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Abstract. We consider linear control systems in a Hilbert space over an unbounded time interval
of the form

y′α(t) = (A− αI)yα(t) +Bu(t), t ∈ (−∞, T ],

with bounded control operator B, under appropriate stability assumptions on the operator A. We
study how the space of states reachable at time T depends on the parameter α ≥ 0. We apply the
results to study the dependence on α of the Cameron–Martin spaces of the invariant measures of the
Ornstein–Uhlenbeck processes Xα defined by the equation driven by the Wiener process W :

dXα(t) = (A− αI)Xα(t) dt+B dW (t), t ≥ 0.
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1. Introduction. The aim of this paper is to study some controllability proper-
ties of a linear control system in a Hilbert space H over an unbounded time interval
and to apply these results to study the behavior of the Cameron–Martin space of the
invariant measure for a class of Ornstein–Uhlenbeck stochastic processes in H under
perturbation.

Let us consider a linear control system in H of the form

y′(t) = Ay(t) +Bu(t), t ∈ (−∞, T ],(1.1)

for t varying in a fixed unbounded time interval (−∞, T ], where A is the infinitesimal
generator of a strongly continuous semigroup of operators, B is a bounded operator
from another Hilbert space U to H, and u is a control, which will always be assumed
to belong to the space L2(−∞, T ;U) of square summable functions from (−∞, T ] to
U . The value of T is irrelevant in most of what follows, and we could even replace
T by zero; nevertheless, we will keep the present, slightly more general notation. For
the moment we assume for simplicity that A is exponentially stable, although this
assumption will be relaxed in the following sections. Then the solution of (1.1) can be
defined in a standard way for every control u. The initial condition at −∞ is assumed
to be zero. One defines in an obvious way the space of states reachable at time T over
the interval (−∞, T ], which is denoted by K∞. By straightforward extensions of the
results on a finite time interval, this space can be characterized as the image of the
square root of the operator Q∞ defined by

Q∞h =

∫ ∞

0

etABB∗etA
∗
h dt, h ∈ H.

Thus K∞ = im Q
1/2
∞ . Clearly, this space does not depend on T .

∗Received by the editors September 18, 2002; accepted for publication (in revised form) May 6,
2003; published electronically November 14, 2003.

http://www.siam.org/journals/sicon/42-5/41465.html
†Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano,

Italy (marco.fuhrman@polimi.it, annamaria.paganoni@mate.polimi.it).

1776



LINEAR CONTROL SYSTEMS IN HILBERT SPACES 1777

One of the main results of this paper is a precise description of the behavior of
the space of reachable states for the class of perturbed control systems

y′α(t) = (A− αI)yα(t) +Bu(t), t ∈ (−∞, T ],(1.2)

when the parameter α ranges over [0,∞).
We note that the system (1.2) can be reduced to system (1.1) by the transforma-

tion y(t) = eαtyα(t). This transformation is sometimes called the “exponential shift.”
For control systems on a finite time interval this argument shows that the space of
reachable states does not depend on α. We note, however, that the exponential shift
maps the control u to the function t �→ eαtu(t), which does not necessarily belong
to the space L2(−∞, T ;U) of square summable controls, due to the fact that the
time interval (−∞, T ] is unbounded. Keeping the space of controls fixed, the problem
arises whether the space of reachable sets may change with α. One can also study a
related problem, namely, whether a state which is reachable on (−∞, T ] can also be
reached over a finite time interval [T − r, T ] for some r > 0.

In Theorem 4.1 we give an answer to both questions. Somewhat imprecisely, the
situation is as follows: denoting by Kα

∞ the space of reachable states for the perturbed
systems (1.2), it is clear that

0 ≤ α ≤ β implies Kα
∞ ⊃ Kβ

∞,

possibly with equality. It can happen that Kα
∞ are strictly decreasing for all α ≥ 0.

Or it can happen that Kα
∞ are strictly decreasing for α less or equal to some critical

value α0, and then they remain unchanged for α > α0; the case α0 = 0 may occur.
Another case can also happen, namely, that Kα

∞ do not depend on α. Finally, the
states in Kα

∞ can be reached in a finite time interval precisely when a small change
of α does not change the reachable set. See Theorem 4.1 for precise statements. We
also relate the critical value α0 to the norms of some appropriately defined operators;
see Corollary 4.7.

One may ask whether more general perturbations of the original system (1.1)
could affect the space K∞ of reachable states over (−∞, T ]. The results described
above show the (perhaps surprising) fact that even the spaces Kα

∞ are very “sensitive”
to perturbations; an arbitrarily small change in the value of α may suffice to change
the space Kα

∞. Therefore, one expects that more general perturbations of the original
system (1.1) will have the same effect, unless very stringent conditions are imposed.
That is why we do not address this problem here but rather postpone it to future
study.

We devote section 5 to giving examples where the various possibilities described
above occur and also to studying some important classes of control systems. For
example, we show that the spaces Kα

∞ do not depend on α if the system is finite-
dimensional or exactly null controllable.

In connection with all the properties and problems discussed so far, instead of the
set of reachable states one may consider the set of approximately reachable states. In
strong contrast with the previous results, the space of approximately reachable states
for system (1.2) turns out to be independent of α; see section 4.3.

We believe that the previous results have an intrinsic interest, since they address
basic structural properties of linear control systems, but our interest in this question
arose from some probabilistic motivation, which we now shortly describe.
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Let us consider the following stochastic evolution equation of Itô type:{
dX(t) = AX(t) dt +B dW (t), t ≥ 0,
X(0) = X0,

where W is a (cylindrical) Wiener process in a filtered probability space (Ω,F ,P, (Ft))
and X0 is a gaussian F0-measurable random variable with values in H. Assuming the
finite trace condition

Trace Q∞ < ∞,

one can show that the equation uniquely defines a gaussian process X and that the
centered gaussian measure µ with covariance operator Q∞ is invariant for the process
X. For these facts we refer to [8] and to the discussion in section 6. The process
X is called the (nonsymmetric) Ornstein–Uhlenbeck process and has been intensively
studied in recent years; see [3, 4, 5, 6, 13, 14].

Associated to the centered gaussian measure µ is the so-called Cameron–Martin
space; see, e.g., [1]. It is the subspace of H consisting of all vectors h such that the
image measure of µ under the mapping x → x + h, x ∈ H, is absolutely continuous
with respect to µ. The corresponding Radon–Nikodym density is then called the
logarithmic derivative of µ along h. The Cameron–Martin space plays a basic role
in the construction of the Sobolev classes of functions over the measure space (H,µ)
(see [1]), in the definition and properties of the associated Dirichlet forms (see [2],
[17]), and in the subsequent constructions needed for the analysis of the stochastic
process X (see the references on the Ornstein–Uhlenbeck process cited above). It turns

out that the Cameron–Martin space of µ coincides with imQ
1/2
∞ and hence with the

space of reachable states K∞ for the control system (1.1). So our results can be
applied to study how the Cameron–Martin space behaves under perturbation of the
Ornstein–Uhlenbeck process. Thus, for α ≥ 0, we consider the perturbed processes
Xα solution of {

dXα(t) = (A− αI)Xα(t) dt +B dW (t), t ≥ 0,
Xα(0) = X0,

and we consider the corresponding gaussian invariant measures µα. Since the Cameron–
Martin space of µα coincides with Kα

∞, our results give information on the dependence
of the Cameron–Martin space of µα on α.

