established that if $f \in M_{w}^{2}[0, \infty)$ and ζ_{1}, ζ_{2} are bounded stopping times, $\zeta_{1} \leqslant \zeta_{2}$, then

$$
\begin{aligned}
E\left\{\int_{\xi_{1}}^{\zeta_{2}} f(s) d w(s) \mid \mathscr{F}_{\xi_{1}}\right\} & =0 \\
E\left\{\left|\int_{\zeta_{1}}^{\zeta_{2}} f(s) d w(s)\right|^{2} \mid \mathscr{F}_{\xi_{1}}\right\} & =E\left\{\int_{\zeta_{1}}^{\zeta_{2}}|f|^{2} d s \mid \mathscr{F}_{\xi_{1}}\right\}
\end{aligned}
$$

a.s. The proof of these formulas is similar to the proof of Theorem 4.3. It employs Theorem 2.8 which remains valid for n-dimensional stochastic integrals.

We conclude this section with an extension of Theorem 6.5 to n dimensions.

Theorem 7.5. Let $f=\left(f_{1}, \ldots, f_{n}\right)$ belong to $L_{w}^{2}[0, T]$, and let α, β be positive numbers. Then

$$
\begin{equation*}
P\left\{\max _{0<t<r}\left[\int_{0}^{t} f(\lambda) d w(\lambda)-\frac{\alpha}{2} \int_{0}^{t}|f(\lambda)|^{2} d \lambda\right]>\beta\right\} \leqslant e^{-\alpha \beta} \tag{7.12}
\end{equation*}
$$

The proof is similar to the proof of Theorem 6.5. First we prove (7.12) in case $f(t)$ is a step function, using the martingale inequality, and then proceed to general f by approximation.

The inequality (7.12) is referred to as the exponential martingale inequality.

Corollary 6.6 also extends to the present n-dimensional case, i.e.,

$$
\exp \left\{\int_{0}^{t} f d w-\frac{1}{2} \int_{0}^{t}|f|^{2} d s\right\}
$$

is a supermartingale.

PROBLEMS

1. Prove (2.20).
2. Prove Theorem 3.9 [Hint: Apply Theorem 3.6 to $\xi f(t), \xi$ bounded and σ_{α} measurable.]
3. Suppose $f \in L_{w}^{2}[0, \infty)$ and ζ is a stopping time such that $E \int_{0}^{\zeta} f^{2}(t) d t<\infty$. Prove that

$$
E \int_{0}^{\zeta} f(t) d w(t)=0, \quad E\left|\int_{0}^{\zeta} f(t) d w(t)\right|^{2}=E \int_{0}^{\zeta} f^{2}(t) d t
$$

4. Let

$$
\rho(x)=\left\{\begin{array}{lll}
c \exp \left[1 /\left(|x|^{2}-1\right)\right] & \text { if } & |x|<1 \\
0 & \text { if } & |x|>1
\end{array}\right.
$$

for $x \in R^{n}$, where c is a positive constant such that $\int_{R^{n}} \rho(x) d x=1$. If f is a function locally integrable, then

$$
\left(J_{\epsilon} f\right)(x)=\frac{1}{\epsilon^{n}} \int_{R^{n}} \rho\left(\frac{x-y}{\epsilon}\right) f(y) d y
$$

is called a mollifier of f. Prove:
(i) $J_{\epsilon} f$ is in $C^{\infty}\left(R^{n}\right)$;
(ii) If K is a compact set and Ω a bounded open set containing K, then

$$
\begin{aligned}
\left(J_{\epsilon} f\right)(x) & =\frac{1}{\epsilon^{n}} \int_{\Omega} \rho\left(\frac{x-y}{\epsilon}\right) f(y) d y \\
& =\int_{|z|<1} \rho(z) f(x-\epsilon z) d z \quad(x \in K)
\end{aligned}
$$

provided $\epsilon<\operatorname{dist}\left(K, R^{n} \backslash \Omega\right)$.
(iii) If $f \in L^{p}(\Omega)$ for some $p \geqslant 1$, then

$$
\left\{\int_{K}\left|J_{\epsilon} f\right|^{p} d x\right\}^{1 / p} \leqslant\left\{\int_{\Omega}|f|^{p} d x\right\}^{1 / p}
$$

(iv) If $f \in L^{p}(\Omega)$ for some $p \geqslant 1$, then

$$
\int_{K}\left|J_{\epsilon} f-f\right|^{p} d x \rightarrow 0 \quad \text { if } \quad \epsilon \rightarrow 0
$$

