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Motivation

Electroencephalography (EEG) and magnetoencephalography
(MEG) are two non-invasive techniques used to localize electric
activity in the brain from measurements of external
electromagnetic signals. EEG measures the scalp electric potential,
while MEG measures the external magnetic flux.

Source localization is an inverse problem: knowing the value of the
electric field or of the magnetic field on the surface of the head,
the aim is to determine the current density that has given rise to
that value.
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Modelization

The frequency spectrum for electrophysiological signals in EEG and
MEG is typically below 1000 Hz, most frequently between 0.1 and
100 Hz.

Hence, we can choose among different models:

static: put the frequency equal to 0;

eddy current: low frequency approximation (time variation of
the electric field is disregarded, while time variation of the
magnetic field is kept);

full Maxwell: no term is dropped.
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Maxwell equations

Let us give a closer look. We start considering the Maxwell
equations

curlH− ε∂E∂t = σE + Je (Maxwell - Ampère)

curl E + µ∂H∂t = 0 (Faraday)

(1)

E , H are the electric and magnetic fields, respectively;

Je is the applied current density;

ε is the electric permittivity, µ is the magnetic permeability
and σ is the electric conductivity.
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Time-harmonic Maxwell equations

For time-harmonic phenomena, we assume that

Je(t, x) = Re[Je(x) exp(iωt)]
E(t, x) = Re[E(x) exp(iωt)]
H(t, x) = Re[H(x) exp(iωt)] ,

where ω 6= 0 is the known angular frequency.
Substituting in (1) one has{

curlH− iωεE = σE + Je
curl E + iωµH = 0 ,

namely, in terms of E,

curl (µ−1curl E)− ω2εE + iωσE = −iωJe . (2)
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Eddy current and static approximation

The eddy current model is formally obtained by neglecting the
displacement current term:{

curlH−iωεE = σE + Je
curl E + iωµH = 0 .

The static model stems form putting ω equal to 0:{
curlH−iωεE = σE + Je
curl E+iωµH = 0 ,

namely, in terms of a scalar potential V such that
E = −gradV ,

div(σgradV ) = divJe

followed by {
curlH = −σgradV + Je
div(µH) = 0 .

A. Valli An inverse problem for eddy current equations



Introduction
Direct problem

Variational formula and space splitting
Inverse problem

Which model?

Looking back to (2), a thumb rule that drives the choice of the
model could be formulated as follows: if L is a typical length (say,
the diameter of the physical domain), it is possible to disregard the
displacement current term provided that

ω2ε µ� L−2 , |ω| ε� σ .

[Let us also recall that the wavelength can be expressed by

λ =
1

|ω|√ε µ
.]

On the other hand, it seems reasonable to utilize the static model
when, in addition,

|ω|µσ � L−2 .
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The parameters

For physiological problems, we have

ω = 2π ∗ 50 rad/s
µ = 4π ∗ 10−7 H/m
σ = 0.1 S/m
L = 0.3 m ,

while the electric permittivity can vary with the frequency, and a
reasonable value can be

ε ≈ 10−6 F/m .

Therefore we have

ω2ε µ L2 ≈ 10−8 , |ω| ε σ−1 ≈ 3 ∗ 10−3

λ ≈ 3 ∗ 103m , |ω|µσL2 ≈ 3.5 ∗ 10−6 .
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The choice of the model

The first two values and the estimate of the wavelength say
that it seems suitable to disregard the displacement current
term, adopting the eddy current model.

From the estimate of |ω|µσL2 it seems also possible to utilize
the static model. However, it is easy to construct source
current densities Je for which the electric field given by the
static model is vanishing, while the electric field solution of the
eddy current model is large (it is enough to take divJe = 0).

Hence the static model is not really satisfactory, and it is
qualitatively different from the non-static ones. An accurate
description of the problem has to be based on the eddy
current model (or, possibly, for larger values of the frequency
and of the electric permittivity, on the full Maxwell model).
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“Gauge” and boundary conditions

Let us make complete the formulation of the eddy current problem.

Since in an insulator (where σ = 0) there are no charges, in that
region one has to add

div(εE) = 0 .

[A “gauge” condition necessary for having uniqueness.]

On the boundary ∂Ω we impose the magnetic boundary conditions:

H× n = 0 on ∂Ω
εE · n = 0 on ∂Ω .

