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Finite elements

A finite element method is an approximation method for
variational problems of the form

find u ∈ V : a(u, v) = F(v) ∀ v ∈ V , (1)

where the real/complex vector space V , the
bilinear/sesquilinear form a(·, ·) and the linear/antilinear
functional F(·) are data of the problem.

Its basic ingredients are:

a triangulation of the computational domain Ω (mesh)

a (finite dimensional) vector space Vh constituted by
piecewise-polynomial functions.
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Finite elements (cont’d)

The finite element method thus reads

find uh ∈ Vh : ah(uh, vh) = Fh(vh) ∀ vh ∈ Vh . (2)

Here:

ah(·, ·) and Fh(·) are suitable approximations of a(·, ·)
and F(·) (often, they coincide with them).

Remark. A first natural requirement is that Vh must be a
“good” approximation of V in the sense that

dist(v, Vh) → 0 ∀ v ∈ V . (3)

It is not necessary that Vh ⊂ V , but very often this is the
case.
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Degrees of freedom and basis functions

In order to operate with Vh, it is necessary to find a basis
of it (easy to construct and suitable for computations...).

Denoting by Nh the dimension of Vh, it is enough to find Nh

linear functionals Gi such that

vh ∈ Vh , Gi(vh) = 0 ∀ i = 1, . . . , Nh =⇒ vh = 0 . (4)

[The Gi are called degrees of freedom.]

The basis is then given by the functions ϕj ∈ Vh such that

Gi(ϕj) =

{
1 if i = j

0 if i 6= j .
(5)

[Hint: check directly that ϕj are linearly independent...]
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Nodal degrees of freedom

A natural choice (not the only possible one... we will see
another example later on) of the degrees of freedom is the
following: having selected Nh nodes xi in the computational
domain Ω, define

Gi(ϕ) = ϕ(xi) . (6)

[This definition requires that the point values of ϕ are
well-defined scalar quantities; this is surely true if ϕ is a
continuous scalar function, not necessarily if ϕ ∈ V ...]

Clearly, the choice of the nodes must be co-ordinated with
the choice of Vh, in order to satisfy (4).
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Nodal finite elements

Let us make precise the context in a specific case.

Assume that Ω ⊂ R
3 and that the elements K of the

triangulation are tetrahedra.

A natural choice of the finite elements is the following:

Vh = Lr
h := {vh ∈ C0(Ω) | vh|K ∈ Pr ∀ K} , (7)

having denoted by Pr the set of polynomials of degree less
than or equal to r, r ≥ 1.
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Nodal finite elements (cont’d)

It is not difficult to determine how to choose the nodes in
this situation: for instance,

r = 1: the vertices of all the tetrahedra

r = 2: the vertices of all the tetrahedra and the middle
points of all the edges

r = 3: the vertices of all the tetrahedra, all the points
dividing an edge in three equal parts and the
barycenters of all the faces.
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Nodal finite elements (cont’d)

The degrees of freedom for tetrahedra (r = 1, r = 2, r = 3).
Only the visible nodes are indicated.

Exercise. Condition (4) is satisfied. [Hint: show that an
element of Pr vanishing at the nodes of a face must vanish
on that face...]
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Nodal finite elements (cont’d)

Remark. In the proof of the exercise one verifies that it is
possible to construct element-by-element a polynomial
q ∈ Pr by assigning the value of its nodal degrees of
freedom, and that on the interelements it is uniquely
determined (if it vanishes on the nodes of a face, then it
vanishes on the whole face...).
Hence putting the pieces together one finds a continuous
function, namely, an element of the finite element space Vh

defined in (7).
This element is uniquely determined by the values of the
assigned degrees of freedom: in other words, the total
number of the nodal degrees of freedom is equal to the
dimension of Vh.
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Nodal finite elements (cont’d)

Remark. Indeed, for the finite elements introduced in (7),
with nodal degrees of freedom, a more restrictive condition
than (4) is satisfied. In fact, denoting by NK the number of
nodes belonging to the element K, one has

q ∈ Pr , Gi(q) = 0 ∀ i = 1, . . . , NK =⇒ q = 0 ,

and consequently

vh ∈ Vh , Gi(vh|K) = 0 ∀ i = 1, . . . , NK =⇒ vh|K = 0 . (8)

Therefore, it is easily seen that the basis functions have a
“small” support: ϕi is non-vanishing only in the elements K
of the triangulation that contain the node xi.
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Approximation error

Question. Having done the choice

Vh = Lr
h := {vh ∈ C0(Ω) | vh|K ∈ Pr ∀ K}

with nodal degrees of freedom, is condition (3) satisfied?

To find an answer, let us begin with this remark. Denote by
V the space of “smooth” functions and suppose that each
function in V can be approximated by an element of V [this
is very often the case for partial differential equations
expressed in variational form: but there are exceptions...].

Then, given v ∈ V , a proof of (3) can start observing that

dist(v, Vh) ≤ dist(v, w) + dist(w, Vh) ,

where w ∈ V, and dist(v, w) can be taken arbitrarily small.
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Finite element interpolant

On the other hand,

dist(w, Vh) ≤ dist(w,wh) ∀ wh ∈ Vh ,

therefore the problem is to select a “good” approximation wh

of a smooth function w.

To this end, it is useful to consider the finite element
interpolant of a function. It is defined as follows: given a
function ϕ (say, continuous), the interpolant πhϕ of ϕ is the
unique function belonging to Vh such that

(πhϕ)(xi) = ϕ(xi) ∀ i = 1, . . . , Nh . (9)

[Existence and uniqueness of πhϕ are a consequence of
(4)...]

Numerical analysis of problems in electromagnetism – p.12/195



Interpolation operator

The interpolation operator πh : C0(Ω) → Vh is then trivially
defined as the operator which associates to a function its
interpolant:

πh : ϕ→ πhϕ . (10)

It is readily seen that

πhϕ =
Nh∑

j=1

ϕ(xj)ϕj . (11)

[Hint: just check that
∑Nh

j=1 ϕ(xj)ϕj(xi) = ϕ(xi)...]

Numerical analysis of problems in electromagnetism – p.13/195



Interpolation error

Let us focus now on the estimate of the interpolation error
for a “smooth” function.

An estimate of the interpolation error depends on the
characteristics of the space V , namely, depends on the
distance defined in V . [Clearly, there are many distances
defined in a vector space V : the right one is that making V
a Hilbert space...]

Typically, for second order partial differential equations we
have that V is a closed subspace of H1(Ω), the Sobolev
space of first order. (This is not always the case... we will
see a different situation later on.)

Therefore one can think that

dist(w, πhw) = ‖w − πhw‖1,Ω .

Numerical analysis of problems in electromagnetism – p.14/195



Interpolation error (cont’d)

It can be proved that for a “regular” family of triangulations
and for the choice (7) with nodal degrees of freedom one
has

‖w − πhw‖1,Ω ≤ C(w)hr (12)

for each “smooth” function w, hence condition (3) is
satisfied.

[A family of triangulations Th, h > 0, is said “regular” if

diamK

diamBK
≤ const ∀ K ∈ Th ∀ h > 0 ,

where BK denotes the largest ball contained in K: namely,
the elements are not becoming more and more distorted as
the mesh is refined.]
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Interpolation error (cont’d)

It can be useful to look deeper at the interpolation error
estimate (12), in order to make explicit the regularity of w
that is sufficient for obtaining the result.

In this respect, it can be proved that (12) holds provided that
w belongs to L2(Ω) together with all its derivatives up to
order r + 1: in other words, the interpolation error is of order
r (with respect to the natural H1(Ω)-norm) if the (Sobolev)
regularity of the solution is equal to r + 1.

This result will be useful for checking that the order of
convergence of the finite element method is related to the
(Sobolev) regularity of the exact solution.
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Discretization error

What is missing now is an estimate of the discretization
error, namely, the distance between the exact solution
u ∈ V of problem (1) and the approximate solution uh ∈ Vh

of problem (2).

[Clearly, we expect that the approximation condition (3),
dist (v, Vh) → 0 for each v ∈ V , is a crucial one; but the
discretization error cannot avoid reading also the type of
differential problem we have at hand...]

The procedure we present is quite general (for linear
problems). However, let us assume for the sake of
simplicity that

ah(·, ·) = a(·, ·) , Fh(·) = F(·) , Vh ⊂ V . (13)
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Discretization error (cont’d)

[Note that the condition Vh ⊂ V is clearly satisfied for the
choice (7)...]

The argument of the so-called Céa lemma is the following.

By subtracting (2) from (1) (for v = vh ∈ V ) we have

a(u− uh, vh) = 0 ∀ vh ∈ Vh . (14)

[This property is often called consistency of the finite
element scheme.]

Hence

a(u− uh, u− uh) = a(u− uh, u)

= a(u− uh, u− vh) ∀ vh ∈ Vh .
(15)
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Discretization error (cont’d)

Suppose now that

V is a Hilbert space

the (bilinear/sesquilinear) form a(·, ·) is
continuous, namely

|a(w, v)| ≤ γ ‖w‖V ‖v‖V ∀ w, v ∈ V (16)

coercive, namely

|a(v, v)| ≥ α ‖v‖2
V ∀ v ∈ V . (17)

[In particular, by Lax–Milgram lemma these conditions
guarantee that there exists a unique solution u to (1) and a
unique solution uh to (2), for any linear/antilinear and
continuous functional F .]
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Discretization error (cont’d)

From (15) one has

α‖u− uh‖2
V ≤ a(u− uh, u− uh)

= a(u− uh, u− vh)

≤ γ ‖u− uh‖V ‖u− vh‖V ∀vh ∈ Vh ,

hence
‖u− uh‖V ≤ γ

α
dist (u, Vh) , (18)

and convergence is proved, provided that (3) holds.
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Order of convergence

Suppose now that V is a closed subspace of H1(Ω) and
that (16) and (17) are satisfied.

If one is working with the finite elements (7) with nodal
degrees of freedom, it is possible to estimate the order of
convergence of the finite element method.