The plan of the paper is as follows: Section 2 is devoted to some preliminary
technical facts. Section 3 contains the standing assumptions and some preliminary
results on control systems on unbounded time intervals. Section 4 contains the main
results, Theorem 4.1 and Corollary 4.7, while section 5 is devoted to examples. Finally,
in section 6 it is shown how to apply results to the Ornstein–Uhlenbeck process.

2. Some notation and technical tools. Let H and U be separable Hilbert
spaces, over the real or complex field, with norm and scalar product denoted by | · |,
〈·〉. We use ‖ · ‖ to denote the operator norm. Later we will consider H as the state
space of a control system and U as the space of control parameters.

We start by recalling a few facts on Hilbert space valued integrals.
Let I be an interval in the real line and f : I → H a Borel measurable function. It

is well known that f is integrable (in the sense of Bochner) if and only if
∫
I
|f(t)| dt <

∞. To allow more generality, in the following we will use the concept of weak integrals,
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and so we are going to recall the definition and some of its elementary properties; for
more on this subject the reader may consult, e.g., [9]. We say that f is weakly
integrable if

∫
I
|〈f(t), h〉| dt < ∞ for every h ∈ H and there exists a (necessarily

unique) element of H, denoted
∫
I
f(t) dt, such that

〈∫
I

f(t) dt, h

〉
=

∫
I

〈f(t), h〉 dt, h ∈ H.

If f is Bochner integrable, then
∫
I
f(t) dt coincides with the Bochner integral. The

definition of weak integrability, as stated above, is slightly redundant, as shown by
the following well-known lemma that will be useful in what follows; see, for example,
[10, 9].

Lemma 2.1. If f : I → H is Borel measurable and
∫
I
|〈f(t), h〉| dt < ∞ for every

h ∈ H, then f is weakly integrable.
In the following sections we will systematically use the following lemma, whose

proof can be found in [7] or [21].
Lemma 2.2. Let H, U , Z be Hilbert spaces, and let A : U → H and B : Z → H

be bounded linear operators. Then the inclusion between the images

im A ⊂ im B

holds if and only if there exists c > 0 such that

|A∗h| ≤ c|B∗h|, h ∈ H.

In this case, denoting by B−1 the pseudoinverse of B, we have ‖B−1A‖ ≤ c.
In particular, if we define Q = BB∗, then im B = im Q1/2 and, denoting Q−1/2

the pseudoinverse of Q1/2, we have ‖B−1Q1/2‖ = ‖Q−1/2B‖ = 1.

3. Assumptions and preliminaries. Throughout the paper the following as-
sumptions are assumed to hold.

Hypothesis 3.1.
(i) H and U are separable Hilbert spaces.
(ii) The operator A is the generator of a strongly continuous semigroup {etA, t ≥

0} of bounded linear operators in H. B is a bounded linear operator from U
to H.

(iii) We have ∫ ∞

0

|B∗etA
∗
x|2dt < ∞, x ∈ H.(3.1)

We remark that the validity of (3.1) does not imply that the operator A is
exponentially stable. Condition (3.1) has received a fair amount of attention in
some of the recent literature. At least in the case when U = R (and therefore
B∗ maps H to R), in several cases condition (3.1) is equivalent to a bound of the
form |B∗(sI − A∗)−1|H∗ ≤ c/

√
Re s for complex s with Re s > 0; see, for instance,

[15, 20, 16].
Let us consider a control system in H on a finite time interval. We shortly recall

some usual definitions and properties, mainly to fix notation. For further details we
refer the reader to any treatise on infinite-dimensional control theory, for instance, [7]
or [21].
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We will consider a control system on a time interval of length r > 0, with initial
condition h ∈ H, formally:

y′(t) = Ay(t) +Bu(t), t ∈ [T − r, T ], y(T − r) = h.(3.2)

Here T is an arbitrary fixed real number; the choice of the time interval [T − r, T ]
allows us to conform with some notation that will be introduced later, when dealing
with the unbounded time interval (−∞, T ].

When referring to (3.2), we take as the space of controls the space L2(T −r, T ;U)

of all Borel measurable functions u : [T − r, T ] → U satisfying
∫ T

T−r
|u(t)|2dt < ∞.

L2(T − r, T ;U) will be endowed with its usual Hilbert norm. The solution y : [T −
r, T ] → H of (3.2), or the trajectory corresponding to a control u, is defined as

y(t) = e(t−T+r)Ah +

∫ t

T−r

e(t−s)ABu(s) ds, t ∈ [T − r, T ],

and the space Kr of states reachable from zero in time r (in short, the space of
reachable states) is defined as the set of all elements y(T ), as u spans the space of
controls and h = 0. The space Kr therefore coincides with the image of the so-called
controllability operator Lr : L2(T − r, T ;U) → H defined by

Lru =

∫ T

T−r

e(T−s)ABu(s) ds, u ∈ L2(−∞, T ;U).

The gramian operator is defined by

Qrh =

∫ r

0

etABB∗etA
∗
h dt, h ∈ H,

and we have LrL∗
r = Qr and Kr = im Lr = im Q

1/2
r . Clearly, Ks ⊂ Kr for 0 < s < r.

In the case of a finite time interval considered so far, the assumption (3.1) is not
needed, and all the indicated integrals are Bochner integrals.

Now, for fixed T ∈ R, we consider the following control system in H on the
unbounded time interval (−∞, T ]:

y′(t) = Ay(t) +Bu(t), t ∈ (−∞, T ], y(−∞) = 0.(3.3)

This expression is only formal, but now we proceed to giving rigorous definitions.
We define a control as an element of L2(−∞, T ;U), i.e., a Borel measurable function

u : (−∞, T ] → U satisfying
∫ T

−∞ |u(t)|2dt < ∞. L2(−∞, T ;U) will be endowed with
its usual Hilbert norm. A trajectory of the control system (3.3), corresponding to the
control u, is by definition the function

y(t) =

∫ t

−∞
e(t−s)ABu(s) ds, t ∈ (−∞, T ].(3.4)

We note that, for every h ∈ H,∫ t

−∞
|〈e(t−s)ABu(s), h〉| ds ≤

∫ t

−∞
|u(s)| |B∗e(t−s)A∗

h| ds

≤
(∫ t

−∞
|u(s)|2 ds

)1/2 (∫ t

−∞
|B∗e(t−s)A∗

h|2 ds

)1/2

=

(∫ t

−∞
|u(s)|2 ds

)1/2 (∫ ∞

0

|B∗esA
∗
h|2 ds

)1/2

,
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and the right-hand side is finite by the assumption (3.1). It follows that y(t) is well
defined as a weak integral by Lemma 2.1.