5. Let $f(x)$ be a continuous function for $\alpha \leqslant x \leqslant \beta$, and let

$$
\left(P_{k} f\right)(x)=\frac{\int_{\alpha}^{\beta}\left[1-(x-y)^{2}\right]^{k} f(y) d y}{\int_{-1}^{1}\left(1-y^{2}\right)^{k} d y} \quad(k=1,2, \ldots)
$$

Let δ be any positive number. Prove that $\left(P_{k} f\right)(x) \rightarrow f(x)$ uniformly in $x \in[\alpha+\delta, \beta-\delta]$ as $k \rightarrow \infty$. [Hint: $\left[\int_{e}^{1}\left(1-y^{2}\right)^{k} d y / \int_{0}^{1}\left(1-y^{2}\right)^{k} d y\right] \rightarrow 0$ if $k \rightarrow \infty$, for any $\epsilon>0$.]
6. Let $f(x)$ be a continuous function in an n-dimensional interval $\mathrm{I} \equiv\left\{\mathrm{x} ; \alpha_{\mathrm{i}} \leqslant \mathrm{x} \leqslant \beta_{\mathrm{i}}, \mathrm{l} \leqslant \mathrm{i} \leqslant \mathrm{n}\right\}$, and let

$$
\begin{aligned}
\left(P_{k} f\right)(x) & =\frac{\int_{\alpha_{1}}^{\beta_{1}} \cdots \int_{\alpha_{n}}^{\beta_{n}} \Pi_{i=1}^{n}\left[1-\left(x_{i}-y_{i}\right)^{2}\right]^{k} f(y) d y_{n} \cdots d y_{1}}{\left[\int_{-1}^{1}\left(1-y^{2}\right)^{k} d y\right]^{n}} \\
(k & =1,2, \ldots) .
\end{aligned}
$$

Let I_{0} be any subset lying in the interior of I. Prove that, as $k \rightarrow \infty$,

$$
\left(P_{k} f\right)(x) \rightarrow f(x) \quad \text { uniformly in } \quad x \in I_{0}
$$

Notice that $P_{k} f$ is a polynomial. It is called a polynomial mollifier of f.
7. If in the preceding problem f belongs to $C^{m}(I)$ and f vanishes in a neighborhood of the boundary of I, then

$$
\frac{\partial^{i_{1}+\cdots+i_{n}}}{\partial x_{1}^{i_{1}} \cdots \partial x_{n}^{i_{n}}}\left(P_{k} f\right)(x) \rightarrow \frac{\partial^{i_{1}+\cdots+i_{n}}}{\partial x_{1}^{i_{1}} \cdots \partial x_{n}^{i_{n}}} f(x) \quad \text { if } \quad k \rightarrow \infty,
$$

uniformly in $x \in I_{0}$, for any $\left(i_{1}, \ldots, i_{n}\right)$ such that $0 \leqslant i_{1}+\cdots+i_{n} \leqslant m$. 8. If $f \in C^{m}\left(R^{n}\right)$, then there exists a sequence of polynomials Q_{k} such that, as $k \rightarrow \infty$,
$\frac{\partial^{i_{1}+\cdots+i_{n}}}{\partial x_{1}^{i_{1}} \cdots \partial x_{n}^{i_{n}}} Q_{k}(x) \rightarrow \frac{\partial^{i_{1}+\cdots+i_{n}}}{\partial x_{1}^{i_{1}} \cdots \partial x_{n}^{i_{n}}} f(x) \quad$ for $\quad 0 \leqslant i_{1}+\cdots+i_{n} \leqslant m$,
uniformly in x in compact subsets of R^{n}. [Hint: Approximate f by functions with compact support, and apply Problem 7 to these functions.]
9. If in the previous problem it is assumed that $f, f_{x_{1}}(1 \leqslant i \leqslant n)$ and $f_{x_{i} x_{i}}$ ($2 \leqslant i, j \leqslant n$) are continuous in R^{n} (instead of $f \in C^{m}\left(R^{n}\right)$), then

$$
\begin{gathered}
Q_{k} \rightarrow f, \quad \frac{\partial}{\partial x_{i}} Q_{k} \rightarrow \frac{\partial f}{\partial x_{i}} \quad(1 \leqslant i \leqslant n), \\
\frac{\partial^{2}}{\partial x_{i} \partial x_{i}} Q_{k} \rightarrow \frac{\partial^{2} f}{\partial x_{i} \partial x_{i}} \quad(2 \leqslant i, j \leqslant n)
\end{gathered}
$$