In fact, we start from (18) and we find

‖u− uh‖1,Ω ≤ γ
α dist (u, Vh)

≤ γ
α ‖u− πhu‖1,Ω ≤ C(u)hr ,

(19)

provided that Th is a “regular” family of triangulations and
the (Sobolev) regularity of u is equal to r + 1.
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Maxwell equations in electromagnetism

The complete Maxwell system of electromagnetism reads




∂D
∂t

+ J = curlH Maxwell–Ampère equation

∂B
∂t

+ curl E = 0 Faraday equation

divD = ρ Gauss electrical equation
divB = 0 Gauss magnetic equation .

H and E are the magnetic field and electric field,
respectively

B and D are the magnetic induction and electric
induction, respectively

J and ρ are the (surface) electric current density and
(volume) electric charge density, respectively.
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Maxwell equations in electromagnetism (cont’d)

These fields are related through some constitutive
equations: it is usually assumed a linear dependence like

D = εE , B = µH , J = σE + Je ,

where ε and µ are the electric permittivity and magnetic
permeability, respectively, and σ is the electric conductivity.

[In general, ε, µ and σ are not constant, but are symmetric
and uniformly positive definite matrices (with entries that
are bounded functions of the space variable x). Clearly, the
conductivity σ is only present in conductors, and is
identically vanishing in any insulator.]

Je is the applied electric current density.

Numerical analysis of problems in electromagnetism – p.23/195



Eddy currents

As observed in experiments and stated by the Faraday law,
a time-variation of the magnetic field generates an electric
field. Therefore, in each conductor a current density
Jeddy = σE arises; this term expresses the presence in
conducting media of the so-called eddy currents.

This phenomenon, and the related heating of the conductor,
was observed and studied in the mid of the nineteenth
century by the French physicist L. Foucault, and in fact the
generated eddy currents are also known as Foucault
currents.
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Slowly varying fields

In many real-life applications, the time of propagation of the
electromagnetic waves is very small with respect to some
characteristic time scale, or, equivalently, their wave length
is much larger than the diameter of the physical domain.

Therefore one can think that the speed of propagation is
infinite, and take into account only the diffusion of the
electromagnetic fields, neglecting electromagnetic waves.

Rephrasing this concept, one can also say that, when
considering time-dependent problems in electromagnetism,
one can distinguish between "fast" varying fields and
"slowly" varying fields. In the latter case, one is led to
simplify the set of equations, neglecting time derivatives, or,
depending on the specific situation at hand, one time
derivative, either ∂D

∂t or ∂B
∂t .
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Eddy current approximation

Typically, problems of this type are peculiar of electrical
engineering, where low frequencies are involved, but not of
electronic engineering, where the frequency ranges in
much larger bands.

Let us focus on the case in which the displacement current
term ∂D

∂t can be disregarded, while the time-variation of the
magnetic induction is still important, as well as the related
presence of eddy currents in the conductors.

The resulting equations are called eddy current
equations.
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Eddy current approximation (cont’d)

A thumb rule for deciding wheter ∂D
∂t can be dropped is the

following: if L is a typical length in Ω (say, its diameter) and
we choose the inverse of the angular frequency ω−1 as a
typical time, it is possibile to disregard the displacement
current term provided that

|D||ω| ≪ |H|L−1 , |D||ω| ≪ |σE| .

Using the Faraday equation, we can write E is terms of H,
finding

|E|L−1 ≈ |ω||µH| .
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Eddy current approximation (cont’d)

Hence, recalling that D = εE and putting everything
together, one should have

µmax εmaxω
2L2 ≪ 1 , σ−1

minεmax|ω| ≪ 1 ,

where µmax and εmax are uniform upper bounds in Ω for the
maximum eigenvalues of µ(x) and ε(x), respectively, and
σmin denotes a uniform lower bound in ΩC for the minimum
eigenvalues of σ(x).
Since the magnitude of the velocity of the electromagnetic
wave can be estimated by (µmax εmax)

−1/2, the first relation
is requiring that the wave length is large compared to L.
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Eddy current approximation (cont’d)

Let us also note that for electrical industry applications
some typical values of the parameters involved are
µ0 = 4π × 10−7 H/m, ε0 = 8.9 × 10−12 F/m,
σcopper = 5.7 × 107 S/m, ω = 2π × 50 rad/s (power frequency
of 50 Hz), hence in that case

1√
µ0ε0|ω|

≈ 106 m , σ−1
copperε0|ω| ≈ 4.9 × 10−17 ,

and dropping the displacement current term looks
appropriate.

Though less apparent, the same is true for a typical
conductivity in physiological problem, say,
σtissue ≈ 10−1 S/m, for which σ−1

tissueε0|ω| ≈ 2.8 × 10−8.
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Time-harmonic Maxwell and eddy current equations

When interested in time-periodic phenomena, it is assumed
that

Je(t,x) = Re[Je(x) exp(iωt)]

E(t,x) = Re[E(x) exp(iωt)]

H(t,x) = Re[H(x) exp(iωt)] .

(20)

ω 6= 0 is the (angular) frequency.

Inserting these relations in the Maxwell equations one
obtains the so-called time-harmonic Maxwell equations

{
curl H− iωεE − σE = Je in Ω

curl E + iωµH = 0 in Ω .
(21)
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Time-harmonic Maxwell and eddy current equations (cont’d)

As a consequence one has div(µH) = 0 in Ω, and the
electric charge in conductors is defined by ρ = div(εE).

It can be proved that the time-harmonic Maxwell equations
have a unique solution (provided that suitable boundary
conditions are added, and that the conductor is not empty;
we will come back later on to the case in which the
conductor is empty).

On the other hand, dropping the displacement current term
the time-harmonic eddy current equations are

{
curl H − σE = Je in Ω

curl E + iωµH = 0 in Ω .
(22)
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Gauge conditions for the electric field

Let us spend some more words about eddy current
equations.
Since in an insulator one has σ = 0, it follows that E is not
uniquely determined in that region (E + ∇ψ is still a
solution).
Some additional conditions ("gauge" conditions) are thus
necessary: the most natural idea is to impose the
conditions satisfied by the solution E of the Maxwell
equations.
As in the insulator ΩI we have no charges, the first
additional condition is

div(εIEI) = 0 in ΩI (23)

(EI means E|ΩI
, and similarly for other quantities).
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Topological gauge conditions for the electric field

Other gauge conditions are related to the topology of the
insulator ΩI . Denoting by ΩC the conductor (strictly
contained in the physical domain Ω, and surrounded by the
insulator ΩI) and by Γ := ΩC ∩ ΩI , let us define

HI := {GI ∈ (L2(ΩI))
3 | curl GI = 0, div(εIGI) = 0

GI × n = 0 on Γ,BCE(GI) = 0 on ∂Ω} ,

where BCE denotes the boundary condition imposed on EI

(see later on for a precise description).
The topological gauge conditions can be written as

εIEI ⊥ HI . (24)
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Topological gauge conditions for the electric field (cont’d)

Thus these conditions are ensuring that, if in addition one
has curl EI = 0 in ΩI , div(εIEI) = 0 in ΩI , EI × n = 0 on Γ
and BCE(EI) = 0 on ∂Ω, then it follows EI = 0 in ΩI .

It can be shown that the orthogonality condition
εIEI ⊥ HI is equivalent to impose that the flux of εIEI

is vanishing on a suitable set of surfaces.
[These surfaces depend on the choice of the boundary
condition for EI ; for instance, for EI × n = 0 on ∂Ω they
are the connected components of ∂Ω ∪ Γ.]

Numerical analysis of problems in electromagnetism – p.34/195



Boundary conditions

We will distinguish between two types of boundary
conditions.

Electric. One imposes E × n = 0 on ∂Ω. [As a
consequence, one also has µH · n = 0 on ∂Ω.]

Magnetic (Maxwell). One imposes H × n = 0 on ∂Ω.
[As a consequence, one also has εE · n = −(iω)−1Je · n
on ∂Ω.]

Magnetic (eddy currents). One imposes H × n = 0 and
εE · n = 0 on ∂Ω. [Note that H × n = 0 on ∂Ω implies
Je · n = 0 on ∂Ω.]

For eddy current equations, the notation BCE(EI) on ∂Ω
therefore refers to EI ×n for the electric boundary condition,
and to εIEI · n for the magnetic boundary conditions.
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The spaces of harmonic fields

Let us consider a couple of questions.

If a vector field satisfies curl v = 0 and div v = 0 in a
domain, together with the boundary conditions v×n = 0

on a part of the boundary and v · n = 0 on the other
part, is it non-trivial, namely, not vanishing everywhere
in the domain? [A field like that is called harmonic field.]

If that is the case, do harmonic fields appear in
electromagnetism?

Both questions have an affermative answer.

Numerical analysis of problems in electromagnetism – p.36/195



The spaces of harmonic fields (cont’d)

Let us start from the first question.

If the domain O is homeomorphic to a three-dimensional
ball, a curl-free vector field v must be a gradient of a scalar
function ψ, that must be harmonic due to the constraint on
the divergence.

If the boundary condition is v × n = 0 on ∂O, which in this
case is a connected surface, then it follows ψ = const. on
∂O, and therefore ψ = const. in O and v = 0 in O.
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The spaces of harmonic fields (cont’d)

If the boundary condition is v · n = 0 on ∂O, then ψ satisfies
a homogeneous Neumann boundary condition and thus
ψ = const. in O and v = 0 in O.

The same result follows if the boundary conditions are
v × n = 0 on ΓD and v · n = 0 on ΓN , and ΓD is a connected
surface: in fact, we still have ψ = const. on ΓD and
gradψ · n = 0 on ΓN , hence ψ satisfies a mixed boundary
value problem and we obtain ψ = const. in O and v = 0 in O.
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The spaces of harmonic fields (cont’d)

However, the problem is different in a more general
geometry.

In fact, take the magnetic field generated in the vacuum by
a current of constant intensity I0 passing along the x3-axis:
as it is well-known, for x2

1 + x2
2 > 0 it is given by

H(x1, x2, x3) =
I0

2π

(
− x2

x2
1 + x2

2

,
x1

x2
1 + x2

2

, 0

)
.
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The spaces of harmonic fields (cont’d)

It is easily checked that, as Maxwell equations require,
curl H = 0 and div H = 0.