We define the space of reachable states K∞ as the set of all elements y(T ), as u
spans the space of controls. The space K∞ therefore coincides with the image of the
operator L∞ : L2(−∞, T ;U) → H defined as

L∞u =

∫ T

−∞
e(T−s)ABu(s) ds, u ∈ L2(−∞, T ;U).

We may call L∞ the extended controllability operator. The adjoint operator L∗
∞ :

H → L2(−∞, T ;U) is easily computed: for h ∈ H, L∗
∞h is the function

L∗
∞h(s) = B∗e(T−s)A∗

h, s ∈ (−∞, T ].

In particular, we find

L∞L∗
∞h =

∫ T

−∞
e(T−s)ABB∗e(T−s)A∗

h ds =

∫ ∞

0

etABB∗etA
∗
h ds,

which is a well-defined weak integral. So we can define the extended gramian operator

Q∞h =

∫ ∞

0

etABB∗etA
∗
h dt, h ∈ H,

and conclude that

L∞L∗
∞ = Q∞,

which implies that Q∞ is a bounded nonnegative self-adjoint operator in H and, by

Lemma 2.2, that the space K∞ coincides with the image of Q
1/2
∞ .

The reader may note that these are immediate extensions of the corresponding
notions for systems on a finite time interval.

4. Perturbed systems: Main result. In this section Hypothesis 3.1 is still in
force. Our main concern will be to investigate the behavior of the space of reachable
states when the system (3.3) is perturbed by replacing the operator A with A − αI,
where α ≥ 0. Note that (3.1) holds with A replaced by A− αI since α ≥ 0. We still
keep L2(−∞, T ;U) as the space of controls.

Thus we are considering the family of control systems written formally

y′α(t) = (A− αI)yα(t) +Bu(t), t ∈ (−∞, T ], yα(−∞) = 0.(4.1)

We note that A − αI is the generator of the semigroup {e−αtetA, t ≥ 0}. Ac-
cording to the previous definitions, for the perturbed control system (4.1) the space of

reachable states Kα
∞ is defined as the image of the operator L(α)

∞ : L2(−∞, T ;U) → H
given by

L(α)
∞ u =

∫ T

−∞
e−α(T−s)e(T−s)ABu(s) ds, u ∈ L2(−∞, T ;U).

The extended gramian operator for (4.1) is

Q(α)
∞ h =

∫ ∞

0

e−2αtetABB∗etA
∗
h dt, h ∈ H,(4.2)
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and we have L(α)
∞ (L(α)

∞ )∗ = Q
(α)
∞ and Kα

∞ = im L(α)
∞ = im (Q

(α)
∞ )1/2 as before.

Note that K0
∞ = K∞, L(0)

∞ = L∞, Q
(0)
∞ = Q∞. We also note that for 0 ≤ α <

β the inequality Q
(β)
∞ ≤ Q

(α)
∞ is obvious, and by Lemma 2.2 this implies Kβ

∞ =

im (Q
(β)
∞ )1/2 ⊂ im (Q

(α)
∞ )1/2 = Kα

∞.
We may also consider the perturbed system on a bounded time interval; formally,

for r > 0,

y′α(t) = (A− αI)yα(t) +Bu(t), t ∈ [T − r, T ], yα(T − r) = 0.

However, the space of reachable states for this system clearly does not depend on α
and is equal to the image of the operators Lr introduced above, since the exponential
shift, described in the introduction, leaves the space L2(T − r, T ;U) unchanged.

So far the following inclusions have been (trivially) verified: for 0 ≤ α < β and
0 < s < r we have

Kα
∞ ⊃ Kβ

∞ ⊃ Kr ⊃ Ks.

Our main result is the following.
Theorem 4.1. Assume Hypothesis 3.1. Then one and only one of the following

situations occurs.
(i) We have

Kα
∞ = Kβ

∞ whenever 0 ≤ α < β.

Moreover, there exists r > 0 such that Kr = Kα
∞ for every α ≥ 0.

(ii) There exists α0 ∈ [0,∞] such that

Kγ1∞ � Kγ2∞ � Kα0∞ � Kβ1∞ = Kβ2∞

whenever 0 ≤ γ1 < γ2 < α0 < β1 < β2.
Moreover, given α ≥ 0, there exists r > 0 such that Kr = Kα

∞ if and only if
α0 < ∞ and α > α0.

Remark 4.2. In the extreme cases α0 = 0 and α0 = +∞, part (ii) of Theorem
4.1 is understood as follows:

(a) If α0 = 0, then K0
∞ � Kβ1∞ = Kβ2∞ for 0 < β1 < β2 < ∞.

(b) If α0 = +∞, then Kγ1∞ � Kγ2∞ for 0 ≤ γ1 < γ2 < ∞.
We remark that Kα

∞ is not defined for α = +∞.
We may rephrase the statement of the theorem by saying that there are only two

mutually exclusive cases: (1) the reachability spaces Kα
∞ are all equal for all values of

the parameter α ≥ 0; (2) the reachability spaces Kα
∞ coincide for α larger than some

critical value α0, but Kα
∞ are all distinct for α ∈ [0, α0] (and strictly larger than Kα

∞,
α > α0). Moreover, in case 1 the states reachable in an unbounded time interval can
also be reached in a finite time interval, independently of the value of α. In case 2
the states in Kα

∞ can be reached in a finite time interval if and only if α > α0.
In section 5 we will give examples to show that cases (i) and (ii) of Theorem 4.1

may occur and, in case (ii), each of the possibilities α0 = 0, 0 < α0 < ∞, α0 = ∞
may occur.

In section 4.1 we collect some preliminary results for the proof of Theorem 4.1;
the proof is presented in section 4.2.
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4.1. Some auxiliary operators. The proof of Theorem 4.1 is based on some
properties of the operators

S0(t) = Q−1/2
∞ etAQ1/2

∞ , t ≥ 0,

that we are going to study in this subsection. These operators have been introduced
independently in [11] and [3]. The following result, proved in these papers, shows
in particular that S0(t) are everywhere defined bounded linear operators on H, with
norm less or equal to 1. We report the proof for completeness, with some simplifica-
tions contained in [12].

Proposition 4.3. Assume Hypothesis 3.1. For every t > 0 we have

im (etAQ1/2
∞ ) ⊂ imQ1/2

∞ and ‖Q−1/2
∞ etAQ1/2

∞ ‖ ≤ 1.(4.3)

Moreover, the following conditions are equivalent:
(i) ‖S0(t)‖ < 1;

(ii) im Q
1/2
∞ = im Q

1/2
t .

Proof. By Lemma 2.2, in order to prove (4.3), it suffices to show

|Q1/2
∞ etA

∗
x|2 ≤ |Q1/2

∞ x|2, x ∈ H,

i.e., etAQ∞etA
∗ ≤ Q∞. This follows from the definition of Q∞, since

etAQ∞etA
∗
=

∫ ∞

0

e(t+s)ABB∗e(t+s)A∗
ds =

∫ ∞

t

erABB∗erA
∗
dr = Q∞ −Qt ≤ Q∞.

