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Some examples

Let us give some examples of problems where either a divergence
constraint or a curl constraint appears.

Darcy problem 
K u− grad p = f in Ω
divu = 0 in Ω
p|∂Ω = ϕ on ∂Ω .

elliptic problem in mixed formulation
w −A grad q = 0 in Ω
divw = g in Ω
q|∂Ω = η on ∂Ω .
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Some examples (cont’d)

eddy current problem (with ∂Ω and ∂ΩC connected)

curl E + iωµH = 0 in Ω
curl H = σE + Je,C in ΩC

curl H = Je,I in ΩI

[H× n]|∂ΩC∩∂ΩI
= 0 on ∂ΩC ∩ ∂ΩI

div (εE) = 0 in ΩI

E× n|∂Ω = 0 on ∂Ω∫
∂Ω εE · n = 0 .

curl–div system (with ∂Ω connected)
curl u = B in Ω
divu = G in Ω
u× n = a on ∂Ω .
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Some examples (cont’d)

Stokes system
−ν∆u + grad p = f in Ω
divu = 0 in Ω
u|∂Ω = 0 on ∂Ω∫

Ω p = 0 .

spectral Maxwell problem (with ∂Ω connected)
curl curl E = λE in Ω
divE = 0 in Ω
E× n = 0 on ∂Ω .
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Some examples (cont’d)

The standard variational formulation stemming from these
problems has therefore a saddle-point form:{

a(u, v) + b(v , p) = F(v) ∀ v ∈ V
b(u, q) = G(q) ∀ q ∈ Q ,

This (very often symmetric) problem is typically indefinite, and
thus needs a more complex numerical solver.
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A question

A natural question is:

can we directly formulate the problem in the constrained
subspace?

This means: can we work in the space of divergence-free or
curl-free vector fields?

The most common answer is:

at the theoretical level, yes

at the numerical level, yes for curl-free finite elements, no (or
at least not easily) for divergence-free finite elements [and,
anyway, the shape of the domain can require to face some
complicated topological problems...].
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Back to the examples

Let us show how the strategy of working in the constrained
subspace could work. Let us give an example for the divergence
constraint.
Consider the elliptic problem in mixed formulation:

w −A grad q = 0 in Ω
divw = g in Ω
q|∂Ω = η on ∂Ω .

If the test function v is divergence-free, we have

0 =
∫

ΩA
−1w · v −

∫
Ω grad q · v

=
∫

ΩA
−1w · v +

∫
Ω q div v +

∫
∂Ω q n · v

=
∫

ΩA
−1w · v +

∫
∂Ω η n · v .
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Back to the examples (cont’d)

Since w is not divergence-free, we need a first step in which we
determine a vector field w? such that

divw? = g in Ω ,

thus W = w −w? satisfies
A−1W − grad q = −A−1w? in Ω
divW = 0 in Ω
q|∂Ω = η on ∂Ω ,

and the final variational problem, in the subspace of
divergence-free vector fields, reads:∫

ΩA
−1W · v = −

∫
ΩA

−1w? · v −
∫
∂Ω η n · v .
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Aim

In conclusion, a two-step strategy:

determine a potential (for the curl operator, or for the
divergence operator)

solve the variational problem in the curl-constrained or in the
divergence-constrained subspace.

Aim of this talk is that we can do these two steps not only at the
theoretical level, but also for finite element approximations.
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Finite element potentials
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First results

Determining the necessary and sufficient conditions for assuring
that a function defined in a bounded domain Ω ⊂ R3 is the
gradient of a scalar potential, or the curl of a vector potential, or
the divergence of a vector field is one of the most classical problem
of vector analysis.

The answer is well-known, and shows an interesting interplay of
differential calculus and topology (see, e.g., Cantarella et al.
(2002)).
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First results (cont’d)

a vector field is the gradient of a scalar potential if and only if
it is curl free and its line integral is vanishing on all the closed
curves that furnish a basis of the first homology group of Ω
[essentially, all the closed curves that are not the boundary of
an orientable surface contained in Ω];

a vector field is the curl of a vector potential if and only if it is
divergence free and its flux is vanishing across all the closed
surfaces that furnish a basis of the second homology group of
Ω [essentially, all the closed surfaces that are not the
boundary of a volume contained in Ω; equivalently, all the
internal connected components of ∂Ω];

each scalar function is the divergence of a vector field.
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First results (cont’d)

However, this theoretical result only clarifies when the answer is
positive, and does not say how to determine an explicit and
efficient procedure for constructing finite element potentials.

Our approach is based on (simple) tools from algebraic topology
and graph theory. We suppose to have:

a basis σn, n = 1, . . . , g , of the first homology group of Ω;

a basis σ̂n, n = 1, . . . , g , of the first homology group of
R3 \ Ω;

a spanning tree Sh of the graph given by the nodes and the
edges of the mesh Th.