Let us consider now the torus T obtained by rotating
around the x3-axis the disk of centre (a, 0, 0) and radius b,
with 0 < b < a. One sees at once that H · n = 0 on ∂T ;
hence we have found a non-trivial harmonic field H in T
satisfying H · n = 0 on ∂T .
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The spaces of harmonic fields (cont’d)

On the other hand, consider now the electric field
generated in the vacuum by a pointwise charge ρ0 placed at
the origin. For x 6= 0 it is given by

E(x1, x2, x3) =
ρ0

4πε0

x

|x|3 ,

where ε0 is the electric permittivity of the vacuum.

It satisfies div E = 0 and curl E = 0, and moreover E × n = 0

on the boundary of C := BR2
\BR1

, where 0 < R1 < R2 and
BR := {x ∈ R

3 | |x| < R} is the ball of centre 0 and radius R.
We have thus found a non-trivial harmonic field E in C
satisfying E × n = 0 on ∂C.
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The spaces of harmonic fields (cont’d)

These two examples show that the geometry of the domain
and the type of boundary conditions play an essential role
when considering harmonic fields.

What are the relevant differences between the set O,
homeomorphic to a ball, and the sets T and C?

For the former, the point is that in T we have a
non-bounding cycle, namely, a cycle that is not the
boundary of a surface contained in T (take for instance the
circle of centre 0 and radius a in the (x1, x2)-plane).

In the latter case, the boundary of C is not connected.

Numerical analysis of problems in electromagnetism – p.42/195



The spaces of harmonic fields (cont’d)

Four types of spaces of harmonic fields are coming into
play.

For the electric field

H(A)
I := {GI ∈ (L2(ΩI))

3 | curl GI = 0, div(εIGI) = 0

GI × n = 0 on Γ,GI × n = 0 on ∂Ω} ,

H(B)
I := {GI ∈ (L2(ΩI))

3 | curl GI = 0, div(εIGI) = 0

GI × n = 0 on Γ, εIGI · n = 0 on ∂Ω} ,
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The spaces of harmonic fields (cont’d)

For the magnetic field

H(C)
I := {GI ∈ (L2(ΩI))

3 | curl GI = 0, div(µIGI) = 0

µIGI · n = 0 on Γ,GI × n = 0 on ∂Ω} ,

H(D)
I := {GI ∈ (L2(ΩI))

3 | curl GI = 0, div(µIGI) = 0

µIGI · n = 0 on Γ,µIGI · n = 0 on ∂Ω} .

All are finite dimensional! Their dimension is a topological
invariant (precisely,... see below!).
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The basis functions of the spaces of harmonic fields

Let us make precise which are the basis functions of H(D)
I

and H(C)
I .

For H(D)
I one has first to introduce the "cutting" surfaces

Ξ∗
α ⊂ ΩI , α = 1, . . . , nΩI

, with ∂Ξ∗
α ⊂ ∂Ω ∪ Γ, such that every

curl-free vector field in ΩI has a global potential in
ΩI \ ∪αΞ∗

α.

The number nΩI
is the number of (independent)

non-bounding cycles in ΩI , namely, the first Betti number of
ΩI , or, equivalently, the dimension of the first homology
space of ΩI .

These surfaces "cut" the non-bounding cycles in ΩI .
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The basis functions of the spaces of harmonic fields (cont’d)

The basis functions ρ∗
α,I are the (L2(ΩI))

3-extensions of
grad p∗α,I , where p∗α,I is the solution to





div(µI grad p∗α,I) = 0 in ΩI \ Ξ∗
α

µI grad p∗α,I · nI = 0 on (∂Ω ∪ Γ) \ ∂Ξ∗
α[

µI grad p∗α,I · nΞ∗

]
Ξ∗

α

= 0
[
p∗α,I

]
Ξ∗

α

= 1 ,

(25)

having denoted by [ · ]Ξ∗

α
the jump across the surface Ξ∗

α and
by nΞ∗ the unit normal vector on Ξ∗

α.
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The basis functions of the spaces of harmonic fields (cont’d)

The basis functions for H(C)
I can be defined as follows.

First of all we have grad zl,I , the solutions to





div(µI grad zl,I) = 0 in ΩI

µI grad zl,I · nI = 0 on Γ

zl,I = 0 on ∂Ω \ (∂Ω)l
zl,I = 1 on (∂Ω)l ,

(26)

where l = 1, . . . , p∂Ω, and p∂Ω + 1 is the number of
connected components of ∂Ω.
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The basis functions of the spaces of harmonic fields (cont’d)

To complete the construction of the basis functions we have
to proceed further.
For that, as in the preceding case, let us recall that in ΩI

there exists a set of "cutting" surfaces Ξq, with ∂Ξq ⊂ Γ,
such that every curl-free vector field in ΩI with vanishing
tangential component on ∂Ω has a global potential in
ΩI \ ∪qΞq.

These surfaces "cut" the ∂Ω-independent non-bounding
cycles in ΩI (whose number is denoted by nΓ).
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The basis functions of the spaces of harmonic fields (cont’d)

Then introduce the functions pq,I , q = 1, . . . , nΓ, defined in
ΩI \ Ξq and solutions to





div(µI grad pq,I) = 0 in ΩI \ Ξq

µI grad pq,I · nI = 0 on Γ \ ∂Ξq

pq,I = 0 on ∂Ω[
µI grad pq,I · nΞ

]
Ξq

= 0
[
pq,I

]
Ξq

= 1 ,

(27)

having denoted by [ · ]Ξq
the jump across the surface Ξq and

by nΞ the unit normal vector on Ξq.

The other basis functions ρq,I are the (L2(ΩI))
3-extensions

of grad pq,I (computed in ΩI \ Ξq).
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Vector potential formulation

Motivated by the fact that the magnetic induction B = µH is
divergence-free in Ω, a classical approach to the Maxwell
equations and to eddy current problems is that based on
the introduction of a vector magnetic potential A such that
curl A = µH. Often, this is also accompanied by the use of a
scalar electric potential VC in the conductor ΩC , satisfying
−iωAC − grad VC = EC .

Summing up, one looks for A and VC such that

EC = −iωAC − grad VC , µH = curl A . (28)

[Note that A and VC are not uniquely defined...]

For the time being, let us focus on the eddy current
equations. For the sake of definiteness we consider the
electric boundary condition.
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Vector potential formulation (cont’d)

Imposing the Ampère equation one has:

curl(µ−1 curl A) + iωσAC + σ grad VC = Je in Ω .

On the other hand, from (28) we see at once that

curl EC = −iω curl AC = −iωµCHC ,

thus the Faraday equation in ΩC is satisfied. Moreover, µH

is equal to curl A in Ω, therefore it is a solenoidal vector field
in Ω.

If we require AI × n = 0 on ∂Ω, the boundary condition
µIHI · n = 0 on ∂Ω is satisfied: in fact,

µIHI · n = curl AI · n = divτ (AI × n) = 0 .
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Vector potential formulation (cont’d)

[A remark on the relation

curl A · n = divτ (A × n) on ∂Ω ,

which is very often used in electromagnetism.
Given a function η defined in Ω, we have
∫
∂Ω curl A · n η =

∫
Ω div(η curl A) =

∫
Ω grad η · curl A

=
∫
∂Ω grad η · (n × A) = −

∫
∂Ω η divτ (n × A) ,

and, since η is arbitrary, the conclusion follows.]
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Don’t forget the Faraday equation!

A little bit surprisingly, what we have presented is not the
complete formulation in terms of H and EC : something is
still missing.

In fact, the Faraday equation is not completely solved.

More precisely, in ΩC we have solved the Faraday equation
in differential form, but we are not imposing the Faraday
equation in integral form for all the surfaces contained in Ω.

Let us see in more detail: the Faraday equation relates the
flux of the magnetic induction through a surface with the line
integral of the electric field on the boundary of that surface.
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Don’t forget the Faraday equation! (cont’d)

Since we know the magnetic field in the whole Ω, surfaces
can stay everywhere in Ω; but we know the electric field
only in ΩC , therefore the boundary of the surface must stay
in ΩC .

On the other hand, since the Faraday equation (in
differential form) is satisfied in ΩC , for a surface contained
in ΩC everything is all right.

Thus we must verify if there are surfaces in ΩI with
boundary on Γ, and moreover such that this boundary is not
the boundary of a surface in ΩC [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in Ω...].
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Don’t forget the Faraday equation! (cont’d)

Conclusion: the Faraday equation has not been
imposed on the "cutting" surface Λ! [The non-bounding
cycle is the boundary of the surface Σ.]

∂Ω

Σ

Γ

Λ
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Back to the vector potential formulation

It can be seen that the integral form of the Faraday equation
on these surfaces is satisfied if

∫

ΩI

iωµIHI · ρ∗
I = −

∫

Γ
(EC × nC) · ρ∗

I ,

where ρ∗
I is curl-free in ΩI .

Let us verify if this condition holds when the (A, VC)
formulation is used: we have

∫
ΩI
iωµIHI · ρ∗

I =
∫
ΩI
iω curl AI · ρ∗

I

= iω
∫
Γ(nI × AI) · ρ∗

I = iω
∫
Γ(AC × nC) · ρ∗

I

= −
∫
Γ(EC × nC) · ρ∗

I −
∫
Γ(grad VC × nC) · ρ∗

I .
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Back to the vector potential formulation (cont’d)

On the other hand
∫
Γ (grad VC × nC) · ρ∗

I

=
∫
Γ(ρ∗

I × nI) · grad VC

= −
∫
Γ divτ (ρ

∗
I × nI)VC

= −
∫
Γ curl ρ∗

I · nI VC = 0 .

In conclusion, using of the (A, VC) formulation guarantees
that the Faraday equation is completely solved.

This approach opens the problem of determining
correct gauge conditions ensuring the uniqueness of A

and VC (these conditions can be necessary when
considering numerical approximation, in order to avoid
that the discrete problem becomes singular).
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Gauge conditions

The most frequently used is the Coulomb gauge

div A = 0 in Ω . (29)

In a general geometrical situation, this can be not enough
for determining a unique vector potential A in Ω. In fact,
there exist non-trivial irrotational, solenoidal vector fields
with vanishing tangential component, namely, the elements
of the space of harmonic fields

H(e; Ω) := {w ∈ (L2(Ω))3 | curl w = 0, div w = 0,

w × n = 0 on ∂Ω} ,
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Gauge conditions (cont’d)

whose dimension is given by the number of connected
components of ∂Ω minus 1 (say, as stated before, p∂Ω).
Imposing orthogonality, namely, A⊥H(e; Ω), turns out to be
equivalent to require

∫

(∂Ω)l

A · n = 0 ∀ l = 1, . . . , p∂Ω . (30)

In conclusion, we are left with the problem




curl(µ−1 curl A) + iωσA

+σ grad VC = Je in Ω

div A = 0 in Ω∫
(∂Ω)l

A · n = 0 ∀ l = 1, . . . , p∂Ω

A × n = 0 on ∂Ω .