[Alternatively, we can impose the electric boundary condition

E× n = 0 on ∂Ω .]
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The geometry of the problem

Let ΩC ⊂ R3 be a bounded open set with a Lipschitz and
connected boundary Γ. [ΩC is a conductor, the region where
σ is positive; say, the human head.]

Let Ω ⊂ R3 be a bounded simply-connected domain with a
Lipschitz boundary ∂Ω, and completely containing ΩC . [Ω is
the physical domain; say, the room where the problem is
studied.]

Let us set ΩI = Ω \ ΩC , and assume that it is connected. [ΩI

is an insulator, where σ is vanishing; say, the air surrounding
the head.]

[The assumptions that Ω is simply-connected and that Γ is
connected can be dropped.]
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Existence and uniqueness for the direct problem

We assume that:

µ, ε and σ are symmetric and positive definite matrices, with
entries in L∞

supp Je ⊂ ΩC and Je ∈ L2(ΩC ).

It is known that under these conditions the eddy current problem
curl (µ−1curl E) + iωσE = −iωJe in Ω
div(εE) = 0 in ΩI

(µ−1curl E)× n = 0 on ∂Ω
εE · n = 0 on ∂Ω

(3)

has a unique solution E (and H = −(iω)−1µ−1curl E in Ω).
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Representation formula

Integration by parts in ΩC easily yields (n pointing outward ΩC )

−iω
∫

ΩC
Je · z =

∫
ΩC

E · [iωσz + curl (µ−1curl z)]

+
∫

Γ[n× E · (µ−1curl z)− iωn×H · z] .

Therefore, if z ∈ H(curl ; ΩC ) satisfies

curl (µ−1curl z)− iωσz = 0 in ΩC ,

the current density Je satisfies the representation formula

−iω
∫

ΩC
Je · z =

∫
Γ n× E · (µ−1curl z)− iω

∫
Γ n×H · z . (4)
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Space splitting

Let us define

W = {z ∈ H(curl ; ΩC ) | curl (µ−1curl z)− iωσz = 0 in ΩC}

and W the closure of W in (L2(ΩC ))3. (Note that W is not a
trivial subspace.)
We have the orthogonal splitting

(L2(ΩC ))3 = W ⊕W⊥ .

Let us give a more explicit description of the elements of W⊥.
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More on the subspace W⊥

Lemma

Consider η ∈ C∞0 (ΩC ) and set φ = curl (µ−1curlη) + iωση.
Then φ ∈W⊥ (and W⊥ is not a trivial subspace).

Proof. Take z ∈ W. Then∫
ΩC

φ · z =
∫

ΩC
[curl (µ−1curlη) + iωση] · z

=
∫

ΩC
η · [curl (µ−1curl z) + iωσz] = 0 .

The result follows by a density argument. �
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Unique solvability and non-radiating sources

Let us split the current density Je as

Je = J]e + J⊥e , J]e ∈W , J⊥e ∈W⊥ .

We have

Theorem

(i) Let us assume that Je = J]e ∈W and that E] is the
corresponding solution of the eddy current problem. Then the
knowledge of E] × n on Γ uniquely determines J]e .
(ii) Let us assume that Je = J⊥e ∈W⊥ and that E⊥ is the
corresponding solution of the eddy current problem. Then
E⊥ × n = 0 and H⊥ × n = 0 on Γ, namely, J⊥e is a non-radiating
source.
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Proof. [We assume for simplicity that ∂Ω is connected and that
there are no handles on Γ.]
(i) If E] × n is known on Γ, we also know

divτ (E] × n) = curl E] · n = −iωµH] · n ,

hence H] is the solution of
curlH] = 0 in ΩI

div(µH]) = 0 in ΩI

µH] · n = −(iω)−1divτ (E] × n) on Γ
H] × n = 0 on ∂Ω .