[Note: an easy way for constructing σn and σ̂n is presented in
Hiptmair and Ostrowski (2002); the determination of a spanning
tree is a standard procedure in graph theory.]
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First results (cont’d)

Let us also introduce the finite element spaces we will use:

the space Lh of continuous piecewise-linear elements, with
dimension nv , the number of vertices in Th;

the space Nh of Nédélec edge elements of degree 1, with
dimension ne , the number of edges in Th;

the space RTh of Raviart-Thomas elements of degree 1, with
dimension nf , the number of faces in Th;

the space PCh of (discontinuous) piecewise-constant
elements, with dimension nt , the number of tetrahedra in Th.

A. Valli Constrained PDEs



Introduction
Finite element potentials

Curl-free or divergence-free finite elements
An example: solving the curl–div system

The grad problem

We want to solve gradψh = Hh in the finite element context.
[This is an easy problem, and the only reason for considering it is
that it is useful for understanding better the procedures needed for
the other two problems.]

The “right” finite elements are: ψh ∈ Lh a piecewise-linear nodal
element, Hh ∈ Nh a lowest order Nédélec edge element, and we
only have to impose that the line integral of gradψh and Hh on
each edge of the mesh Th is the same.

The fundamental theorem of calculus says that

ψh(vb)− ψh(va) =

∫
e

gradψh · τ =

∫
e

Hh · τ (1)

for an edge e = [va, vb]. Hence the linear system associated to
gradψh = Hh has exactly two non-zero values per row.
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The grad problem (cont’d)

Starting from a root v∗ of the spanning tree Sh, where, for the
sake of uniqueness, we impose ψh(v∗) = 0, for an edge
e ′ = [v∗, v̂ ] ∈ Sh we compute

ψh(v̂) = ψh(v∗) +

∫
e′

Hh · τ ;

since Sh is a spanning tree, going on in this way we can visit all the
nodes of Th.

The spanning tree is therefore a tool for selecting the rows for
which, using the additional equation ψh(v∗) = 0, one can eliminate
the unknowns one after the other.

We have thus found a nodal element ψh such that its gradient has
line integral on all the edges of the spanning tree equal to that of
Hh. Then is easy to show that the same is true for all the other
edges.
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The grad problem (cont’d)

In other words, we have given a constructive way for solving the
problem {

gradψh = Hh in Ω
ψh(v∗) = 0 .

(2)

Since it can be easily proved that ne > nv − 1 + g (the ne edges of
the graph are more than the nv − 1 edges in the spanning tree plus
g edges, one for each homological cycle), this is a full rank
overdetermined system with ne + 1 equations and nv unknowns.

Problems with a similar structure will appear in the sequel.
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The curl problem

We want to solve curl Ah = Bh in the finite element context.

The “right” finite elements are: Ah ∈ Nh a lowest order Nédélec
edge element, Bh ∈ RTh a lowest order Raviart–Thomas face
element, and we only have to impose that the flux of curl Ah and
Bh on each face of the mesh Th is the same.

The Stokes theorem assures that∫
e1

Ah ·τ +

∫
e2

Ah ·τ +

∫
e2

Ah ·τ =

∫
f

curl Ah ·νf =

∫
f

Bh ·νf , (3)

where ∂f = e1 ∪ e2 ∪ e3, hence the linear system associated to
curl Ah = Bh has exactly three non-zero values for each row.
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The curl problem (cont’d)

With respect to the preceding case:

three unknowns per row instead of two.

Therefore, in order to devise an efficient elimination algorithm, it is
useful to fix the value of other unknowns.

The best situation should occur when the number of the new
equations agrees with the dimension of the kernel of the curl
operator.

Since this kernel is given by the gradients of nodal elements plus
the space generated by the basis of the first de Rham cohomology
group of Ω, we see that its dimension is equal to nv − 1 + g .

A. Valli Constrained PDEs



Introduction
Finite element potentials

Curl-free or divergence-free finite elements
An example: solving the curl–div system

The curl problem (cont’d)

Having this in mind, and recalling that the number of edges e ′ in
Sh is nv − 1, we are led to the problem

curl Ah = Bh in Ω∮
σn

Ah · ds = ρn ∀ n = 1, . . . , g∫
e′ Ah · τ = 0 ∀ e ′ ∈ Sh ,

(4)

for arbitrarily given constants ρn.

Equation (4)3 can be seen as a “filter” for gradients; moreover,
since homology and cohomology are in duality, equation (4)2 can
be seen as a “filter” for cohomology fields.

This is a full rank overdetermined system, with nf + g + nv − 1
equations and ne unknowns [recall that the Euler–Poincaré formula
says that nf + g + nv − 1 = ne + nt + p]. It is not difficult to prove
that it has a unique solution.
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Webb–Forghani algorithm

Webb and Forghani (1989) proposed this solution algorithm:

Algorithm

1 take a face f for which at least one edge unknown has not yet
been assigned

1 if exactly one edge unknown is not determined, compute its
value from the Stokes relation (3)

2 if two or three edge unknowns are not determined, pass to
another face.