(31)
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Penalization

[Clearly, VC is determined up to an additive constant in each
connected component ΩC,j of ΩC , j = 1, . . . , pΓ + 1.]

The solenoidal constraint can be imposed by adding a
penalization term. Introducing the constant µ∗ > 0,
representing a suitable average in Ω of the entries of the
matrix µ, the Coulomb gauge condition div A = 0 in Ω can
be incorporated in the Ampère equation, which becomes

curl(µ−1 curl A) − µ−1
∗ grad div A + iωσA + σ grad VC

= Je in Ω .

A boundary condition for div A is now necessary, and we
impose

div A = 0 on ∂Ω .
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Penalization (cont’d)

Moreover one adds the two equations

div(iωσAC + σ grad VC) = div Je,C in ΩC

(iωσAC + σ grad VC) · nC = Je,C · nC + Je,I · nI on Γ ,

that are necessary as, due to the modification in the
Ampère equation, it is no more ensured that the electric
field EC = −iωAC − grad VC satisfies the necessary
conditions

div(σEC) = − div Je,C in ΩC

σEC · nC = −Je,C · nC − Je,I · nI on Γ .
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Vector potential strong formulation

The complete (A, VC) formulation is therefore




curl(µ−1 curl A) − µ−1
∗ grad div A

+iωσA + σ grad VC = Je in Ω

div(iωσAC + σ grad VC) = div Je,C in ΩC

(iωσAC + σ grad VC) · nC

= Je,C · nC + Je,I · nI on Γ∫
(∂Ω)l

A · n = 0 ∀ l = 1, . . . , p∂Ω

div A = 0 on ∂Ω

A × n = 0 on ∂Ω .

(32)

[For the magnetic boundary conditions see Bíró and V.
(2007).]
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Vector potential strong formulation (cont’d)

This formulation deals directly with curl A and div A, hence
nor A× n neither A ·n are admitted to jump on a surface: in
other words, the vector A cannot jump on a surface internal
to Ω.

Therefore at the finite element level one is led to
approximate each component of A by continuous nodal
finite elements (say, the elements belonging to the space Vh

introduced in (7)).

[If the constraint div A = 0 is imposed by requiring that A is
orthogonal to a suitable space of gradients, it is no longer
mandatory that A · n has no jumps: therefore one could
also use vector finite elements for which some components
are not continuous. We will see a different example of this
type later on...]
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Vector potential strong formulation (cont’d)

It is important to show that any solution to (32) satisfies
div A = 0 in Ω. In fact, taking the divergence of (32)1 and
using (32)2 we have −∆ div AC = 0 in ΩC . Moreover, since
div Je,I = 0 in ΩI , one also obtains −∆ div AI = 0 in ΩI . On
the other hand, using (32)3, on the interface Γ we have

−µ−1
∗ grad div AC · nC

= −Je,I · nI − curl(µ−1
C curl AC) · nC

= −Je,I · nI − divτ [(µ
−1
C curl AC) × nC ] ,

and also

−µ−1
∗ grad div AI · nI

= Je,I · nI − curl(µ−1
I curl AI) · nI

= Je,I · nI − divτ [(µ
−1
I curl AI) × nI ] .
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Vector potential strong formulation (cont’d)

Moreover, a solution to (32)1 satisfies on the interface Γ

nC × (µ−1
C curl AC) − µ−1

∗ div AC nC

+ nI × (µ−1
I curl AI) − µ−1

∗ div AI nI = 0 ,

therefore, due to orthogonality,

nC × (µ−1
C curl AC)+nI × (µ−1

I curl AI) = 0 , div AC = div AI .

Hence we have obtained

grad div AC · nC + grad div AI · nI = 0 on Γ ,

and this last condition, together with the matching of div A

on Γ, furnishes that div A is a harmonic function in the
whole Ω. Since it vanishes on ∂Ω, it vanishes in Ω.
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Vector potential weak formulation

We are now interested in finding a weak formulation of (32).

First of all, multiplying (32)1 by w with w × n = 0 on ∂Ω and
integrating in Ω, we obtain by integration by parts

∫
Ω(µ−1 curl A · curl w + µ−1

∗ div A div w)

+
∫
ΩC

(iωσAC · wC + σ grad VC · wC)

=
∫
Ω Je · w ,

having used (32)5.
Let us now multiply (32)2 by iω−1QC and integrate in ΩC : by
integration by parts and using (32)3 we find

∫
ΩC

(−σAC · gradQC + iω−1σ grad VC · gradQC)

= iω−1
∫
ΩC

Je,C · gradQC + iω−1
∫
Γ Je,I · nI QC .
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Vector potential weak formulation (cont’d)

Introducing the sesquilinear form

A[(A, VC), (w, QC)]

:=
∫
Ω(µ−1 curl A · curl w + µ−1

∗ div A div w)

+
∫
ΩC

(iωσAC · wC + σ grad VC · wC)

−
∫
ΩC

σAC · gradQC

+iω−1
∫
ΩC

σ grad VC · gradQC ,

(33)

we have finally rewritten (32) as

Find (A, VC) ∈W♯ ×H1
♯ (ΩC) such that

A[(A, VC), (w, QC)] =
∫
Ω Je · w

+iω−1
∫
ΩC

Je,C · gradQC + iω−1
∫
Γ Je,I · nI QC

for all (w, QC) ∈ W♯ ×H1
♯ (ΩC) ,

(34)
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Vector potential weak formulation (cont’d)

where

W♯ := {w ∈ H0(curl; Ω) ∩H(div; Ω) |∫
(∂Ω)l

w · n = 0 ∀ l = 1, . . . , p∂Ω} ,

and

H1
♯ (ΩC) :=

pΓ+1∏

j=1

H1(ΩC,j)/C .

The sesquilinear form A[·, ·] is continuous and coercive
[we will see this result later on...], therefore existence
and uniqueness of the solution is ensured by the
Lax–Milgram lemma.
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Vector potential: from the weak to the strong formulation

To complete the argument, it is necessary to show that a
solution of the weak problem is in fact a solution of the eddy
current problem.

This is not a trivial fact, as the functional spaces W♯ and
H1

♯ (ΩC) contain some constraints.

The first step is to show that (34) is satisfied for any
w ∈ H0(curl; Ω) ∩H(div; Ω), QC ∈ H1(ΩC).
First note that (34) does not change if we add to QC a
(different) constant in ΩC,j . In fact, the necessary conditions
on Je,I are div Je,I = 0 in ΩI and Je,I⊥HI , and the latter can
be rewritten as

∫
Γj

Je,I · nI = 0 for each j = 1, . . . , pΓ + 1 and
∫
(∂Ω)l

Je,I · n = 0 for each l = 1, . . . , p∂Ω. Hence a solution

(A, VC) of (34) satisfies it also for each QC ∈ H1(ΩC).
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Vector potential: from the weak to the strong formulation (cont’d)

Taking w = 0, a first general result is that any solution to
(34) satisfies
{

div(iωσAC + σ grad VC) = div Je,C in ΩC

(iωσAC + σ grad VC) · nC = Je,C · nC + Je,I · nI on Γ .

Therefore, setting

J :=

{
−iωσAC − σ grad VC + Je,C in ΩC

Je,I in ΩI ,

we have proved that div J = 0 in Ω.
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Vector potential: from the weak to the strong formulation (cont’d)

For any w ∈ H0(curl; Ω) ∩H(div; Ω) we can define by we the
harmonic field in H(e; Ω) satisfying

∫
(∂Ω)l

we · n =
∫
(∂Ω)l

w · n
for all l = 1, . . . , p∂Ω. Clearly, the difference w − we belongs
to W♯. Hence

A[(A, VC), (w, QC)]

= A[(A, VC), (w − we, QC)] + A[(A, VC), (we, 0)]

=
∫
Ω Je · (w − we) + iω−1

∫
ΩC

Je,C · gradQC

+iω−1
∫
Γ Je,I · nI QC

+
∫
ΩC

(iωσAC + σ grad VC) · we,C

=
∫
Ω Je · w + iω−1

∫
ΩC

Je,C · gradQC

+iω−1
∫
Γ Je,I · nI QC −

∫
Ω J · we .
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Vector potential: from the weak to the strong formulation (cont’d)

Therefore, the only result that remains to be proved is
∫

Ω
J · we = 0 .

The basis functions of H(e; Ω) are given by gradw∗
l ,

l = 1, . . . , p∂Ω, where w∗
l is the (real-valued) solution to





∆w∗
l = 0 in Ω

w∗
l = 0 on (∂Ω) \ (∂Ω)l

w∗
l = 1 on (∂Ω)l ,

and we have
∫
Ω J · gradw∗

l = −
∫
Ω div Jw∗

l +
∫
∂Ω J · nw∗

l

=
∫
(∂Ω)l

J · n =
∫
(∂Ω)l

Je,I · n = 0 .
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Vector potential: from the weak to the strong formulation (cont’d)

Taking now in (34) a test function w ∈ (C∞
0 (Ω))3, by

integration by parts we find at once that

curl(µ−1 curl A) − µ−1
∗ grad div A

+iωσA + σ grad VC = Je in Ω .

Repeating the same argument for w ∈ H0(curl; Ω) ∩H(div; Ω)
gives div A = 0 on ∂Ω, and therefore a weak solution (A, VC)
to (34) is a solution to the strong problem (32).
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Vector potential formulation: existence and uniqueness

The proof of existence and uniqueness derives from the
Lax–Milgram lemma.
We have only to check that the sesquilinear form A[·, ·] is
coercive in W♯ ×H1

♯ (ΩC), namely, that there exists a

constant κ0 > 0 such that for each (w, QC) ∈W♯ ×H1(ΩC)

with
∫
ΩC,j

QC|Ωj
= 0, j = 1, . . . , pΓ + 1, it holds

|A[(w, QC), (w, QC)]|
≥ κ0

( ∫
Ω(|w|2 + | curl w|2 + | div w|2)

+
∫
ΩC

(|QC |2 + | gradQC |2)
)
.