(4.4)

Equation (4.3) is now proved.

First note that Qt ≤ Q∞, so by Lemma 2.2 the inclusion im Q
1/2
t ⊂ im Q

1/2
∞

always holds. By Lemma 2.2 again, (i) holds if and only if there exists α ∈ (0, 1) such
that

|Q1/2
∞ etA

∗
x|2 ≤ α|Q1/2

∞ x|2, x ∈ H.

Now note that (4.4) implies

|Q1/2
∞ etA

∗
x|2 = 〈(Q∞ −Qt)x, x〉,

so (i) holds if and only if

〈(Q∞ −Qt)x, x〉 ≤ α〈Q∞x, x〉, x ∈ H,

or

〈Q∞x, x〉 ≤ (1− α)−1〈Qtx, x〉, x ∈ H.

By Lemma 2.2 this is equivalent to im Q
1/2
∞ ⊂ im Q

1/2
t .

The following proposition is the main step toward the proof of Theorem 4.1.
Proposition 4.4. Assume Hypothesis 3.1.
(i) If there exists r > 0 such that ‖S0(r)‖ < 1, then for every α > 0 there exists

c > 0 such that cQ∞ ≤ Q
(α)
∞ .

(ii) If there exist c > 0 and α > 0 such that cQ∞ ≤ Q
(α)
∞ , then there exists r > 0

such that ‖S0(r)‖ < 1.
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Proof. We first note the identity, for h ∈ H and r > 0,∫ r

0

|B∗etA
∗
h|2dt = |Q1/2

∞ h|2 − |Q1/2
∞ erA

∗
h|2,(4.5)

which follows from the computation∫ r

0

|B∗etA
∗
h|2dt =

∫ ∞

0

|B∗etA
∗
h|2dt−

∫ ∞

r

|B∗etA
∗
h|2dt

= |Q1/2
∞ h|2 −

∫ ∞

0

|B∗etA
∗
erA

∗
h|2dt

= |Q1/2
∞ h|2 − |Q1/2

∞ erA
∗
h|2.

Let us prove (i). We have

〈Q(α)
∞ h, h〉 =

∫ ∞

0

e−2αt|B∗etA
∗
h|2dt ≥ e−2αr

∫ r

0

|B∗etA
∗
h|2dt,

and using (4.5) we obtain

|(Q(α)
∞ )1/2h|2 ≥ e−2αr(|Q1/2

∞ h|2 − |Q1/2
∞ erA

∗
h|2).

Since Q
1/2
∞ erA

∗
h = S0(r)

∗Q1/2
∞ h, we arrive at

|(Q(α)
∞ )1/2h|2 ≥ e−2αr(1− ‖S0(r)‖2)|Q1/2

∞ h|2,
and the conclusion follows with c = e−2αr(1− ‖S0(r)‖2).

Now we prove (ii). We can assume c < 1. We have

|Q1/2
∞ erA

∗
h|2 =

∫ ∞

0

|B∗etA
∗
erA

∗
h|2dt =

∫ ∞

r

|B∗etA
∗
h|2dt ≥ e2rα

∫ ∞

r

e−2tα|B∗etA
∗
h|2dt

= e2rα

∫ ∞

0

e−2tα|B∗etA
∗
h|2dt− e2rα

∫ r

0

e−2tα|B∗etA
∗
h|2dt

= e2rα|(Q(α)
∞ )1/2h|2 − e2rα

∫ r

0

e−2tα|B∗etA
∗
h|2dt

≥ e2rα|(Q(α)
∞ )1/2h|2 − e2rα

∫ r

0

|B∗etA
∗
h|2dt.

By assumption we have |(Q(α)
∞ )1/2h|2 ≥ c|Q1/2

∞ h|2, and using (4.5) we obtain

|Q1/2
∞ erA

∗
h|2 ≥ c e2rα|Q1/2

∞ h|2 − e2rα(|Q1/2
∞ h|2 − |Q1/2

∞ erA
∗
h|2)

or

|Q1/2
∞ erA

∗
h|2 ≤ (1− c) e2rα(e2rα − 1)−1|Q1/2

∞ h|2.
Choosing r > 0 so large that γ := (1− c) e2rα(e2rα − 1)−1 < 1, and noting again that

Q
1/2
∞ erA

∗
h = S0(r)

∗Q1/2
∞ h, we obtain

|S0(r)
∗Q1/2

∞ h|2 ≤ γ|Q1/2
∞ h|2, h ∈ H.

This proves that |S0(r)
∗k|2 ≤ γ|k|2 for k ∈ imQ

1/2
∞ . Since, however, by its definition,

S0(r)k = 0 for k in the kernel of Q
1/2
∞ , which is the orthogonal subspace to imQ

1/2
∞ ,
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it follows that |S0(r)
∗k|2 ≤ γ|k|2 for every k ∈ H, which proves that ‖S0(r)‖2 ≤

γ < 1.
Replacing A with A − αI in the definition of S0(t), we get a different family of

operators that we will denote S
(α)
0 (t), namely,

S
(α)
0 (t) = e−αt(Q(α)

∞ )−1/2etA(Q(α)
∞ )1/2, t ≥ 0, α ≥ 0.(4.6)

Note that S
(0)
0 (t) = S0(t). As an immediate consequence of the properties enjoyed by

S0(t), we obtain the following result.
Corollary 4.5. Assume Hypothesis 3.1 and let α ≥ 0.

(i) If there exists r > 0 such that ‖S(α)
0 (r)‖ < 1, then for every β > α there exists

c > 0 such that cQ
(α)
∞ ≤ Q

(β)
∞ .

(ii) If there exist c > 0 and β > α such that cQ
(α)
∞ ≤ Q

(β)
∞ , then there exists r > 0

such that ‖S(α)
0 (r)‖ < 1.

(iii) If there exist α ≥ 0 and r > 0 such that ‖S(α)
0 (r)‖ < 1, then for every β > α

there exists s > 0 such that ‖S(β)
0 (s)‖ < 1.

Proof. To prove points (i) and (ii) it suffices to apply Proposition 4.4, replacing
A and α with A− αI and β − α, respectively.

To prove point (iii) take β1 > β. Then by point (i) (with β1 instead of β) there

exists c > 0 such that cQ
(α)
∞ ≤ Q

(β1)∞ . By point (ii) (with β instead of α) there exists

s > 0 such that ‖S(β)
0 (s)‖ < 1.

Lemma 4.6. Assume Hypothesis 3.1 and suppose that ‖S(α)
0 (r)‖ < 1 for some

α > 0 and r > 0. Then for all γ ∈ (0, α) sufficiently close to α we have ‖S(γ)
0 (r)‖ < 1.