This is a simple elimination procedure for solving the linear system
at hand, and it is quite efficient, as the computational cost is
linearly dependent on the number of unknowns.
The weak point is that:

it can stop without having determined all the edge unknowns
(even in simple topological situations!)
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An explicit formula for the vector potential

Cure: devise an explicit formula for the solution to (4).

(We are able to do that if Bh · n = 0 on ∂Ω, a quite natural
condition in the most interesting physical situations, and for a
suitable choice of the constants ρn.)

The explicit formula permits to restart the algorithm in case it
stops (but it is better not using it for all the degrees of freedom, as
it would be more expensive than the Webb–Forghani algorithm).
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The div problem

We want to solve div vh = Gh in the finite element context.

The “right” finite elements are: vh ∈ RTh a lowest order
Raviart–Thomas face element, Gh ∈ PCh a piecewise-constant
element, and we have only to impose that the integral of div vh
and of Gh on each element of the mesh Th is the same.

The Gauss theorem says that∫
f1

vh · νf +
∫
f2

vh · νf +
∫
f3

vh · νf +
∫
f4

vh · νf

=
∫
K div vh =

∫
K Gh ,

(5)

where ∂K = f1 ∪ f2 ∪ f3 ∪ f4, hence the linear system associated to
div vh = Gh has exactly four unknowns per row.

A. Valli Constrained PDEs
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The div problem (cont’d)

For having well-posedness of the system, we want to add equations
by fixing the value of some unknowns. Similarly to what done
before we start by analyzing the dimension of the kernel of the
divergence operator.

This kernel is given by the curl of the Nédélec elements plus the
space generated by the basis of the second de Rham cohomology
group of Ω.

If we denote by (∂Ω)0, . . . , (∂Ω)p the connected components of
∂Ω, we know that the dimension of the second de Rham
cohomology group of Ω is equal to p.

A. Valli Constrained PDEs
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The div problem (cont’d)

On the other hand, it is easy to check that the dimension of the
space of the curl of the Nédélec elements is equal to the number of
the edges minus the dimension of the kernel of the curl operator:
hence, it is equal to ne − nv + 1− g .

By the Euler–Poincaré formula we have

nv − ne + nf − nt = 1− g + p ,

hence the dimension of the space of the curl of the Nédélec
elements can be rewritten as nf − nt − p.

In conclusion, besides the topological conditions∫
(∂Ω)r

vh · n = cr , r = 1, . . . , p ,

that are a filter for the cohomology fields, we could add
nf − nt − p equations.

A. Valli Constrained PDEs
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A dual graph

To do that, let us note that an internal face connects two
tetrahedra, while a boundary face connects a tetrahedron and a
connected component of ∂Ω.

We can therefore consider the following (connected) dual graph
Gh: the dual vertices are W = T ∪Σ, where the elements of T are
the tetrahedra of the mesh and the elements of Σ are the p + 1
connected components of ∂Ω; the set of dual arcs is F , the set of
the faces of the mesh.

The number of dual vertices is equal to nt + p + 1, hence a
spanning tree Mh of Gh has nt + p dual arcs (and consequently its
cotree has nf − nt − p dual arcs).

A. Valli Constrained PDEs
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A dual graph (cont’d)

Therefore the linear system
div vh = Gh in Ω∫

(∂Ω)r
vh · n = cr ∀ r = 1, . . . , p∫

f vh · νf = 0 ∀ f 6∈ Mh

(6)

is a square linear system of nf equations and unknowns.

It can be shown that this system has a unique solution, and that
the solution can be determined by means of an efficient
constructive procedure (essentially similar to the one used for the
gradient problem, but starting from the leaves of the dual graph
instead that from the root).
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A summary

from to unknowns equations

grad Lh Nh nv ne + 1 (> nv )

curl Nh RTh ne nf + g + nv − 1 = ne + nt + p

div RTh PCh nf nt + p + ne − nv + 1− g = nf

Table: Finite element potentials.
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Curl-free or divergence-free finite elements
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Curl-free finite elements

The problem of describing in a suitable way curl-free finite
elements is quite easy. In fact, it is straightforward to find a basis
of the finite element space

V0,h = {vh ∈ Nh | curl vh = 0 in Ω,∮
σn

vh · ds = 0 ∀ n = 1, . . . , g} , (7)

as this space is coincident with grad Lh (indeed, the conditions∮
σn

vh · ds = 0 filter all the curl-free vector fields that are not
gradients, namely, the fields belonging to the first de Rham
cohomology group).