(35)
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Vector potential formulation: existence and uniqueness (cont’d)

First of all, we can easily obtain

A[(w, QC), (w, QC)]

=
∫
Ω(µ−1 curl w · curl w + µ−1

∗ | div w|2)
+iω−1

∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC) .

Then, observe that, given a couple of real numbers a and b,
for each 0 < δ < 1 it holds

|2ab| ≤ δa2 + δ−1b2 .
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Vector potential formulation: existence and uniqueness (cont’d)

Hence one has

|ω|−1
∫
ΩC

σ(iωwC + gradQC) · (−iωwC + gradQC)

≥ |ω|−1σmin

∫
ΩC

[| gradQC |2 + ω2|wC |2
+2 Re(iωwC · gradQC)]

≥ |ω|−1σmin(1 − δ)
∫
ΩC

| gradQC |2
−|ω|σmin(1 − δ)δ−1

∫
ΩC

|wC |2 ,

where σmin is an uniform lower bound in ΩC of the minimum
eigenvalues of σ(x).
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Vector potential formulation: existence and uniqueness (cont’d)

The Poincaré inequality gives that

∫
ΩC

| gradQC |2 =
∑pΓ+1

j=1

∫
ΩC,j

| gradQC|ΩC,j
|2

≥ K1
∑pΓ+1

j=1

∫
ΩC,j

(| gradQC|ΩC,j
|2 + |QC|ΩC,j

|2)
= K1

∫
ΩC

(| gradQC |2 + |QC |2)

[recall that
∫
ΩC,j

QC|ΩC,j
= 0, j = 1, . . . , pΓ + 1].

Moreover, the Poincaré-like inequality yields

∫
Ω(µ−1 curl w · curl w + µ−1

∗ | div w|2)
≥
∫
Ω(µ−1

max| curl w|2 + µ−1
∗ | div w|2)

≥ K2

∫
Ω(| curl w|2 + | div w|2 + |w|2) ,
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Vector potential formulation: existence and uniqueness (cont’d)

where µmax is a uniform upper bound in Ω of the maximum
eigenvalues of µ(x) [recall that, for a divergence-free vector
field, the conditions

∫
(∂Ω)l

w · n = 0 for all l = 1, . . . , p∂Ω are
equivalent to the orthogonality to H(e; Ω)].
Choosing (1 − δ) so small that σmin|ω|(1 − δ) < K2δ, we find
at once (35).
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Vector potential formulation: numerical approximation

Numerical approximation is performed by means of
nodal finite elements, for all the components of A and
for VC [all the components of Ah and VC,h are elements
of the space Vh introduced in (7)].

Via Céa lemma we have
( ∫

Ω(|A − Ah|2 + | curl(A − Ah)|2 + | div(A − Ah)|2)

+
∫
ΩC

| grad(VC − VC,h)|2
)1/2

≤ C0

( ∫
Ω(|A − wh|2 + | curl(A − wh)|2 + | div(A − wh)|2)

+
∫
ΩC

| grad(VC −QC,h)|2
)1/2

,

for each choice of wh and QC,h (the former satisfying the
constraints

∫
(∂Ω)l

wh · n = 0 for all l = 1, . . . , p∂Ω).
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Vector potential formulation: numerical approximation (c ont’d)

Denote by Ihw the nodal interpolant of w [this means that
Ihw = (πhw1, πhw2, πhw3), with w = (w1, w2, w3)].

It is not possible to choose wh = IhA, as the constraints∫
(∂Ω)l

wh · n = 0 have to be satisfied for all l = 1, . . . , p∂Ω.

However, for each unconstrained discrete function vh it
is possible to find a constrained discrete function wh

such that

‖A − wh‖W ≤ C‖A − vh‖W .

[Here notation is W := H(curl; Ω) ∩H(div; Ω).]
In particular, this can be done for vh = IhA. Therefore,
convergence is ensured provided that A is smooth
enough [precisely, the convergence is of order r
provided A is in the Sobolev space of order r + 1].
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Vector potential formulation: numerical approximation (c ont’d)

The regularity of A is a delicate point! In fact, it must be
noted that it is not guaranteed if Ω has re-entrant
corners or edges, namely, if it is a non-convex
polyhedron (see Costabel and Dauge (2000), Costabel,
Dauge and Nicaise (2003)).
More important, in that case the space
H1

n(Ω) := (H1(Ω))3 ∩H0(curl; Ω) turns out to be a proper
closed subspace of H0(curl; Ω) ∩H(div; Ω) (H1

n(Ω) and
H0(curl; Ω) ∩H(div; Ω) coincide if and only if Ω is convex).
Hence the nodal finite element approximate solution
Ah ∈ H1

n(Ω) cannot approach an exact solution
A ∈ H0(curl; Ω) ∩H(div; Ω) with A 6∈ H1

n(Ω), and
convergence in W = H(curl; Ω) ∩H(div; Ω) is lost: this is
a general problem for the nodal finite element
approximation of Maxwell equations.
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Vector potential formulation: numerical approximation (c ont’d)

Remark. This is a case in which “smooth” functions are not
approximating the functions belonging to the variational
space H0(curl; Ω) ∩H(div; Ω), but only the functions
belonging the closed proper subspace H1

n(Ω): Céa lemma
and interpolation estimates are not enough to conclude the
convergence proof...
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Vector potential formulation: numerical approximation (c ont’d)

Summing up: the nodal finite element approximation is
convergent either if the solution is regular (and this
information could be available even for a non-convex
polyhedron Ω) or else if the domain Ω is a convex
polyhedron, as in this case the space of smooth normal
vector fields is dense in H1

n(Ω) = H0(curl; Ω) ∩H(div; Ω),
and one can apply Céa lemma and interpolation
estimates in the standard way.

Let us also note that the assumption that Ω is convex is
not a severe restriction, as in most real-life applications
∂Ω arises from a somehow arbitrary truncation of the
whole space. Hence, re-entrant corners and edges of Ω
can be easily avoided.
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Vector potential formulation: numerical approximation (c ont’d)

It is worth noting that a cure for the lack of convergence
of nodal finite element approximations in the presence
of re-entrant corners and edges has been proposed by
Costabel and Dauge (2002). They introduce a special
weight in the grad div penalization term, thus permitting
to use standard nodal finite elements in a numerically
efficient way.

In numerical implementation, imposing the boundary
condition Ah × n = 0 on ∂Ω is clearly straightforward if
the boundary of the computational domain Ω is formed
by planar surfaces, parallel to the reference planes.
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Vector potential formulation: numerical approximation (c ont’d)

If that is not the case, for each node p on ∂Ω introduce
a local system of coordinates with one axis aligned with
na, a suitable average of the normals to the surface
elements containing p, and express, through a rotation,
the vector Ah with respect to that system: the condition
Ah × na = 0 is then trivially imposed (see Rodger and
Eastham (1985)).

Another possible approach, which avoids the
arbitrariness inherent in the averaging process of the
normals at corner points, is described by Bossavit
(1999). It is based on imposing Ah × n = 0 at the center
of the element faces on ∂Ω: the drawback is that it
results in a constrained problem, requiring the
introduction of as many Lagrange multipliers as the
(double of the) number of surface elements on ∂Ω.
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Vector potential formulation: numerical approximation (c ont’d)

Ungauged formulation have been also proposed (see
Ren (1996), Kameari and Koganezawa (1997), Bíró
(1999)): edge elements are employed for the
approximation of the potential A, without requiring that
the gauge condition div A = 0 in Ω is satisfied.
Clearly, in this way the resulting linear system is
singular: however, in many cases the right-hand sides
turn out to be compatible, so that suitable iterative
algebraic solvers can still be convergent.
[Warning: lack of a complete theory...]
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Numerical results

The numerical results we present here have been obtained
in Bíró and V. (2007), for the magnetic boundary conditions
(Ω is a torus and ΩC is a ball-like set).
The employed finite elements are second order hexahedral
“serendipity" elements, with 20 nodes (8 at the vertices and
12 at the midpoints of each edge), for all the components of
Ah and for Vh.
The values of the physical coefficients have been assumed
as follows: µ = µ∗ = 4π × 10−7 H/m, σ = 5.7 × 107 S/m,
ω = 2π × f = 100π rad/s, i.e., f = 50 Hz.
The half of the domain is described here below. The coils
(the support of Je,I , therefore modeled as insulators) are
red, while the conductor ΩC is green; the yellow “cutting"
surface Σ1 is also drawn.
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Numerical results (cont’d)

100

100

80

60

20
20

20

20

20

20
20

20

20

20

20

20

O

ef
z

r
40

The computational domain [one half].

Numerical analysis of problems in electromagnetism – p.88/195



Numerical results (cont’d)

The current density is given by Je,C = 0 and Je,I = Je,Ieφ,
where eφ is the azymuthal unit vector in the cylindrical
system centered at the point (100,0,0), oriented
counterclockwise, and

Je,I =





106 A/m2 if 60 < r < 80 , 60 < z < 80

−106 A/m2 if 60 < r < 80 , 20 < z < 40

0 otherwise .

In the two figures below some details of the computed
solution are presented: the magnitude of the computed flux
density B in the first figure, the magnitude of the computed
current density JC := −iωσAC − σ grad VC in the second
figure.
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Numerical results (cont’d)

The magnitude of the flux density B.
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Numerical results (cont’d)

The magnitude of the current density
JC := −iωσAC − σ grad VC .
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Pros and cons

Pros

standard nodal finite elements for all the unknowns;
no difficulty with the topology of the conducting
domain;
"positive definite" algebraic problem.

Cons

many degrees of freedom;
lack of convergence for re-entrant corners of the
computational domain.

Numerical analysis of problems in electromagnetism – p.92/195



Edge finite elements

Electromagnetic problems can be approximated by means
of a different type of vector finite elements, for which the
continuity of all the components is not required.

In fact, looking at Maxwell or eddy current equations it is
apparent that what is really needed is that the curl operator
is well-defined: not necessarily the gradient operator or the
divergence operator (see (21) and (22)).