Proof. We claim that if γ ∈ (0, α) is sufficiently close to α, then there exists c > 0
such that

Q(γ)
∞ ≤ cQ(α)

∞ .(4.7)

Assume the claim for a moment. Since the opposite inequality Q
(γ)
∞ ≥ Q

(α)
∞ is obvious,

we conclude by Lemma 2.2 that im (Q
(α)
∞ )1/2 = im (Q

(γ)
∞ )1/2. Since we assume

‖S(α)
0 (r)‖ < 1, we can apply Proposition 4.3 (replacing A with A− αI) and conclude

that im (Q
(α)
∞ )1/2 = im (Q

(α)
r )1/2. Since the latter space is clearly identical to

im (Q
(γ)
r )1/2, we also have im (Q

(γ)
r )1/2 = im (Q

(γ)
∞ )1/2, and applying Proposition

4.3 again (replacing A with A− γI) we conclude that ‖S(γ)
0 (r)‖ < 1, and the lemma

is proved.
It remains to prove (4.7). For 0 ≤ γ < α and h ∈ H,

〈etAQ(α)
∞ etA

∗
h, h〉 =

∫ ∞

0

|B∗e(t+s)A∗
h|2e−2αsds = e2αt

∫ ∞

t

|B∗esA
∗
h|2e−2αsds.

Integrating by parts, we have, for T > 0,∫ T

0

e−2γt〈etAQ(α)
∞ etA

∗
h, h〉 dt

=

∫ T

0

e2(α−γ)t

∫ ∞

t

|B∗esA
∗
h|2e−2αs ds dt

=
e2(α−γ)T

2(α− γ)

∫ ∞

T

|B∗esA
∗
h|2e−2αsds− 1

2(α− γ)
〈Q(α)

∞ h, h〉

+
1

2(α− γ)

∫ T

0

e−2γt|B∗etA
∗
h|2dt.
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Since

e2(α−γ)T

∫ ∞

T

|B∗esA
∗
h|2e−2αsds ≤

∫ ∞

T

|B∗esA
∗
h|2e−2γsds → 0

as T → ∞, we arrive at the identity

2(α− γ)

∫ ∞

0

e−2γt〈etAQ(α)
∞ etA

∗
h, h〉 dt = 〈Q(γ)

∞ h, h〉 − 〈Q(α)
∞ h, h〉.

We note that 〈etAQ(α)
∞ etA

∗
h, h〉 = e2αt〈(Q(α)

∞ )1/2S
(α)
0 (t)S

(α)
0 (t)∗(Q(α)

∞ )1/2h, h〉, so if
we define

Rh = 2(α− γ)

∫ ∞

0

e2(α−γ)tS
(α)
0 (t)S

(α)
0 (t)∗h dt, h ∈ H,

and we assume for a moment that R is a well-defined bounded linear operator, we
conclude that

〈(Q(α)
∞ )1/2R(Q(α)

∞ )1/2h, h〉 = 〈Q(γ)
∞ h, h〉 − 〈Q(α)

∞ h, h〉,

and consequently Q
(γ)
∞ ≤ (1 + ‖R‖)Q(α)

∞ , which proves (4.7). To show that R is well

defined, we first note that the family {S(α)
0 (t), t ≥ 0} is a contraction semigroup,

and since we assume that ‖S(α)
0 (r)‖ < 1 for some r > 0, it follows easily that there

exist M,ω > 0 such that ‖S(α)
0 (t)‖ ≤ M e−ωt for every t > 0. If α − γ < ω,

then the integral defining R is convergent (as a Bochner integral). This finishes the
proof.

4.2. Proof of Theorem 4.1. During the proof we repeatedly use the following
properties proved above: for 0 ≤ α < β and r > 0

Kα
∞ = im (Q(α)

∞ )1/2, Kr = im Q1/2
r , Kα

∞ ⊃ Kβ
∞ ⊃ Kr.(4.8)

We consider two mutually exclusive cases (i) and (ii).
Case (i). Suppose that we have ‖S0(r)‖ < 1 for some r > 0.

By Proposition 4.4 (i) and Lemma 2.2 we have im Q
1/2
∞ ⊂ im (Q

(α)
∞ )1/2 for all

α ≥ 0 or, equivalently, K∞ ⊂ Kα
∞ so that in fact K∞ = Kα

∞ for all α ≥ 0. Applying

Proposition 4.3, we also have K∞ = im Q
1/2
∞ = im Q

1/2
r = Kr.

Case (ii). Suppose ‖S0(r)‖ = 1 for every r > 0.
We define

J = {α ≥ 0 : ‖S(α)
0 (r)‖ = 1 for every r > 0}, α0 = supJ.

Note that the set J contains at least α = 0, so α0 is well defined and 0 ≤ α0 ≤ ∞.
By Corollary 4.5 (iii) only the following cases can occur:

(a) α0 = 0, J = {0};
(b) 0 < α0 < ∞, J = [0, α0];
(c) α0 = ∞, J = [0,∞).

Note that the case 0 < α0 < ∞, J = [0, α0) is impossible by Lemma 4.6.
Suppose 0 ≤ γ1 < γ2 < α0 ≤ ∞. Assume by contradiction that Kγ1∞ = Kγ2∞

(respectively, that α0 < ∞ and Kγ2∞ = Kα0∞ ). Then by (4.8) and Lemma 2.2 we have

cQ
(γ1)∞ ≤ Q

(γ2)∞ (respectively, cQ
(γ2)∞ ≤ Q

(α0)∞ ) for some c > 0, and Corollary 4.5 (ii)
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implies that there exists r > 0 such that ‖S(γ1)
0 (r)‖ < 1 (respectively, ‖S(γ2)

0 (r)‖ <
1), which contradicts the definition of α0. Next note that the equality Kγ2∞ = Kr

(respectively, α0 < ∞ and Kα0∞ = Kr) cannot hold for any r > 0 since by Proposition
4.3, applied to A− γ2I instead of A (respectively, applied to A−α0I instead of A), it

would imply that ‖S(γ2)
0 (r)‖ < 1 (respectively, ‖S(α0)

0 (r)‖ < 1), which is impossible.
Now suppose that 0 ≤ α0 < β1 < β2 < ∞. Assume by contradiction that

Kα0∞ = Kβ1∞ . Then by (4.8) and Lemma 2.2 we have cQ
(α0)∞ ≤ Q

(β1)∞ , and Corollary

4.5 (ii) implies that there exists r > 0 such that ‖S(α0)
0 (r)‖ < 1, which is impossible.

Next note that by the definition of α0 there exists r > 0 such that ‖S(β1)
0 (r)‖ < 1.

By Corollary 4.5 (i) and Lemma 2.2 we have im (Q
(β1)∞ )1/2 ⊂ im (Q

(β2)∞ )1/2 or,
equivalently, Kβ1∞ ⊂ Kβ2∞ so that in fact Kβ1∞ = Kβ2∞ . Finally, applying Proposition 4.3

(with A− β1I instead of A), we also have Kβ1∞ = im (Q
(β1)∞ )1/2 = im Q

1/2
r = Kr.