Thus we have only to identify and eliminate the kernel of the
gradient operator: the constants. In conclusion, a basis for V0,h is
simply given by grad Φi

h, i = 1, . . . , nv − 1, where Φi
h,

i = 1, . . . , nv , are the standard nodal basis functions of Lh.
A. Valli Constrained PDEs
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Divergence-free finite elements

A more complicated situation arises for divergence-free finite
elements. In fact, we start considering the space

W0,h = {vh ∈ RTh |div vh = 0 in Ω,∫
(∂Ω)r

vh · n = 0 ∀ r = 1, . . . , p} , (8)

and it is easy to check that W0,h = curl Nh (the conditions∫
(∂Ω)r

vh · n = 0 filter all the divergence-free vector fields that are
not curls, namely, the fields belonging to the second de Rham
cohomology group).

However, the problem is that

the kernel of the curl operator is large: it contains the
gradients of elements in Lh and the fields belonging to the
first de Rham cohomology group, and has dimension equal to
nv − 1 + g .
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Divergence-free finite elements (cont’d)

Thus we need:

to devise a strategy for selecting ne − nv + 1− g edges in
order that the associated edge element basis functions have
linearly independent curls.

Results in this direction were obtained by Hecht (1981), Dubois
(1990) and Scheichl (2002) for a simply-connected domain, and by
Rapetti et al. (2003) for a κ-fold torus.

Here we present a general procedure for the determination of a set
of locally-supported basis functions of W0,h, together with an easy
proof of its effectiveness.

A. Valli Constrained PDEs
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Divergence-free finite elements (cont’d)

Let us assume for a while that Ω is simply-connected (therefore we
have g = 0). Consider all the edges not belonging to the spanning
tree Sh, namely, belonging to the cotree Ch; their number is
ne − nv + 1. The result is:

A basis of W0,h is given by curl wj
h, for the indices j such that

the corresponding edges ej belong to the cotree Ch (say,
j = 1, . . . , ne − nv + 1).

A. Valli Constrained PDEs
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Divergence-free finite elements (cont’d)

The proof is quite simple and reads as follows: from

0 =
ne−nv+1∑

j=1

αjcurl wj
h = curl

ne−nv+1∑
j=1

αjw
j
h


we can conclude that

∑ne−nv+1
j=1 αjw

j
h is a gradient, say, gradϕh.

This is an element of Nh for which all the degrees of freedom
associated to the edges belonging to the spanning tree are
vanishing. Hence ϕh is constant, and

∑ne−nv+1
j=1 αjw

j
h = 0. We can

thus conclude that αj = 0 for all j = 1, . . . , ne − nv + 1, since

{wj
h}

ne−nv+1
j=1 are linearly independent.

A. Valli Constrained PDEs



Introduction
Finite element potentials

Curl-free or divergence-free finite elements
An example: solving the curl–div system

Divergence-free finite elements (cont’d)

The general topological case needs the identification of g
additional edges to discard: the simplest option (but not always
feasible in practice...) is to select one edge for each basis element
σn of the first homology group of Ω, having constructed the
spanning tree in such a way that all the other edges of σn belong
to it. (For definiteness, suppose these edges are associated to the
indices j = 1, . . . , g : the union of the spanning tree Sh and these
additional g edges was called belted tree in Bossavit (1998),
Rapetti et al. (2003).)

With this choice we have that the line integral of
∑ne−nv+1

j=g+1 αjw
j
h

over σn vanishes for each n = 1, . . . , g (all the edges contained in
σn belong to the belted tree, namely, they correspond to indices
smaller than g + 1 or larger than ne − nv + 1). Therefore∑ne−nv+1

j=g+1 αjw
j
h is a gradient, and the argument develops as before.

A. Valli Constrained PDEs
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Solving the curl–div system
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Curl–div system with u× n assigned on ∂Ω

The complete and most general form of the problem reads
curl (ηu) = B in Ω
divu = G in Ω
(ηu)× n = a on ∂Ω∫

(∂Ω)r
u · n = αr ∀ r = 1, . . . , p .

(9)

A. Valli Constrained PDEs
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Curl–div system with u× n assigned on ∂Ω (cont’d)

The data satisfy standard regularity assumptions: η a symmetric
matrix, uniformly positive definite in Ω, with entries belonging to
L∞(Ω); B ∈ (L2(Ω))3; G ∈ L2(Ω); a ∈ H−1/2(div τ ; ∂Ω) [the
space of tangential traces of vector fields belonging to H(curl ; Ω)];
α ∈ Rp.

Moreover, they also satisfy the necessary conditions divB = 0 in
Ω,
∫

Ω B · ρ +
∫
∂Ω a · ρ = 0 for each ρ ∈ H(m), and B · n = div τa

on ∂Ω. Here H(m) is the space of Neumann harmonic fields,
namely,

H(m) = {ρ ∈ (L2(Ω))3 | curlρ = 0 in Ω,divρ = 0 in Ω,
ρ · n = 0 on ∂Ω} .