Therefore, in order that a discrete function wh is also an
element of the variational space [still to be defined... but
only involving the curl operator!], what is needed is the
continuity of wh × n on all the interelements.
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Edge finite elements (cont’d)

These elements are called edge elements, and have
been proposed by Nédélec (1980).

Let us assume that the triangulation is composed by
tetrahedra.
For r ≥ 1 denote by P̃r the space of homogeneous
polynomials of degree r and define

Sr := {q ∈ (P̃r)
3 |q(x) · x = 0}

Rr := (Pr−1)
3 ⊕ Sr .

The first family of Nédélec finite elements is

N r
h := {wh ∈ H(curl; Ω) |wh|K ∈ Rr ∀ K ∈ Th} . (36)
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Edge finite elements (cont’d)

The degrees of freedom are not nodal values, but:

edge degrees of freedom me(w)

{∫

e
w · τ e q ds ∀ q ∈ Pr−1(e)

}
(37)

face degrees of freedom mf (w) (for r ≥ 2)
{∫

f
w × nf · q dS ∀q ∈ (Pr−2(f))2

}
(38)

volume degrees of freedom mK(w) (for r ≥ 3)
{∫

K
w · q dV ∀q ∈ (Pr−3)

3

}
. (39)
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Edge finite elements (cont’d)

Here τ e denotes a unit vector with the direction of e, while
nf is the unit normal vector on f .

The total number of degrees of freedom on a tetrahedron K
is equal to the dimension of Rr, and it can be shown that, if
all the degrees of freedom vanish, then a polynomial
w ∈ Rr is identically vanishing in K, hence conditions (8)
and (4) are satisfied.

It can also be proved that, if a vector function w ∈ Rr has all
its degrees of freedom vanishing on a face f of K and on
the three edges contained in f , then the tangential
component of w vanishes on f . This means that, using
these degrees of freedom for identifying a
piecewise-polynomial function that locally belongs to Rr, we
obtain an element of H(curl; Ω), hence an element of N r

h.
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Lowest order edge finite elements

Let us specify the form of Nédélec edge elements and
their degrees of freedom for r = 1.

The condition q · x = 0 for q ∈ (P̃1)
3 says that q = a × x with

a ∈ R
3. Hence the space R1 is given by the polynomials of

the form
q(x) = b + a × x , a,b ∈ R

3 . (40)

For r = 1 only edge degrees of freedom are active, and are
given by ∫

e
(b + a × x) · τ e ds (41)

for the six edges e of the tetrahedron K.
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Lowest order edge finite elements (cont’d)

Let us show that if all the degrees of freedom of
q = b + a × x on K are equal to 0, then q = 0: in other
words, (8) and (4) are satisfied.

A direct computation shows that curl q = 2a. Moreover, from
Stokes theorem for each face f we have

0 =
∑

e

∫
e q · τ e ds =

∫
∂f q · τ ds

=
∫
f curl q · nf dS = 2a · nf meas(f) ,

hence a · nf = 0 on f . Since three of the vectors nf are
linearly independent, it follows a = 0.
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Lowest order edge finite elements (cont’d)

Then for each edge e

0 =
∫
e q · τ e ds =

∫
e b · τ e ds

= b · τ e length(e) ,

and three of the vectors τ e are linearly independent, so that
b = 0 and in conclusion q = 0.
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Lowest order edge finite elements (cont’d)

Another point is to prove that if the three edge degrees
of freedom of q = b + a × x on a face f are equal to 0
then q × nf = 0 on f .

We have already seen that a · nf = 0 on f . On the other
hand,

q × nf = b × nf + (a× x) × nf

= b × nf + (a · nf )x − (x · nf ) a .

Since on a face one has x · nf = const, it follows that q × nf

is equal on f to a constant vector cf , with cf · nf = 0.
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Lowest order edge finite elements (cont’d)

Finally,

0 =
∫
e q · τ e ds =

∫
e(nf × q × nf ) · τ e ds

= (nf × cf ) · τ e length(e) .

Since two of the vectors τ e are generating the plane
containing f (and the vector nf × cf ), it follows cf = 0 and
consequently q × nf = 0 on f .
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Lowest order edge finite elements (cont’d)

In particular, we have shown that the dimension of N1
h is

equal to the total number of the edge degrees of
freedom (i.e., the total number of edges).

The basis functions are defined as in (5), namely, for each
edge em we construct the function ϕm such that

∫

el

ϕm · τ ds =

{
1 if m = l

0 if m 6= l .
(42)

Since (8) is satisfied, the basis functions have a “small”
support: ϕm is non-vanishing only in the elements K of the
triangulation that contain the edge em.
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Lowest order edge finite elements (cont’d)

The explicit construction of a basis for the edge element
space N1

h is easily done.

In fact, it can be proved that the basis function ϕi,j

associated to the edge ei,j joining the nodes xi and xj and
satisfying

∫
ei,j

ϕi,j · τ ds = 1 is given by

ϕi,j = ϕi gradϕj − ϕj gradϕi , (43)

where ϕi is the piecewise-linear nodal basis function
associated to the node xi.
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Interpolation operator

As usual, the interpolant rhw of a (smooth enough) vector
function w is the unique vector function belonging to N r

h

such that
me(rhw) = me(w)

mf (rhw) = mf (w)

mK(rhw) = mK(w)

(44)

for each edge e, face f and element K.

The interpolation operator rh : S → N r
h is defined as

rh : w → rhw (45)

(having denoted by S the space of “smooth enough” vector
functions: we will come back to this here below...).
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Interpolation operator (cont’d)

The interpolant rhw can be written as

rhw =
∑

e

me(w)ϕe +
∑

f

mf (w)ϕf +
∑

K

mK(w)ϕK (46)

(having denoted by ϕe the set of basis functions associated
to the edge e and similarly for the other cases).

Question: what about the space S, where the
interpolation operator is defined?

It is necessary to give a meaning to line integrals and
surface integrals, which is not possible for functions
belonging to the space H(curl; Ω).
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Interpolation operator (cont’d)

Up today, the best result is due to Amrouche, Bernardi,
Dauge and Girault (1998): if we know that for some p > 2

the function w satisfies w ∈ (Lp(Ω))3 with curl w ∈ (Lp(Ω))3

and w|K × ν ∈ ((Lp(∂K))3 for each K ∈ Th, then the
interpolant rhw is well-defined.

For instance, this is true if w has a sufficiently large Sobolev
regularity, namely, if w ∈ Hs(curl; Ω) for s > 1/2, where

Hs(curl; Ω) := {w ∈ (Hs(Ω))3 | curl w ∈ (Hs(Ω))3} . (47)

[Since the exponent s can be non-integer, this space looks
a little bit “exotic”... However, it is necessary to take it into
consideration, as in general the solutions of Maxwell and
eddy current equations are not very regular in the scale of
Sobolev spaces: it happens that s < 1.]
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Interpolation error

If the family of triangulations Th is regular and
w ∈ Hs(curl; Ω), 1/2 < s ≤ r, it is possible to prove the
following interpolation error estimate

‖w − rhw‖0,Ω + ‖ curl w − curl(rhw)‖0,Ω

≤ Chs(‖w‖s,Ω + ‖ curl w‖s,Ω)
(48)

(see Alonso and V. (1999)).

Since each vector function belonging to H(curl; Ω) can be
approximated by smooth vector functions, we can conclude
that approximation property (3), namely,

dist(v, Vh) → 0 ∀ v ∈ V

is satisfied for V = H(curl; Ω) and Vh = N r
h.

Numerical analysis of problems in electromagnetism – p.107/195



The cavity problem

Edge elements are therefore a suitable tool for
numerical approximation of Maxwell and eddy current
equations.

In order to give an example, let us consider the cavity
problem for the time-harmonic Maxwell equations (21), with
electric boundary condition. This means that the
computational domain Ω is an empty cavity surrounded by a
perfectly conducting medium.

In this situation, it is also reasonable to assume that ε and
µ are scalar constants, say, ε = ε0 and µ = µ0, the electric
permittivity and the magnetic permeability of the vacuum.
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The cavity problem (cont’d)

Therefore the problem reads




curl H − iωε0E = Je in Ω

curl E + iωµ0H = 0 in Ω

E × n = 0 on ∂Ω .

(49)

Using the Faraday equation to write H in terms of E and
substituting the result H = −(iωµ0)

−1 curl E in the Ampère
equation, one is left with

{
curl curl E − ω2µ0ε0E = −iωµ0Je in Ω

E × n = 0 on ∂Ω .
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The cavity problem (cont’d)

Introducing the wave number

k := |ω|√µ0ε0 , (50)

we can finally write
{

curl curl E − k2E = −iωµ0Je in Ω

E × n = 0 on ∂Ω .

Splitting Je into its real and imaginary parts, we can solve
two problems of the same form for the real and imaginary
parts of E.
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The cavity problem (cont’d)

Hence, we can focus on the problem
{

curl curl E − k2E = F in Ω

E × n = 0 on ∂Ω ,
(51)

where all the functions are real valued.

Problem (51) is associated to a bilinear form that is not
coercive in H(curl; Ω) [−k2 has the “wrong” sign...]. What
we can say about existence and uniqueness of a
solution?
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Maxwell eigenvalue problem

Consider the Maxwell eigenvalue problem
{

curl curl E = λE in Ω

E × n = 0 on ∂Ω .
(52)

The classical Hilbert–Schmidt theory can be applied to
obtain

Besides λ0 = 0, there exists a sequence of positive,
increasing and diverging to ∞ eigenvalues λm of
problem (52) [see, e.g., Leis (1986)].
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The cavity problem: existence and uniqueness

Fredholm alternative theory can be used to prove

When k 6=
√
λm, m = 0, 1, 2, . . . , there exists a unique

solution of problem (51).

Numerical approximation of (51) is important in order to
simulate the real physical situation and obtain informations
for shape optimization (for instance, an electromagnetic
cavity is a model for microwave ovens).

[Clearly, to this aim another issue is the numerical
simulation of (52); however, here we do not consider this
problem, referring to Boffi, Fernandes, Gastaldi and Perugia
(1999), Caorsi, Fernandes and Raffetto (2000) and Monk
(2003a).]

