0

)2

(2π)2

[

−4
∫

∞

0
r2dre−2r/a0

∫ r

0
r′

2
dr′

1

r
e−2r′/a0

(

a2
0 −

1

3
r′

2
)

−4
∫

∞

0
r2dre−2r/a0

∫

∞

r
r′

2
dr′

1

r′
e−2r′/a0

(

a2
0 −

1

3
r′

2
)]

= −1

2
a2 e2 a0

[

∫

∞

0
xdxe−x

∫ x

0
dx′e−x′

(

x′2 − 1

12
x′4
)

+

+
∫

∞

0
x2dxe−x

∫

∞

x
dx′e−x′

(

x′ − 1

12
x′3
)]

.

The integrals are analytic and, for this simple case, can be easily performed
obtaining

∆E
(1)
2 = −1

2
a2 e2 a0

[

3

8

]

(5)

In the more complicate case of a F (r) = a z rn or a F (r) → a z + b z r a
symbolic Mathematica code has been used.
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Figure 1: Polar plots of the one-dimensional densities of Eq.(35). The de-
formed classical (continous blue lines) solutions are compared with the spheri-
cal unperturbed results (dashed green lines) for radial distances : r =

√
3/2 a0

(a), r =
√

3 a0 (b), 2
√

3 a0 (c) and 3
√

3 a0 (d).
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Figure 2: Polar plots of the one-dimensional densities of Eq.(33). The de-
formed quantum solutions (continous red lines) are compared with the spheri-
cal unperturbed results (dashed green lines) for radial distances : r =

√
3/2 a0

(a), r =
√

3 a0 (b), 2
√

3 a0 (c) and 3
√

3 a0 (d).
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Figure 3: The radial one-dimensional density of Eq.(36) as function of the
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,d) of Figs.(1),(2)
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