A. Valli Constrained PDEs
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Curl–div system with u× n assigned on ∂Ω (cont’d)

The first step of the procedure is to find a vector field
u? ∈ (L2(Ω))3 satisfying{

divu? = G in Ω∫
(∂Ω)r

u? · n = αr ∀ r = 1, . . . , p .
(10)

Then the vector field W = u− u? has to satisfy
curl (ηW) = B− curl (ηu?) in Ω
divW = 0 in Ω
(ηW)× n = a− (ηu?)× n on ∂Ω∫

(∂Ω)r
W · n = 0 ∀ r = 1, . . . , p .

(11)
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A variational formulation for the curl–div system

The second step is to devise a variational formulation of (11).

This is quite easy. Multiplying the first equation by a test function
v ∈ H(curl ; Ω), integrating in Ω and integrating by parts we find:∫

Ω B · v =
∫

Ω curl [η(W + u?)] · v
=
∫

Ω η(W + u?) · curl v −
∫
∂Ω[η(W + u?)× n] · v

=
∫

Ω ηW · curl v +
∫

Ω ηu? · curl v −
∫
∂Ω a · v .

Let us introduce the space

W0 = {v ∈ H(div ; Ω) |div v = 0 in Ω,∫
(∂Ω)r

v · n = 0 ∀ r = 1, . . . , p} , (12)

in other words W0 = curl [H(curl ; Ω)].
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A variational formulation for the curl–div system (cont’d)

The vector field W is thus a solution to

W ∈ W0 :∫
Ω ηW · curl v =

∫
Ω B · v −

∫
Ω ηu? · curl v +

∫
∂Ω a · v

∀ v ∈ H(curl ; Ω) .

(13)

More precisely, W is the unique solution of that problem: in fact,
assuming B = u? = a = 0, and taking v such that curl v = W, it
follows at once

∫
Ω ηW ·W = 0, hence W = 0.
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Finite element approximation of the curl–div system

The finite element approximation follows the same steps.

The first one is finding a finite element potential u?h ∈ RTh such
that {

divu?h = Gh in Ω∫
(∂Ω)r

u?h · n = αr ∀ r = 1, . . . , p ,
(14)

where Gh ∈ PCh is the piecewise-constant interpolant IPCh G of G .
This can be done as in (6).
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Finite element approximation of the curl–div system (cont’d)

The second step concerns the numerical approximation of problem
(13). The natural choice for the finite element space is clearly the
space W0,h introduced in (8). Thus the finite element
approximation of (13) reads as follows:

Wh ∈ W0,h :∫
Ω ηWh · curl vh

=
∫

Ω B · vh −
∫

Ω ηu?h · curl vh +
∫
∂Ω a · vh

∀ vh ∈ N?
h ,

(15)

where
N?
h = span{wj

h}
ne−nv+1
j=g+1 . (16)
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Finite element approximation of the curl–div system (cont’d)

The corresponding algebraic problem is a square linear system of
dimension ne − nv + 1− g , and it is uniquely solvable. In fact, we
note that W0,h = curl N?

h , hence we can choose v?h ∈ N?
h such that

curl v?h = Wh; from (15) we find at once Wh = 0, provided that
B = u?h = a = 0.

The convergence of this finite element scheme is easily shown by
standard arguments.
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The algebraic problem

The solution Wh ∈ W0,h can be written in terms of the basis as

Wh =
∑ne−nv+1

j=g+1 Wjcurl wh,j . Hence the finite dimensional
problem (15) can be rewritten as

ne−nv+1∑
j=g+1

Wj

∫
Ω
η curl wh,j · curl wh,m

=
∫

Ω B ·wh,m −
∫

Ω η u?h · curl wh,m +

∫
∂Ω

a ·wh,m ,

(17)

for each m = g + 1, . . . , ne − nv + 1.
The matrix K? with entries

K ?
mj =

∫
Ω
η curl wh,j · curl wh,m

is clearly symmetric and positive definite, as the vector fields
curl wh,j are linearly independent.
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The grad problem (back to it)

Having found a nodal element ψh such that its gradient has line
integral on all the edges of the spanning tree equal to that of Hh,
what about the edges not belonging to the spanning tree?

For each node vi , vi 6= v∗, let us denote by Cvi the set of edges in
Sh joining v∗ to vi . Given an edge e = [va, vb] not belonging to Sh,
we define the cycle De = Cva + e − Cvb .

Since Hh is a gradient (it is curl-free and its line integral on all the
cycles σn vanishes), its line integral on De vanishes. Therefore we
have

0 =
∮
De

Hh · ds = ψh(va) +
∫
e Hh · τ − ψh(vb)

=
∫
e Hh · τ −

∫
e gradψh · τ .
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An explicit formula for the vector potential

Devise an explicit formula for the solution to (4).

(We are able to do that if Bh · n = 0 on ∂Ω, a quite natural
condition in the most interesting physical situations, and for a
suitable choice of the constants ρn.)