Numerical analysis of problems in electromagnetism – p.113/195



The cavity problem: variational formulations

The variational formulation of (51) is

find E ∈ H0(curl; Ω) :∫
Ω curl E · curl w − k2

∫
Ω E · w=

∫
Ω F · w

∀ w ∈ H0(curl; Ω) .

(53)

The finite element approximation problem with edge
elements reads

find Eh ∈Wh :∫
Ω curl Eh · curl wh − k2

∫
Ω Eh · wh=

∫
Ω F · wh

∀ wh ∈Wh ,

(54)

where
Wh := N r

h ∩H0(curl; Ω) .
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The cavity problem: numerical approximation

The existence and uniqueness of the solution to the
discrete problem (54) has to be proved. We will do that later
on, and for the time being we assume that the solution Eh

does exist.

Let us focus on the convergence of the numerical scheme
and on the error estimate, following Monk (2003b) [for
different approaches, see Monk and Demkowicz (2001),
Boffi and Gastaldi (2002)]. Setting eh := E − Eh, by
subtracting (54) from (53) we find
∫

Ω
curl eh · curl wh − k2

∫

Ω
eh · wh = 0 ∀ wh ∈Wh . (55)
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The cavity problem: numerical approximation (cont’d)

A first trivial remark is that gradLr
h ⊂ N r

h (Lr
h defined in (7)),

therefore using in (55) wh = grad vh with vh ∈ Lr
h ∩H1

0 (Ω) we
have ∫

Ω
eh · grad vh = 0 . (56)

In other words, eh is discrete divergence free.

Denote by Ph the orthogonal projection from H(curl; Ω) onto
Wh, by m(·, ·) the bilinear form at the left hand side of (55),
and by ‖ · ‖curl,Ω (respectively, (·, ·)curl,Ω) the norm
(respectively, the scalar product) in H(curl; Ω). One obtains

‖eh‖curl,Ω≤‖E−PhE‖curl,Ω+(1+k2) sup
wh∈Wh

∫
Ω eh · wh

‖wh‖curl,Ω
. (57)
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The cavity problem: numerical approximation (cont’d)

Let us prove (57). We have

‖eh‖2
curl,Ω = (eh,E − PhE)curl,Ω + (eh, PhE − Eh)curl,Ω

= (eh,E − PhE)curl,Ω +m(eh, PhE − Eh)

+(1 + k2)
∫
Ω eh · (PhE − Eh)

= (eh,E − PhE)curl,Ω + (1 + k2)
∫
Ω eh · (PhE − Eh) ,

having used (55).
On the other hand,
∫

Ω
eh · (PhE − Eh) ≤ sup

wh∈Wh

∫
Ω eh · wh

‖wh‖curl,Ω
‖PhE − Eh‖curl,Ω .

Since Eh = PhEh and ‖Pheh‖curl,Ω ≤ ‖eh‖curl,Ω, (57) follows
at once.
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The cavity problem: numerical approximation (cont’d)

Let us estimate

sup
wh∈Wh

∫
Ω eh · wh

‖wh‖curl,Ω
.

A Helmholtz orthogonal decomposition result ensures that
we can write eh = curl q0 + k0 + grad p0, where grad p0 is the
(L2(Ω))3-orthogonal projection of eh on gradH1

0 (Ω) (in
particular, p0 ∈ H1

0 (Ω)), and k0 is a harmonic field belonging
to H(e; Ω) (namely, curl k0 = 0, div k0 = 0 and k0 × n = 0 on
∂Ω). We set e0 := curl q0 + k0, and thus div e0 = 0,
curl e0 = curl eh, e0 × n = 0 on ∂Ω.

Since eh is discrete divergence free, it follows that grad p0 is
discrete divergence free, too.
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The cavity problem: numerical approximation (cont’d)

Due to the properties of orthogonal projections, we also
have ‖ grad p0‖0,Ω ≤ ‖eh‖0,Ω.

Similarly, the discrete orthogonal decomposition
wh = w0,h + grad ξh holds, with ξh ∈ Lr

h ∩H1
0 (Ω) and

w0,h ∈Wh. The function w0,h is discrete divergence free and
clearly satisfies curl w0,h = curl wh and ‖w0,h‖0,Ω ≤ ‖wh‖0,Ω.

Having obtained these preliminaries results, we find
∫

Ω
eh ·wh =

∫

Ω
(e0 +grad p0) ·wh =

∫

Ω
e0 ·wh +

∫

Ω
grad p0 ·w0,h .

We will see later on how to estimate
∫
Ω grad p0 · w0,h.
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The cavity problem: numerical approximation (cont’d)

Concerning the term
∫
Ω e0 · wh we find

∫

Ω
e0 · wh ≤ ‖e0‖0,Ω ‖wh‖0,Ω , (58)

and we need to estimate ‖e0‖0,Ω.

The required estimate can be obtained by means of a
duality argument (see Nitsche (1970), Schatz (1974)). Let
z ∈ H(curl; Ω) be the solution to

{
curl curl z − k2z = e0 in Ω

z × n = 0 on ∂Ω ,
(59)

which satisfies the estimate ‖z‖curl,Ω ≤ C‖e0‖0,Ω. Since
div e0 = 0, we also have div z = 0.
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The cavity problem: numerical approximation (cont’d)

Moreover, curl z satisfies




curl(curl z) = k2z + e0 in Ω

div(curl z) = 0 in Ω

curl z · n = 0 on ∂Ω .

A couple of regularity results due to Amrouche, Bernardi,
Dauge and Girault (1998) say that z ∈ Hs(Ω) with
curl z ∈ Hs(Ω) for s > 1/2, and the following estimates hold

‖z‖s,Ω ≤ C‖z‖curl,Ω ≤ C‖e0‖0,Ω

‖ curl z‖s,Ω ≤ C(‖ curl curl z‖0,Ω + ‖ curl z‖0,Ω)

≤ C(‖z‖curl,Ω + ‖e0‖0,Ω) ≤ C‖e0‖0,Ω .
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The cavity problem: numerical approximation (cont’d)

Hence the interpolant rhz is defined and we have

‖z − rhz‖curl,Ω ≤ Chs(‖z‖s,Ω + ‖ curl z‖s,Ω) ≤ Chs‖e0‖0,Ω .

Using (59) we find

‖e0‖2
0,Ω = m(z, e0) = m(z, eh − grad p0) = m(z, eh) ,

since z is divergence free and p0|∂Ω = 0.
Moreover, taking into account (55)

m(z, eh) = m(z− rhz, eh) ≤ C‖z − rhz‖curl,Ω‖eh‖curl,Ω

≤ Chs‖e0‖0,Ω‖eh‖curl,Ω .
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The cavity problem: numerical approximation (cont’d)

In conclusion,

‖e0‖0,Ω ≤ Chs‖eh‖curl,Ω . (60)

Let us come to the estimate of
∫
Ω grad p0 · w0,h.

Since w0,h is discrete divergence free, it is possible to find a
divergence free vector function U0 such that

‖w0,h − U0‖0,Ω ≤ Chs(‖w0,h‖0,Ω + ‖ curl w0,h‖0,Ω)

≤ Chs(‖wh‖0,Ω + ‖ curl wh‖0,Ω) .

Numerical analysis of problems in electromagnetism – p.123/195



The cavity problem: numerical approximation (cont’d)

[This can be done by taking the solution U0 of the problem




curl U0 = curl w0,h in Ω

div U0 = 0 in Ω

U0 × n = 0 on ∂Ω∫
Ω U0 · gradψl =

∫
Ω w0,h · gradψl ∀ l = 1, . . . , p∂Ω ,

where ψl is the discrete function, defined on a fixed coarse
mesh, taking value 1 on (∂Ω)l and value 0 on all the other
nodes in Ω. It can be shown that

‖U0‖curl,Ω ≤ C(‖ curl w0,h‖0,Ω +
∑

l |
∫
Ω w0,h · gradψl|)

≤ C‖w0,h‖curl,Ω ,

and that w0,h = rhU0 + gradφh, with φh ∈ Lr
h and constant on

each (∂Ω)l; hence w0,h = rhU0 + grad vh +
∑

l cl gradψl with
vh ∈ Lr

h ∩H1
0 (Ω).
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The cavity problem: numerical approximation (cont’d)

Therefore

‖w0,h − U0‖2
0,Ω =

∫
Ω(w0,h − U0) · (w0,h − U0)

=
∫
Ω(w0,h − U0) · (w0,h − rhU0)

+
∫
Ω(w0,h − U0) · (rhU0 − U0)

=
∫
Ω(w0,h − U0) · (grad vh +

∑
l cl gradψl)

+
∫
Ω(w0,h − U0) · (rhU0 − U0)

=
∫
Ω(w0,h − U0) · (rhU0 − U0)

≤ ‖w0,h − U0‖0,Ω‖rhU0 − U0‖0,Ω .

On the other hand, if curl U0 ∈ curlWh it can be proved that

‖rhU0 − U0‖0,Ω ≤ Chs(‖U0‖s,Ω + ‖ curl U0‖0,Ω)

≤ Chs‖w0,h‖curl,Ω . ]
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The cavity problem: numerical approximation (cont’d)

Then
∫
Ω grad p0 · w0,h =

∫
Ω grad p0 · (w0,h − U0)

≤ ‖ grad p0‖0,Ω‖w0,h − U0‖0,Ω

≤ Chs‖wh‖curl,Ω‖ grad p0‖0,Ω

≤ Chs‖wh‖curl,Ω‖eh‖0,Ω .

(61)

In conclusion

sup
wh∈Wh

∫
Ω eh · wh

‖wh‖curl,Ω
≤ Chs‖eh‖curl,Ω , (62)

and from (57) for h small enough we have

‖eh‖curl,Ω ≤ C‖E−PhE‖curl,Ω . (63)
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The cavity problem: numerical approximation (cont’d)

This estimate ensures that for h small enough problem (54)
is well-posed. Since it is enough to prove uniqueness,
suppose that Eh is a solution corresponding to F = 0. We
know that for this right hand side the exact solution E of (53)
is vanishing, therefore eh = −Eh. Using (63) it follows
eh = 0, hence the uniqueness of the solution to (54).