Theorem 4.1 is now completely proved.
This proof also describes a criterion to decide which case in Theorem 4.1 occurs,

as well as the value of α0.
Corollary 4.7. Assume Hypothesis 3.1. Let Q

(α)
∞ and S

(α)
0 be defined by (4.2)

and (4.6), respectively. Case (ii) in Theorem 4.1 occurs if and only if the set

J = {α ≥ 0 : ‖S(α)
0 (r)‖ = 1 for every r > 0}

is nonempty, and then α0 = supJ ∈ [0,∞].

4.3. Approximately reachable states. If the concept of reachability used so
far is replaced by approximate reachability, then the behavior of the perturbed system
(4.1) is completely different. This is a well-known fact, but we prefer to report a direct
proof in this short section since it is often used in a rather implicit way and it is not
easy to find a reference (see, however, Chapter 9 of [19]).

First, let us consider the control system (3.2) and define Hr, the space of approx-
imately reachable states from zero in time r, as the set of all elements k ∈ H such
that for all ε > 0 there exists a control u ∈ L2(T − r, T ;U) such that |y(T ) − k| < ε,
where y denotes the corresponding trajectory of system (3.2) with h = 0.

In an analogous way we define the space H∞ as the space of approximately reach-
able states over the unbounded time interval (−∞, T ] for system (3.3), corresponding
to controls u ∈ L2(−∞, T ;U).

For the perturbed system

y′α(t) = (A− αI)yα(t) +Bu(t),(4.9)

with α ≥ 0, the spaces of approximately reachable states will be denoted by Hα
r and

Hα
∞, respectively, for the case of a bounded time interval and an unbounded one.

Clearly, Hα
r = Hr.

We claim that Hα
∞ = ∪rHr for all α, so, in particular, Hα

∞ is independent of α.
To prove the claim, let us take an element k ∈ Hα

∞; we want to prove that there
exists a suitable r such that k ∈ Hα

r = Hr. In fact, by definition of the trajectory of
a control system (compare with formula (3.4)) and by assumption (3.1), we have that
for all ε > 0 there exists r > 0 so large that |yα(T )− ỹα(T )| < ε, where ỹα denotes the
trajectory of the system (4.9), starting from zero at time T − r, driven by the control
ũ ∈ L2(T − r, T ;U) which coincides with u on [T − r, T ]. By triangular inequality we
conclude that k ∈ Hα

r , and the claim is proved.
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5. Examples and remarks. The aim of this section is to show that all the
situations in the statement of Theorem 4.1 may occur, namely, case (i) or case (ii)
with α0 = 0 or 0 < α0 < ∞ or α0 = ∞. The value of α0 is difficult to compute in

general, since it is defined in terms of the semigroup S
(α)
0 (compare with Corollary

4.7) and not in terms of A and B. Nevertheless, in some interesting cases we do
have explicit solutions to the problem. We also discuss the relevance of Theorem 4.1
to special classes of systems—for instance, the finite-dimensional systems or the null
controllable ones.

5.1. Case (i) of Theorem 4.1.

5.1.1. The finite-dimensional case.
Corollary 5.1. Assume that Hypothesis 3.1 holds and that dim H < ∞. Then

case (i) of Theorem 4.1 occurs and Kα
∞ = Kt for every t > 0 and α ≥ 0.

Thus every state reachable in an unbounded time interval (no matter what the
value of α is) can be reached in an arbitrarily small time t > 0.
Proof. We claim that

im Q1/2
∞ = im Q

1/2
t , t > 0.(5.1)

Since im Q
1/2
∞ = K∞, case (i) of Theorem 4.1 occurs, and the reachability spaces Kα

∞
coincide for all α ≥ 0 and in fact they coincide with Kt for every t > 0.

To prove the claim we note that if dim H < ∞, then (5.1) is equivalent to

kerQ
1/2
∞ = kerQ

1/2
t (ker denotes of course the kernel of an operator). Clearly,

kerQ
1/2
∞ ⊂ kerQ

1/2
t . Conversely, if Q

1/2
t h = 0 for some h ∈ H, then Qth = 0

and Q1/2esAh = 0 for every s ∈ [0, t]. By analyticity, Q1/2esAh = 0 for every s ≥ 0.

This implies Q∞h = 0 and consequently Q
1/2
∞ h = 0.

5.1.2. Exactly null controllable systems.
Corollary 5.2. Assume that Hypothesis 3.1 holds and that there exists r > 0

such that

im erA ⊂ im Q1/2
r .(5.2)

Then case (i) of Theorem 4.1 occurs and in fact Kα
∞ = Kr for every α ≥ 0.

It is well known that (5.2) is equivalent to the exact null controllability property in
time r, defined as follows: for every h ∈ H there exists a control u ∈ L2([T − r, T ];U)
such that the trajectory of the control system

y′(t) = Ay(t) +Bu(t), t ∈ [T − r, T ], y(T − r) = h,

satisfies y(T ) = 0 (see, e.g., [7], [21]). The pair (A,B) is then called a null controllable
pair (in time r). It is also well known that this property holds if B = I (for every
r > 0).
Proof. We claim that (5.2) implies

im Q1/2
∞ = im Q1/2

r .(5.3)

Then it follows from Proposition 4.3 that ‖S0(r)‖ < 1 and by Corollary 4.7 we con-
clude that case (i) in Theorem 4.1 occurs.

The claim is proved in [8, Theorem 11.13], but we nevertheless include the follow-

ing simpler proof. First note that the inequality Qr ≤ Q∞ implies that im Q
1/2
r ⊂
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im Q
1/2
∞ by Lemma 2.2. Next note that the inclusion (5.2) implies that the opera-

tor Γr := Q
−1/2
r erA is everywhere defined, and since it is closed, it is also bounded,

by the closed graph theorem. From the definition of Q∞ it is easy to obtain the

identity erAQ∞erA
∗
+ Qr = Q∞, and it follows that Q

1/2
r (ΓrQ∞Γ∗

r + I)Q
1/2
r = Q∞,

which implies |Q1/2
∞ x|2 ≤ (1 + ‖ΓrQ∞Γ∗

r‖)|Q1/2
r x|2, x ∈ H, and so, by Lemma 2.2,

im Q
1/2
∞ ⊂ im Q

1/2
r , and (5.3) is proved.

5.1.3. A special case.
Corollary 5.3. Suppose that Hypothesis 3.1 holds and that, setting Q = BB∗,

we have

im etAQ1/2 ⊂ im Q1/2 and ‖Q−1/2etAQ1/2‖ ≤ Me−βt, t ≥ 0,(5.4)

for some constants β > 0, M > 0. Then case (i) of Theorem 4.1 occurs and Kα
∞ = Kr

for every α ≥ 0 and r > 0.
We remark that im B = im Q1/2 by Lemma 2.2. Moreover, the inclusion in (5.4)

implies that the linear operators Q−1/2etAQ1/2 are everywhere defined and therefore,
being obviously closed, they are also continuous.