The idea is the following. Define the Biot–Savart field

HBS(x) =
1

4π

∫
Ω

Bh(y)× x− y

|x− y|3
dy ,

and set ρn =
∮
σn

HBS · ds in (4).

One has curl HBS = Bh in Ω (here the condition Bh · n = 0 on ∂Ω
has played a role). Hence the Nédélec interpolant ΠNhHBS satisfies
(4)1 and (4)2.
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An explicit formula for the vector potential (cont’d)

To find the solution to (4), we can correct ΠNhHBS by a gradient,
namely, construct the nodal element φh whose gradient has the
same line integral of HBS on the edges of the spanning tree Sh.

The Nédélec finite element Ah = ΠNhHBS − gradφh is the solution
to (4).

To express its degrees of freedom, we proceed as follows. For each
edge e 6∈ Sh, we define the cycle De as before (the edges from the
root of the spanning tree to the first vertex of e, the edge e, the
edges from the second vertex of e to the root of the spanning tree).

A. Valli Constrained PDEs



Introduction
Finite element potentials

Curl-free or divergence-free finite elements
An example: solving the curl–div system

An explicit formula for the vector potential (cont’d)

The cycle De is constituted by edges all belonging to the spanning
tree (except e): hence we have∫

e Ah · τ =
∫
e(ΠNhHBS − gradφh) · τ

=
∫
e HBS · τ − [φh(vb)− φh(va)]

=
∫
e HBS · τ −

[∫
Cvb

HBS · τ −
∫
Cva

HBS · τ
]

=
∮
De

HBS · ds

= 1
4π

∮
De

(∫
Ω Bh(y)× x−y

|x−y|3 dy
)
· ds(x) .

(18)

Using (18), we can always restart the Webb–Forghani algorithm.
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A basis of the first de Rham cohomology group

The presented approach permits to solve also the problem
curl Ah = 0 in Ω∮
σn

Ah · ds = κn ∀ n = 1, . . . , g∫
e′ Ah · τ = 0 ∀ e ′ ∈ Sh ,

(19)

for any choice of the constants κn.

Taking κn equal to κ̀(σn, σ̂j), j = 1, . . . , g , ( κ̀ denotes the linking
number) we find a basis T(j) of the first de Rham cohomology
group, and we have also an explicit formula like (18) for expressing
the degrees of freedom of each T(j).
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The linking number

The linking number between σ̂j and another disjoint cycle σ is
given by:

κ̀(σ, σ̂j) =
1

4π

∮
σ

(∮
σ̂j

y − x

|y − x|3
× dsy

)
· dsx .

The linking number (introduced by Gauss...) is an integer
that represents the number of times that each cycle winds
around the other.

The explicit formula for determining the basis elements T(j) is∫
e

T(j) · τ = κ̀(De , σ̂j) (20)

(where σ̂j has been chosen inside R3 \ Ω, namely, not intersecting
De).
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Well-posedness of (6)

The procedure is constructive, similar to the elimination procedure
used for the grad problem but now going along the dual spanning
tree, starting from the leaves. (Let us recall that a leaf of a
spanning tree Mh is a vertex of W that has only one arc of Mh

incident to it.)

We can reduce the problem to the faces f ∈Mh. If w (a
tetrahedron or a connected component) is a leaf of Mh, then on it
there is only one face f (w) belonging to the spanning tree Mh,
therefore the value of the flux of vh on f (w) can be computed by
the Gauss theorem, if w is a tetrahedron or the connected
component (∂Ω)0, or by the equation

∫
(∂Ω)r

vh · n = cr , if w is the

connected component (∂Ω)r , r = 1, . . . , p (recall that we know
that

∫
f vh · νf = 0 for all f 6∈ Mh).
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Well-posedness of (6) (cont’d)

We can iterate this argument: if we remove from the spanning tree
Mh a leaf and its corresponding incident arc, the remaining graph
is still a tree. After a finite number of steps the remaining tree
reduces to just on vertex, and the result is that

∫
f vh · νf is known

for all f ∈ F .
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A basis of the second de Rham cohomology group

It can be also noted that the solutions W(s), s = 1, . . . , p, of the
problems 

div vh = 0 in Ω∫
(∂Ω)r

vh · n = δr ,s ∀ r = 1, . . . , p∫
f vh · νf = 0 ∀ f 6∈ Mh

(21)

furnish a basis of the second de Rham cohomology group of Ω.
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Convergence of the approximation for the first case

Theorem A. Let W ∈ W0 and Wh ∈ W0,h be the solutions of
problem (13) and (15), respectively. Set u = W + u? and
uh = Wh + u?h, where u? ∈ H(div ; Ω) and u?h ∈ RTh are solutions
to problem (10) and (14), respectively. Assume that u is regular
enough, so that the interpolant IRTh u is defined. Then the
following error estimate holds