As a consequence, if E] × n = 0 on Γ it follows H] = 0 in ΩI and
H] × n = 0 on Γ.
Therefore from (4) we know that

∫
ΩC

J]e · z = 0 for each z ∈ W,

hence, by a density argument, for each z ∈W . Since J]e ∈W , the
thesis follows.
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(ii) Since J⊥e ∈W⊥, taking z ∈W from (4) we have that∫
Γ
n× E⊥ · (µ−1curl z)− iω

∫
Γ
n×H⊥ · z = 0 . (5)

For each η ∈ H
−1/2
div,τ (Γ) we denote by Z ∈ H(curl ; Ω) the solution

to
curl (µ−1curl Z)− iωσZ = 0 in ΩC ∪ ΩI

div(εZ) = 0 in ΩI

(µ−1curl Z)× n = 0 on ∂Ω
εZ · n = 0 on ∂Ω
(µ−1curl Z)|ΩC

× n = (µ−1curl Z)|ΩI
× n + η on Γ .

We can select Z|ΩC
∈W as a test function in (5) and obtain
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∫
Γ n× E⊥ · µ−1curl Z|ΩC

=
∫

Γ E
⊥ · η −

∫
Γ E
⊥ · (n× µ−1curl Z|ΩI

)

=
∫

Γ E
⊥ · η −

∫
ΩI
µ−1curl E⊥ · curl Z|ΩI

−iω
∫

Γ n×H⊥ · Z|ΩC

= −
∫

Γ µ
−1curl E⊥ · n× Z|ΩI

=
∫

ΩI
µ−1curl E⊥ · curl Z|ΩI

.

In conclusion, we have obtained∫
Γ
E⊥ · η = 0

for each η ∈ H
−1/2
div,τ (Γ), hence n× E⊥ × n = 0 on Γ.

Proceeding as in the proof of (i) we show that E⊥ × n = 0 on Γ
implies H⊥ × n = 0 on Γ, and the proof is complete. �
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The direct problem for a surface current

We consider a surface current J∗ ∈ H
−1/2
div,τ (∂B), where B is an open

connected set with Lipschitz boundary ∂B and satisfying B ⊂ ΩC .
The direct problem reads

curl E + iωµH = 0 in Ω

curlH = σE in B ∪ (Ω \ B)
div(εE) = 0 in ΩI

H× n = 0 on ∂Ω
εE · n = 0 on ∂Ω
H|B × nB −H|Ω\B × nB = J∗ on ∂B ,

(6)

where nB is the unit normal vector on ∂B, pointing outward B.

It is easy to see that, for each given J∗ ∈ H
−1/2
div,τ (∂B), this problem

has a unique solution.
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Representation formula and unique solvability

Theorem

Assume that the coefficients µ and σ are piecewise C 1-functions,
and that the discontinuity surfaces are Lipschitz surfaces. Let E∗
be the solution of the eddy current problem driven by the surface

current J∗ ∈ H
−1/2
div,τ (∂B). The knowledge of E∗ × n on Γ uniquely

determines J∗.

Proof. As in the preceding case, by solving the problem in ΩI we
easily show that E∗ × n = 0 on Γ also gives E∗ = 0 in ΩI , H∗ = 0
in ΩI and in particular H∗ × n = 0 on Γ.
As a consequence of the unique continuation principle we have
E∗ = 0 and H∗ = 0 in Ω \ B (the assumptions on the coefficients
µ and σ play a role here).
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For each z ∈ H(curl ; B) with curl (µ−1curl z) ∈ (L2(B))3 we have∫
B σE∗ · z =

∫
B curlH∗ · z

=
∫
∂B nB ×H∗|B · z
−(iω)−1

∫
∂B nB × E∗ · (µ−1curl z)

−(iω)−1
∫
B E∗ · curl (µ−1curl z) .

Taking into account that H∗|B × nB −H∗|Ω\B × nB = J∗ on ∂B,
we obtain the representation formula

−iω
∫
∂B J∗ · z =

∫
∂B nB × E∗ · (µ−1curl z)
−iω

∫
∂B nB ×H∗|Ω\B · z

(7)

for each z ∈ H(curl ; B) such that curl (µ−1curl z)− iωσz = 0 in
B. Since we know that E∗ = 0 and H∗ = 0 in Ω \ B, it follows
from (7) that

∫
∂B J∗ · z = 0.
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For each ρ ∈ H
−1/2
curl,τ (Γ) we can choose z ∈ H(curl ; B), the

solution to {
curl (µ−1curl z)− iωσz = 0 in B
z× nB = ρ× nB on ∂B .