We note that all the assumptions of the corollary hold true if B is a bounded
linear operator from U to H and A is the infinitesimal generator of an exponentially
stable, strongly continuous semigroup of operators that commute with Q = BB∗.
Thus there are many control systems satisfying these assumptions.
Proof. We define Ŝ(t) = Q−1/2etAQ1/2 for t > 0, Ŝ(0) = I. Clearly, Ŝ is a

semigroup of bounded linear operators on H, satisfying ‖Ŝ(t)‖ ≤ Me−βt, t ≥ 0. We
note that for x ∈ H, y ∈ im Q1/2,

〈Ŝ(t)x, y〉 = 〈etAQ1/2x,Q−1/2y〉 → 〈x, y〉, as t → 0.(5.5)

Since Ŝ is bounded in the operator norm, it follows that (5.5) holds for every x ∈ H

and y ∈ im Q1/2 (the closure of im Q1/2 in H). Since Ŝ(t)x = Q−1/2etAQ1/2x

is orthogonal to kerQ1/2 = im Q1/2, (5.5) holds for all x, y ∈ H. Thus, for every

x ∈ H, Ŝ(t)x → x weakly in H; it is well known that this implies that Ŝ is a strongly
continuous semigroup.

Let Â denote the infinitesimal generator of Ŝ. We consider the pair (Â, I), and
we define the corresponding controllability operators

Q̂∞x =

∫ ∞

0

Ŝ(t)Ŝ(t)∗x dt, Q̂rx =

∫ r

0

Ŝ(t)Ŝ(t)∗x dt, x ∈ H, r > 0.

Since the pair (Â, I) is null controllable in time r for every r > 0, by the results of
the previous paragraph we conclude that there exists a constant Cr > 0 such that

|Q̂1/2
∞ x|2 ≤ Cr|Q̂1/2

r x|2. Since Q1/2Ŝ(t) = etAQ1/2, it follows that

Q1/2Q̂∞Q1/2x =

∫ ∞

0

Q1/2Ŝ(t)Ŝ(t)∗Q1/2x dt =

∫ ∞

0

etAQetA
∗
x dt = Q∞x, x ∈ H,

and, similarly, Q1/2Q̂rQ
1/2 = Qr. Therefore,

|Q1/2
∞ x|2 = |Q̂1/2

∞ Q1/2x|2 ≤ Cr|Q̂1/2
r Q1/2x|2 = Cr|Q1/2

r x|2, x ∈ H,

which implies im Q
1/2
∞ ⊂ im Q

1/2
r . Since the opposite inclusion is obvious, we have

im Q
1/2
∞ = im Q

1/2
r for r > 0 and the result follows.
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5.1.4. Exactly reachable systems.
Corollary 5.4. Suppose that Hypothesis 3.1 holds and that A is exponentially

stable. If K∞ = H, then case (i) of Theorem 4.1 occurs and consequently Kr = H for
r > 0 sufficiently large.

Systems satifying the condition K∞ = H may be called exactly reachable on
(−∞, T ]. Thus, if A is exponentially stable, exact reachability on (−∞, T ] implies
exact reachability on a bounded interval [T − r, T ].
Proof. By a standard duality argument one can check that the equality K∞ = H

is equivalent to the following condition: there exists κ > 0 such that∫ ∞

0

|B∗etA
∗
x|2 dt ≥ κ|x|2, x ∈ H.(5.6)

Condition (5.6) is called exact observability for the pair (A∗, B∗). Since A is expo-
nentially stable, it follows from Proposition 2.8 in [18] that (5.6) holds if and only if
there exist r > 0 and κr > 0 such that∫ r

0

|B∗etA
∗
x|2 dt ≥ κr|x|2, x ∈ H,

and this is equivalent to the equality Kr = H, again by duality.

5.2. Case (ii) of Theorem 4.1 with α0 = 0. The example in this section
was invented by GoOldys for a different purpose [14]. Let H = U be a Hilbert space
and {hk, k ≥ 1} an orthonormal basis of H. Define the operators A and B setting

Ahk = −1

k
hk, Bhk =

1

k3/2
hk.

Note that A and B are commuting bounded self-adjoint operators, and A is nonpos-
itive, but, in contrast to section 5.1.3, A does not have bounded inverse. Hypothesis
3.1 is easy to verify. We have S0(t) = etA and etAhk = e−t/khk, k ≥ 1, so that

‖S0(t)‖ = 1 for every t > 0, whereas ‖S(α)
0 (t)‖ = e−αt‖S0(t)‖ < 1 for every t > 0.

Corollary 4.7 shows that in this example we have α0 = 0.
Remark 5.5. In this example the semigroup (etA) is not exponentially sta-

ble. In Remark 5.6 below we will give another example, where α0 = 0 and (etA) is
exponentially stable.

5.3. Case (ii) of Theorem 4.1 with 0 < α0 < ∞. We take H = U = L2(R).
Let the operators etA be the shift operators

etAf(x) = f(x− t), t ≥ 0, x ∈ R,

and let the operator B be multiplication by the function e−|x|: Bf(x) = e−|x|f(x),
x ∈ R. Then one finds with simple calculations

etA
∗
f(x) = f(x+ t), etABB∗etA

∗
f(x) = e−2|x−t|f(x), t ≥ 0, x ∈ R,

so that Q
(α)
∞ , α ≥ 0, is the multiplication operator by the function gα:

Q(α)
∞ f(x) = gα(x)f(x), gα(x) =

∫ ∞

0

e−2αte−2|x−t| dt, x ∈ R.
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It is immediate to verify (3.1), and so Hypothesis 3.1 holds. Elementary computations
show that for α �= 1

gα(x) =




e−2x

2(α− 1)

(
1− 2

α + 1
e−2(α−1)x

)
for x > 0,

e2x

2(α + 1)
for x ≤ 0,

whereas

g1(x) =




e−2x

(
x+

1

4

)
for x > 0,

e2x

4
for x ≤ 0.

For 0 ≤ α < β, the inclusion Kα
∞ = im (Q

(α)
∞ )1/2 ⊃ im (Q

(β)
∞ )1/2 = Kβ

∞ always

holds, so we have equality if and only if im (Q
(α)
∞ )1/2 ⊂ im (Q

(β)
∞ )1/2. Since, clearly,

(Q
(α)
∞ )1/2 is the multiplication operator by the function g

1/2
α , equality holds if and

only if supx∈R
gα(x)/gβ(x) < ∞. Taking into account the previous formulae, one

concludes that this holds if and only if 1 < α < β. Therefore, in this example the
spaces Kα

∞ are all equal for α > 1, whereas they are all distinct for 0 ≤ α ≤ 1 (and
K1

∞ � Kα
∞ if α > 1).

The number α0 in the statement of Theorem 4.1 is equal to 1.
Remark 5.6. Let us change the definition of the operator A by subtracting the

identity operator; namely, we define the semigroup (etA) setting

etAf(x) = e−t f(x− t), t ≥ 0, x ∈ R.

Then (etA) clearly satisfies ‖etA‖ ≤ e−t and so it is exponentially stable. In this case
the value of α0 is changed to α0 = 0.