‖u−uh‖H(div ;Ω) ≤ c0(‖u− IRTh u‖L2(Ω) +‖G − IPCh G‖L2(Ω)) . (22)
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Convergence of the approximation for the first case (cont’d)

Proof. Since N?
h ⊂ H(curl ; Ω), we can choose v = vh ∈ N?

h in
(13). By subtracting (15) from (13) we end up with∫

Ω
η[(W + u?)− (Wh + u?h)] · curl vh = 0 ∀ vh ∈ N?

h ,

namely, the consistency property∫
Ω
η(u− uh) · curl vh = 0 ∀ vh ∈ N?

h . (23)

Then from W0,h = curl N?
h we can write Wh = curl v?h for a

suitable v?h ∈ N?
h , and using (23) we find
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Convergence of the approximation for the first case (cont’d)

c1‖u− uh‖2
L2(Ω) ≤

∫
Ω η(u− uh) · (u− uh)

=
∫

Ω η(u− uh) · (u−Wh − u?h)

=
∫

Ω η(u− uh) · (u− curl v?h − u?h)

=
∫

Ω η(u− uh) · (u− curl vh − u?h)

≤ c2‖u− uh‖L2(Ω)‖u−Φh − u?h‖L2(Ω) ∀ Φh ∈ W0,h .

We can choose Φh = (IRTh u− u?h) ∈ W0,h; in fact,
div (IRTh u) = IPCh (divu) = IPCh G = Gh and∫

(∂Ω)r
IRTh u · n =

∫
(∂Ω)r

u · n = αr for each r = 1, . . . , p. Then it

follows at once ‖u− uh‖L2(Ω) ≤ c2
c1
‖u− IRTh u‖L2(Ω).

Finally, div (u− uh) = G − Gh = G − IPCh G . �
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Convergence of the approximation for the first case (cont’d)

Note that a sufficient condition for defining the interpolant of u is

that u ∈ (H
1
2

+δ(Ω))3, δ > 0. This is satisfied if, e.g., η is a scalar
Lipschitz function in Ω and a ∈ (Hγ(∂Ω))3, γ > 0.
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Second case: u · n assigned on ∂Ω

The problem at hand reads
curl u = B
div (µu) = G
µu · n = b∮
σn

u · ds = βn ∀ n = 1, . . . , g ,

(24)

where µ is a symmetric matrix, uniformly positive definite in Ω,
with entries belonging to L∞(Ω), B ∈ (L2(Ω))3, G ∈ L2(Ω),
b ∈ H−1/2(∂Ω), β ∈ Rg .
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Second case: u · n assigned on ∂Ω (cont’d)

The data satisfy the necessary conditions divB = 0 in Ω,∫
Ω G =

∫
∂Ω b; moreover, in order that the line integral of u on σn

has a meaning, we also assume that B · n = 0 on ∂Ω (which is
more restrictive than the necessary condition

∫
(∂Ω)r

B · n = 0 for

each r = 1, . . . , p).

The first step of the procedure is to find a vector field
u∗ ∈ (L2(Ω))3 satisfying{

curl u∗ = B in Ω∮
σn

u∗ · ds = βn ∀ n = 1, . . . , g .
(25)
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Second case: u · n assigned on ∂Ω (cont’d)

Then the vector field V = u− u∗ has to satisfy
curl V = 0 in Ω
div (µV) = G − div (µu∗) in Ω
(µV) · n = b − (µu∗) · n on ∂Ω∮
σn

V · ds = 0 ∀ n = 1, . . . , g ,

(26)

The second step is to devise a variational formulation of (26).
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A variational formulation for the second case

Multiplying the second equation by a test function ϕ ∈ H1(Ω),
integrating in Ω and integrating by parts we find:∫

Ω G ϕ =
∫

Ω div [µ(V + u∗)]ϕ

= −
∫

Ω µ(V + u∗) · gradϕ+
∫
∂Ω[µ(V + u∗) · n]ϕ

= −
∫

Ω µV · gradϕ−
∫

Ω µu∗ · gradϕ+
∫
∂Ω b ϕ .

Let us introduce the space

V0 = {v ∈ H(curl ; Ω) | curl v = 0 in Ω,∮
σn

v · ds = 0 ∀ n = 1, . . . , g} . (27)

Note that V0 = grad [H1(Ω)].
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A variational formulation for the second case (cont’d)

The vector field V is thus a solution to

V ∈ V0 :∫
Ω µV · gradϕ = −

∫
Ω G ϕ−

∫
Ω µu∗ · gradϕ+

∫
∂Ω b ϕ

∀ ϕ ∈ H1(Ω) .

(28)

It is easily seen that V is indeed the unique solution of that
problem: in fact, assuming G = b = 0, u∗ = 0, and taking ϕ such
that gradϕ = V, it follows at once

∫
Ω µV · V = 0, hence V = 0.
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Finite element approximation of the second case

The finite element approximation follows the same steps.