uniformly on compact subsets of R^{n}.
10. Let $f(x, t)$ be a continuous function in $(x, t) \in \mathrm{R}^{n} \times[0, \infty)$ together with its derivatives $f_{t}, f_{x_{i},}, f_{x_{i} x_{i}}$. Prove that there exists a function F continuous in $(x, t) \in R^{n} \times R^{1}$ together with its derivatives $F_{t}, F_{x_{i}}, F_{x_{i} x_{i}}$, such that $F(x, t)=f(x, t)$ if $x \in R^{n}, t \geqslant 0$.
11. Let $f(x, t)=f\left(x_{1}, \ldots, x_{n}, t\right)$ be a continuous function in $(x, t) \in R^{n} \times[0, \infty)$ together with its derivatives $f_{t}, f_{x_{i}}, f_{x_{i} x_{i}}$. Then there exists a sequence of polynomials $Q_{m}(x, t)$ such that, as $m \rightarrow \infty$,

$$
Q_{m} \rightarrow f, \quad \frac{\partial}{\partial t} Q_{m} \rightarrow f_{t}, \quad \frac{\partial}{\partial x_{i}} Q_{m} \rightarrow f_{x_{i}}, \quad \frac{\partial^{2}}{\partial x_{i} \partial x_{i}} Q_{m} \rightarrow f_{x_{i} x_{i}}
$$

uniformly in compact subsets. [Hint: Combine Problems 9, 10.]
12. Prove (5.8).
13. Prove (5.14) and complete the proof of (5.13).
14. Let $f \in L_{w}^{2}[0, \infty),|f| \leqslant K(K$ constant $)$ and let $d \xi(t)=f(t) d w(t)$, $\xi(0)=0$ where $\boldsymbol{w}(t)$ is a Brownian motion. Prove:
(i) if $f \leqslant \beta$, then $E|\xi(t)|^{2} \leqslant \beta^{2} t$;
(ii) if $f \geqslant \alpha>0$, then $E|\xi(t)|^{2} \geqslant \alpha^{2} t$.
15. Prove Theorem 5.3. [Hint: Proceed as in the proof of Theorem 5.2, but with

$$
\Phi(w(t), t)=f\left(\xi_{10}+a_{1} t+b_{1} w(t), \ldots, \xi_{m 0}+a_{m} t+b_{m} w(t)\right)
$$

where ξ_{i}, a_{i} are random variables and the b_{i} are random n-vectors; cf. Step 4.]
16. Let $\xi(t)=\int_{0}^{t} b(t) d w(t)$ where b is an $n \times n$ matrix belonging to $L_{w}^{2}[0, \infty)$. Suppose that $d \xi_{i} d \xi_{i}=0$ if $i \neq j, d \xi_{i} d \xi_{i}=d t$ (see (7.8) for the definition of $d \xi_{i} d \xi_{j}$, for all $1 \leqslant i, j \leqslant n$. Prove that $\xi(t)$ is an n-dimensional Brownian motion. [Hint: First proof: Use Theorem 3.6.2. Second proof: Suppose the elements of b are bounded step functions and let $\zeta(t)$ $=\exp \left[i \gamma \cdot \xi(t)+\gamma^{2} t / 2\right]$. By Itô's formula $d \zeta=i \zeta \gamma d w$. By Theorem 2.8

$$
E\left[e^{i \gamma-\xi(t)} \mid \mathscr{F}_{s}\right]=e^{i \gamma-\xi(s)} e^{-\gamma^{2}(t-s) / 2}
$$

Use Problem 2, Chapter 3.]
17. Let $\gamma>0, a>0, \tau=\min \{t ; w(t)=a\}$ where $w(t)$ is one-dimensional Brownian motion. Prove that $P(\tau<\infty)=1$ and

$$
E e^{-\gamma \tau}=\exp (-\sqrt{2 \gamma} a)
$$

[Hint: For any $c>0$,

$$
P\left[\max _{0<s \leqslant t} w(s)>c\right] \leqslant P\left[\max _{0<s<t}\left(w(s)-\frac{\alpha}{2} s\right)>\beta\right]<e^{-c^{2} / 2 t}
$$

where $\alpha=c / t, \beta=c / 2$. Hence $P(\tau<\infty)=1$. Since $y(t)=\exp [\gamma w(t)-$ $\left.\gamma^{2} t / 2\right]$ is a martingale, so is $y(t \wedge \tau)$. Hence

$$
E \exp \left[\gamma w(t \wedge \tau)-\frac{1}{2} \gamma^{2}(t \wedge \tau)\right]=1
$$