Hence
∫
∂B J∗ · ρ = 0 for each ρ ∈ H

−1/2
curl,τ (Γ), and this space is the

dual space of H
−1/2
div,τ (Γ). This ends the proof. �

A. Valli An inverse problem for eddy current equations



Introduction
Direct problem

Variational formula and space splitting
Inverse problem

Distributed source
Surface current
Dipole source

The direct problem for a dipole source

Suppose that the source is a finite sum of dipoles, in different
positions and with non-vanishing polarizations, namely,

J†(x) =
M∑
k=1

pkδ(x− xk) , (8)

where xk ∈ ΩC , xk 6= xj for k 6= j , pk 6= 0, and δ is the Dirac delta
distribution.
Let us assume, for the ease of exposition, that the direct problem
(3) has a unique (distributional) solution E† for this source J†.
[The proof of existence and uniqueness, performed by means of the
so-called “subtraction” method, contains some technical points...
In particular, for obtaining this result we assume that µ and σ are
smooth enough.]
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Representation formula and unique solvability

Theorem

Assume that µ and σ are smooth enough. Let E† be the solution
of the eddy current problem (3) driven by the surface current J†
introduced in (8). The knowledge of E† × n on Γ uniquely
determines J†, namely, the number, the position and the
polarization of the dipoles.

Proof. We start proving that the number and the position of the
dipoles are uniquely determined.
By contradiction, let us denote by Q1 and Q2 two different sets of
points where the dipoles are located, and by E†,1, H†,1 and E†,2,
H†,2 the corresponding solutions, with the same value E† × n on Γ.
As in the preceding cases, by solving the problem in ΩI with datum
E† × n on Γ we obtain that E†,1 = E†,2 and H†,1 = H†,2 in ΩI .
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By the unique continuation principle it follows E†,1 = E†,2 in
Ω \ (Q1 ∪ Q2) [the smoothness of the coefficients µ and σ plays a
role also here]. Let x∗ a point belonging, say, to Q1 but not to Q2.
We have that E†,2 is bounded in a neighborhood of x∗, while E†,1
is unbounded there, a contradiction since E†,1 and E†,2 coincide
around x∗. Therefore Q1 = Q2.
Let us prove now that the polarizations are uniquely determined.
Since the problem is linear, we can assume that E† = 0 in Ω \ Q1.
Therefore, in the sense of distributions in Ω we have E† = 0 and
curlH† = 0, and in particular the equation

M∑
k=1

pkδ(x− xk) = 0 .

By choosing test functions in C∞(Ω) supported around each point
xj we obtain pj = 0 for each j = 1, . . . ,M. �
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Explicit determination of the dipole source

For the sake of simplicity, consider a source given by only one
dipole.
Assume that µ and σ are constants. Proceeding as in the proof of
(4), one obtains the representation formula

−iωp1 · z(x1) =
∫

Γ n× E† · (µ−1curl z)− iω
∫

Γ n×H† · z , (9)

for each z ∈ H(curl ; ΩC ) satisfying

curl (µ−1curl z)− iωσz = 0 in ΩC . (10)
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To determine the source, we have to find the polarization p1 and
the position x1: therefore, six parameters. The natural idea is to
choose in a suitable way some (at least six...) functions z in (9),
and solve the corresponding nonlinear system.
The usual choice is to take z(x) = be iκd·x, with κ ∈ C, b ∈ R3,
d ∈ R3. It is not restrictive to assume |d| = |b| = 1; in order that
z is a solution to (10) we need

κ2 = iωµσ , b · d = 0 .

It can be shown that p1 and x1 are uniquely determined by solving
the nonlinear system (9) obtained by suitable selections of b and d.

A. Valli An inverse problem for eddy current equations



Introduction
Direct problem

Variational formula and space splitting
Inverse problem

Distributed source
Surface current
Dipole source

Related results

Before finishing, let us make a few comments on some related
results.

Bleistein and Cohen (1977) have shown the existence of
non-radiating sources for the Maxwell equations with constant
coefficients.

He and Romanov (1998) has solved the inverse problem for
the (vector) Helmholtz equation with a dipole source.

Ammari, Bao and Fleming (2002) has solved the inverse
problem for the Maxwell equations with a dipole source.

Albanese and Monk (2006) has solved the inverse problem for
the Maxwell equations with a distributed source, a surface
current and a superposition of dipole sources.
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