The first one is finding a finite element potential u∗h ∈ Nh such that{
curl u∗h = Bh in Ω∮
σn

u∗h · ds = βn ∀ n = 1, . . . , g ,
(29)

where Bh ∈ RTh is the Raviart–Thomas interpolant IRTh B of B
(we therefore assume that B is so regular that its interpolant IRTh B
is defined; for instance, as already recalled, it is enough to assume

B ∈ (H
1
2

+δ(Ω))3, δ > 0). The construction of u∗h can be done as
in (4).
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Finite element approximation of the second case (cont’d)

The second step is related to the numerical approximation of
problem (28). The natural choice for the finite element space is
clearly the space V0,h introduced in (7). The finite element
approximation of (28) reads as follows:

Vh ∈ V0,h :∫
Ω µVh · gradϕh =

−
∫

Ω G ϕh −
∫

Ω µu∗h · gradϕh +
∫
∂Ω b ϕh

∀ ϕh ∈ L∗h ,

(30)

where

L∗h = span{ψh,i}nv−1
i=1 = {ϕh ∈ Lh |ϕh(vnv ) = 0} . (31)
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Finite element approximation of the second case (cont’d)

The corresponding algebraic problem is a square linear system of
dimension nv − 1, and it is uniquely solvable. In fact, since
V0,h = grad L∗h, we can choose ϕ∗h ∈ L∗h such that gradϕ∗h = Vh;
from (30) we find at once Vh = 0, provided that G = b = 0,
u∗h = 0.

The convergence of this finite element scheme is easily shown by
standard arguments.
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Convergence of the approximation for the second case

Theorem B. Let V ∈ V0 and Vh ∈ V0,h be the solutions of
problem (28) and (30), respectively. Set u = V + u∗ and
uh = Vh + u∗h, where u∗ ∈ H(curl ; Ω) and u∗h ∈ Nh are solutions
to problem (25) and (29), respectively. Assume that u and B are
regular enough, so that the interpolants INh u and IRTh B are defined.
Then the following error estimate holds

‖u− uh‖H(curl ;Ω) ≤ c0(‖u− INh u‖L2(Ω) + ‖B− IRTh B‖L2(Ω)) . (32)
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Convergence of the approximation for the second case (cont’d)

Proof. Since L∗h ⊂ H1(Ω), we can choose ϕ = ϕh ∈ L∗h in (28).
By subtracting (30) from (28) we end up with∫

Ω
µ[(V + u∗)− (Vh + u∗h)] · gradϕh = 0 ∀ ϕh ∈ L∗h ,

namely, the consistency property∫
Ω
µ(u− uh) · gradϕh = 0 ∀ ϕh ∈ L∗h . (33)

Then, since V0,h = grad L∗h and thus Vh = gradϕ∗h for a suitable
ϕ∗h ∈ L∗h, from (33) we find
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Convergence of the approximation for the second case (cont’d)

c1‖u− uh‖2
L2(Ω) ≤

∫
Ω µ(u− uh) · (u− uh)

=
∫

Ω µ(u− uh) · (u− Vh − u∗h)

=
∫

Ω µ(u− uh) · (u− gradϕ∗h − u∗h)

=
∫

Ω µ(u− uh) · (u− gradϕh − u∗h)

≤ c2‖u− uh‖L2(Ω)‖u−Ψh − u∗h‖L2(Ω) ∀ Ψh ∈ V0,h .

We can choose Ψh = (INh u− u∗h) ∈ V0,h; in fact,
curl (INh u) = IRTh (curl u) = IRTh B = Bh and∮
σn

INh u · ds =
∮
σn

u · ds = βn for each n = 1, . . . , g . Then we find

at once ‖u− uh‖L2(Ω) ≤ c2
c1
‖u− INh u‖L2(Ω).

Moreover, curl (u− uh) = B− Bh = B− IRTh B. �
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Convergence of the approximation for the second case (cont’d)

Note that a sufficient condition for defining the interpolants of u

and B = curl u is that they both belong to (H
1
2

+δ(Ω))3, δ > 0.

Thus one has to assume that B ∈ (H
1
2

+δ(Ω))3; moreover, u

belongs to (H
1
2

+δ(Ω))3 if, for instance, µ is a scalar Lipschitz
function in Ω and b ∈ Hγ(Ω), γ > 0.
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The algebraic problem for the second case

The solution Vh ∈ V0,h is given by Vh =
∑nv−1

i=1 Vigradψh,i .
Hence the finite dimensional problem (30) can be rewritten as

nv−1∑
i=1

Vi

∫
Ω
µ gradψh,i · gradψh,l

= −
∫

Ω G ψh,l −
∫

Ω µu∗h · gradψh,l +

∫
∂Ω

b ψh,l ,

(34)

for each l = 1, . . . , nv − 1.
The matrix K∗ with entries

K ∗li =

∫
Ω
µ gradϕh,i · gradϕh,l

is clearly symmetric and positive definite.
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