Take $t \uparrow \infty$.]
18. Under the conditions of the previous problem

$$
P(\tau \in d t)=\frac{a}{\left(2 \pi t^{3}\right)^{1 / 2}} \exp \left(-\frac{a^{2}}{2 t}\right) d t
$$

[Hint: Use the fact (see, for instance, Feller [1]) that if the Laplace transform of two probability distributions concentrated on $[0, \infty)$ coincide, then the probability distributions coincide.]
19. If $w(t)$ is a Brownian motion and $0 \leqslant y, x<y$, then

$$
\begin{aligned}
P(w(t) & \left.\in d x, \max _{0<s<t} w(s) \in d y\right) \\
& =\left(\frac{2}{\pi t^{3}}\right)^{1 / 2}(2 y-x) \exp \left[-\frac{(2 y-x)^{2}}{2 t}\right] d x d y
\end{aligned}
$$

[Hint: Use Problem 12, Chapter 2 and Theorem 3.6.3 to deduce that

$$
P\left[w(t) \in d x, \max _{0<s<t} w(s) \geqslant y\right]=\int_{0}^{t} P(\tau \in d s) P[w(t-s)+y \in d x]
$$

where $\tau=\min \{t ; w(t)=y\}$, and apply the preceding problem.]
20. Let $f(t)$ be a continuous process in $L_{w}^{2}[0, T]$ and let $\Pi_{n}: t_{n, 0}=$ $0<t_{n, 1}<\cdots<t_{n, n}=T$ be a partition with mesh $\left|\Pi_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. Define

$$
\begin{aligned}
g_{n}(t) & =\sum_{i=0}^{i-1} f\left(t_{n, i}\right)\left(w\left(t_{n, i+1}\right)-w\left(t_{n, i}\right)\right)+f\left(t_{n, i}\right)\left(t-t_{n, i}\right) \\
& \text { if } \quad t_{n, i} \leqslant t<t_{n, i+1}
\end{aligned}
$$

Prove that for some subsequence $\left\{n^{\prime}\right\}$ of $\{n\}$,

$$
\sup _{0<t<T}\left|\int_{0}^{t} f(s) d w(s)-g_{n^{\prime}}(t)\right| \rightarrow 0 \quad \text { a.s. } \quad \text { if } \quad n^{\prime} \rightarrow \infty
$$

21. Let $\sigma(x, t)$ be a measurable function in $(x, t) \in R^{n}$ such that

$$
|\sigma(x, t)-\sigma(\bar{x}, t)| \leqslant \eta(|x-\bar{x}|), \quad \eta(\delta) \downarrow 0 \quad \text { if } \delta \downarrow 0
$$

and let $f(t)$ be an n-dimensional continuous process in $L_{w}^{2}[0, T]$. Let

$$
\sigma_{\epsilon}(x, t)=\frac{1}{\epsilon} \int_{-1}^{T} \rho\left(\frac{t-s-\epsilon}{\epsilon}\right) \sigma(x, s) d s \quad(2 \epsilon<1)
$$

where $\rho(t)$ is defined as in Lemma 1.1 and $\sigma(x, s)=\sigma(x, 0)$ if $-1<s<0$. Prove:
(i) $\int_{0}^{T}\left|\sigma(x, t)-\sigma_{\epsilon}(x, t)\right|^{2} d t \rightarrow 0$ uniformly in x in bounded sets, as $\epsilon \rightarrow 0$.
(ii) $\int_{0}^{T}\left|\sigma(f(t), t)-\sigma_{\epsilon}(f(t), t)\right|^{2} d t \rightarrow 0$ a.s. as $\epsilon \rightarrow 0$.
(iii) $\sup _{0 \leqslant t \leqslant T}\left|\int_{0}^{t} \sigma(f(s), s) d w(s)-\int_{0}^{t} \sigma_{\epsilon_{n}}(f(s), s) d w(s)\right| \rightarrow 0$ a.s. for some sequence $\epsilon_{n} \downarrow 0$.
[Hint: for (i), use the uniform continuity in x of $\int \sigma(x, t) d t$ and of $\int \sigma_{\epsilon}(x, t) d t$.]