5.4. Case (ii) of Theorem 4.1 with α0 = ∞. We start with some preliminary
considerations. Inspection of the statement of Theorem 4.1 shows that if case (i)
occurs or if case (ii) occurs with α0 < ∞, then there exist α > 0 and r > 0 such that
Kα

∞ = Kr. Since, as already noted, Kr ⊂ Ks ⊂ Kα
∞ for r < s, it follows that in these

cases the spaces Kt coincide for all values of t large enough. Therefore, in order to
find a situation where α0 = ∞, it suffices to construct an example where Kt are all
distinct for t > 0.

The example that follows was communicated to us by Zabczyk.
We take H = L2([0,∞)) and let the operators etA be the right shift operators

etAf(x) =

{
f(x− t), t ≥ 0, x ≥ t,
0, t > 0, x < t.

Next we denote by b the characteristic function of the interval [0, 1] (note that b ∈ H);
we take U = R and define the operator B as the rank one operator: Bv = bv, v ∈ R.
Since, for every t > 0,

Kt = im Lt =

{∫ t

0

e(t−s)Ab u(s) ds : u ∈ L2([0, t])

}
,

it can be easily verified that the closure of Kt in H, denoted Kt, is the closure of the
linear span of

{erAb : r ∈ [0, t]}.
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It follows that elements of Kt have supports contained in the interval [0, 1 + t] and,
moreover, Kt contains functions which are nonzero in a left neighborhood of t. There-
fore, the spaces Kt are distinct for different values of t, and so the spaces Kt, t > 0,
are also all distinct.

6. Applications to the Ornstein–Uhlenbeck process. As explained in the
introduction, one of the motivations for studying the reachability spaces K∞ intro-
duced above is their probabilistic interpretation. This is the subject of the present
section.

Let us consider the following stochastic equation:{
dX(t) = AX(t) dt +B dW (t), t ≥ 0,
X(0) = X0.

(6.1)

We assume that H and U are real separable Hilbert spaces, A is the generator of a
strongly continuous semigroup {etA, t ≥ 0} of bounded linear operators in H, and
B is a bounded linear operator from U to H. We assume that we are also given a
probability space (Ω,F ,P), endowed with a filtration {Ft, t ≥ 0} satisfying the usual
conditions, and a cylindrical (Ft)-Wiener process {W (t) t ≥ 0} defined on Ω with
values in U ; see, e.g., [8]. X0 is an F0-measurable random variable with values in H.
We also assume that the gramian operators

Qth =

∫ t

0

esABB∗esA
∗
h ds, h ∈ H, t > 0,

introduced above, have finite trace.
Under these assumptions, the solution of (6.1) is defined as the stochastic process

with values in H:

X(t) = etAX0 +

∫ t

0

e(t−s)AB dW (s), t ≥ 0.(6.2)

The integral occurring in (6.2) is the Itô stochastic integral and, for every t, it defines a
random variable with values in H because of the finite trace condition Trace Qt < ∞.
Moreover, if X0 is gaussian, then the process X is also gaussian. It is called the
(nonsymmetric) Ornstein–Uhlenbeck process. For a detailed exposition of these facts,
we refer to [8].

A basic problem is to investigate properties of invariant measures for the process
X, i.e., Borel probability measures ν on H such that, if X0 has distribution ν, then
also X(t) has distribution ν for every t. Invariant measures are known to exist if and
only if

sup
t>0

Trace Qt < ∞.(6.3)

In this case, one invariant measure is the gaussian measure µ on H having zero mean
and covariance equal to the extended gramian operator Q∞ introduced above:

Q∞h =

∫ ∞

0

esABB∗esA
∗
h ds, h ∈ H.

Under some additional assumptions, for instance if A is exponentially stable, µ is the
unique invariant measure. For the proof of these facts, we still refer the reader to [8].
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Remark 6.1. If (6.3) holds, then it is easy to show that condition (3.1) also holds
(in particular, Hypothesis 3.1 is satisfied) and the operator Q∞ has finite trace.

Associated to the centered gaussian measure µ is the so-called Cameron–Martin

space (see, e.g., [1]), which coincides with the image of Q
1/2
∞ and hence with the space

of reachable states K∞ introduced in the previous sections.
We address the problem to study the behavior of the Cameron–Martin space

under perturbation of the Ornstein–Uhlenbeck process. Thus, for α ≥ 0, we consider
the processes Xα, solution of{

dXα(t) = (A− αI)Xα(t) dt +B dW (t), t ≥ 0,
Xα(0) = X0,

(6.4)

and we consider the centered gaussian measures µα with covariance operator Q
(α)
∞

defined in (4.2). It follows from the previous discussion that µα is an invariant measure
for Xα (and it is unique if A−α is exponentially stable) and that the Cameron–Martin
space of µα coincides with Kα

∞.
The following proposition is the main result of this section. It is a direct conse-

quence of Theorem 4.1.
Proposition 6.2. Assume Hypothesis 3.1 and assume (6.3). Let µα, α ≥ 0,

be the centered gaussian invariant measures introduced above, and let Kα
∞ be their

Cameron–Martin spaces. Then all the conclusions of Theorem 4.1 hold true.
Remark 6.3. The occurrence of the various possibilities described in Theorem

4.1 depends on the inequality ‖S(α)
0 (t)‖ < 1 for various values of α ≥ 0 and t > 0 or

the equivalent one im (Q
(α)
∞ )1/2 = im Q

1/2
t (compare with Proposition 4.3). These

conditions play an important role in connection with various regularity properties of
the transition semigroup of the Markov process Xα.

For instance, assume that Hypothesis 3.1 and (6.3) are satisfied, take α = 0, and
assume that kerQ∞ = {0}. (This simplifies some of the statements.) The transition
semigroup of the Ornstein–Uhlenbeck process, denoted {Rt, t ≥ 0}, can be considered
as a strongly continuous contraction semigroup on each space Lp(H,µ), p ∈ [1,∞)
(the space of Borel measurable functions φ : H → R such that

∫
H
|φ(x)|pµ(dx) < ∞,

endowed with its usual norm). It is proved in [3, Theorem 2] that the stronger property

φ ∈ Lp(H,µ), p ∈ (1,∞) =⇒ Rtφ ∈ Lq(H,µ) and(6.5)

‖Rtφ‖Lq(H,µ) ≤ ‖φ‖Lp(H,µ)

for some q > p holds if and only if im Q
1/2
∞ = im Q

1/2
t . (The value of q depends

on t and p.) Property (6.5) is called hypercontractivity (at time t > 0). Thus, by
Proposition 4.3 and Corollaries 4.5 and 4.7, hypercontractivity holds at some t > 0 if
and only if case (i) of Theorem 4.1 occurs.

Similar considerations relate the inequalities ‖S(α)
0 (t)‖ < 1 (or the equalities

im (Q
(α)
∞ )1/2 = im Q

1/2
t ) to various regularity properties of the transition semigroup

R, such as compactness, differentiability, and smoothing properties in appropriate
function spaces. For further details, we refer the reader to [3, 4, 5, 6, 11, 13, 14].
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