Moreover, since

‖E − PhE‖curl,Ω = inf
wh∈Wh

‖E − wh‖curl,Ω ,

we have also obtained the quasi-optimal error estimate

‖eh‖curl,Ω ≤ C inf
wh∈Wh

‖E − wh‖curl,Ω , (64)

valid for h small enough.
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E and H formulations

We want now to present some coupled approaches. In
order to understand more clearly the situation, we start
going back to the formulations of the Maxwell and eddy
current problems.

In terms of the electric field, the time-harmonic Maxwell
equations read

{
curl(µ−1 curl E) − ω2ηE = −iωJe in Ω

E × n = 0 on ∂Ω ,
(65)

having set η := ε − iω−1σ.

[The condition E × n = 0 on ∂Ω has to be substituted by
µ−1 curl E × n = 0 on ∂Ω when considering the magnetic
boundary condition.]
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E and H formulations (cont’d)

Similarly, in terms of the magnetic field they are written as
{

curl(η−1 curl H) − ω2µH = curl(η−1Je) in Ω

η−1 curl H × n = η−1Je × n on ∂Ω .
(66)

Once the electric field E is available, one sets

H = iω−1µ−1 curl E in Ω . (67)

On the other hand, from H one determines

E = −iω−1η−1(curl H− Je) in Ω . (68)
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E and H formulations (cont’d)

The structure of (65) and (66) is quite similar, since Re η = ε

is positive definite.

A Fredholm alternative approach can be used for proving
well-posedness, and, similarly to the case of the cavity
problem, numerical approximation by means of edge
elements is the standard option.

In this framework, coupled formulations are not particularly
appealing.
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E and H formulations (cont’d)

For the eddy current equations, this symmetry is broken,
and a degeneration occurs where σ is vanishing. We have

E formulation




curl(µ−1 curl E) + iωσE = −iωJe in Ω

div(εIEI) = 0 in ΩI

µ−1 curl E × n = 0 on ∂Ω

BCE(EI) = 0 on ∂Ω

εIEI ⊥ HI

(69)

[where the condition µ−1 curl E × n = 0 on ∂Ω has to be
dropped if considering the electric boundary condition].

The magnetic field H is computed as in (67).
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E and H formulations (cont’d)

H formulation




curl(σ−1 curl HC) + iωµCHC

= curl(σ−1Je,C) in ΩC

curl HI = Je,I in ΩI

div(µH) = 0 in Ω

BCH(HI) = 0 on ∂Ω

HI × nI + HC × nC = 0 on Γ

TOP(H) = 0 ,

(70)

where BCH(HI) means µIHI · n for the electric
boundary condition, and HI × n for the magnetic
boundary conditions, and TOP(H) = 0 is a set of
topological conditions that have to be satisfied by the
magnetic field H.
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E and H formulations (cont’d)

Having determined H, the electric field is obtained by
setting

EC = σ−1(curl HC − Je,C) in ΩC , (71)

and solving the problem




curl EI = −iωµIHI in ΩI

div(εIEI) = 0 in ΩI

BCE(EI) = 0 on ∂Ω

EI × nI = −EC × nC on Γ

εIEI ⊥ HI .

(72)

This last problem is not always solvable, but needs that
some compatibility conditions on the data are satisfied.
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Topological conditions on the magnetic field

Besides the conditions div(µH) = 0 in Ω and µIHI · n = 0 on
∂Ω (if EI × n = 0 on ∂Ω), that are clearly satisfied, it is
important to underline that the other needed compatibility
conditions are the topological conditions TOP(H) = 0.

Let us make clear their structure. For the sake of
definiteness, let us focus on the electric boundary condition.
We need to consider again the (finite dimensional) space

H(D)
I := {GI ∈ (L2(ΩI))

3 | curl GI = 0, div(µIGI) = 0

µIGI · n = 0 on ∂Ω ∪ Γ} ,

and its basis functions ρ∗
α,I , α = 1, . . . , nΩI

[let us recall that
nΩI

is the first Betti number of ΩI , or, equivalently, the
number of (independent) non-bounding cycles in ΩI ].
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Topological conditions on the magnetic field (cont’d)

The topological conditions TOP(H) = 0 mean that

∫
ΩI
iωµIHI · ρ∗

α,I

+
∫
Γ[σ−1(curl HC − Je,C)] × nC · ρ∗

α,I = 0
(73)

for each α = 1, . . . , nΩI
.

Note that one has nΩI
≥ 1 if the conductor ΩC is not

simply-connected, and therefore in that case these
conditions have to be taken into account.

It can be proved that the topological conditions
TOP(H) = 0 are equivalent to the integral form of the
Faraday equation on each surface that "cuts" a
non-bounding cycle [Seifert surface].
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A FEM–BEM approach

We are now ready to present an approach based on a
coupled formulation: variational in ΩC , by means of
potential theory in ΩI .

In this case, it is reasonable to consider ΩI := R
3 \ ΩC .

Moreover, for the sake of simplicity let us require that ΩC is
a simply-connected open set with a connected boundary,
so that we have not to take into account the topological
conditions on H.

Finally, it is assumed that the applied current density Je is
vanishing in ΩI , and that the magnetic permeability µI and
the electric permittivity εI are positive constants in ΩI , say
µ0 > 0 and ε0 > 0, the permeability and the permittivity of
the vacuum.
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A FEM–BEM approach (cont’d)

As we have seen before, in terms of the magnetic field H

and the electric field EC the eddy current problem reads




curl EC + iωµCHC = 0 in ΩC

curl HC − σEC = Je,C in ΩC

curl HI = 0 in ΩI

div(µ0HI) = 0 in ΩI

µCHC · nC + µ0HI · nI = 0 on Γ

HC × nC + HI × nI = 0 on Γ

HI(x) = O(|x|−1) as |x| → ∞ .

(74)
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A FEM–BEM approach (cont’d)

[If needed, the electric field EI can be computed after
having determined HI and EC in (74), by solving





curl EI = −iωµ0HI in ΩI

div(ε0EI) = 0 in ΩI

EI × nI = −EC × nC on Γ∫
Γ ε0EI · nI = 0

EI(x) = O(|x|−1) as |x| → ∞ . ]
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A FEM–BEM approach (cont’d)

For obtaining a formulation which is stable with respect to
the frequency ω, it is better to look for a vector magnetic
potential AC , a scalar electric potential VC and a scalar
magnetic potential ψI such that

µCHC = curl AC , EC = −iωAC − grad VC , HI = gradψI .

[See Pillsbury (1983), Rodger and Eastham (1983), Emson
and Simkin (1983).]

Gauging is necessary only in ΩC : we require the Coulomb
gauge div AC = 0 in ΩC , with AC · nC = 0 on Γ. Moreover,
we also impose that

|ψI(x)| = O(|x|−1) as |x| → ∞ .
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A FEM–BEM approach (cont’d)

We have thus obtained the problem




curl(µ−1
C curl AC)

+iωσAC + σ grad VC = Je,C in ΩC

∆ψI = 0 in ΩI

div AC = 0 in ΩC

AC · nC = 0 on Γ

curl AC · nC + µ0 gradψI · nI = 0 on Γ

(µ−1
C curl AC) × nC + gradψI × nI = 0 on Γ

|ψI(x)| + | gradψI(x)| = O(|x|−1) as |x| → ∞ ,

where VC is determined up to an additive constant.
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A FEM–BEM approach (cont’d)

Inserting the Coulomb gauge condition in the Ampère
equation as a penalization term, one has




curl(µ−1
C curl AC) − µ−1

∗ grad div AC

+iωσAC + σ grad VC = Je,C in ΩC

∆ψI = 0 in ΩI

div(iωσAC + σ grad VC) = div Je,C in ΩC

(iωσAC + σ grad VC) · nC

= Je,C · nC on Γ

AC · nC = 0 on Γ

curl AC · nC + µ0 gradψI · nI = 0 on Γ

(µ−1
C curl AC) × nC

+ gradψI × nI = 0 on Γ

|ψI(x)| + | gradψI(x)| = O(|x|−1) as |x| → ∞ .

(75)
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A FEM–BEM approach (cont’d)

Since in ΩI we have to solve the Laplace equation, using
potential theory it is possible to transform the problem for ψI

into a problem on the interface Γ, thus reducing in a
significative way the number of unknowns in numerical
computations.

We introduce on Γ (using suitable functional spaces...) the
single layer and double layer potentials

S(ξ)(x) :=

∫

Γ

1

4π|x − y| ξ(y)dSy

D(η)(x) :=

∫

Γ

x − y

4π|x − y|3 · η(y)nC(y)dSy
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A FEM–BEM approach (cont’d)

and the hypersingular integral operator

H(η)(x) := − grad

(∫

Γ

x − y

4π|x − y|3 · η(y)nC(y)dSy

)
· nC(x) .

We also recall that the adjoint operator D′ reads

D′(ξ)(x) =

(∫

Γ

y − x

4π|x − y|3 ξ(y)dSy

)
· nC(x) .
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A FEM–BEM approach (cont’d)

We have ∆ψI = 0 in ΩI and gradψI · nI = − 1
µ0

curl AC · nC on
Γ, therefore from potential theory the trace ψΓ := ψI|Γ

satisfies the bounday integral equations

1

2
ψΓ −D(ψΓ) +

1

µ0
S(curl AC · nC) = 0 on Γ (76)

1

2µ0
curl AC ·nC +

1

µ0
D′(curl AC ·nC) +H(ψΓ) = 0 on Γ , (77)

and the unknown ψI can be replaced by its trace ψΓ.

We can now devise a weak form of this (AC , VC) − ψΓ

formulation. From the matching condition

nC × µ−1
C curl AC + nI × gradψI = 0 on Γ
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A FEM–BEM approach (cont’d)

we find
∫
Γ nC × µ−1

C curl AC · wC = −
∫
Γ nI × gradψI · wC

= −
∫
Γ ψΓ curl wC · nC ,

the last equality coming from standard integration by parts
on Γ.
Hence, multiplying by suitable test functions (wC , QC , η) with
wC · nC = 0 on Γ, integrating in ΩC and Γ, and integrating by
parts we end up with the following weak problem
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A FEM–BEM approach (cont’d)

∫
ΩC

(µ−1
C curl AC · curl wC + µ−1

∗ div AC div wC)

+
∫
ΩC

(iωσAC · wC + σ grad VC · wC)

+
∫
Γ[−1

2ψΓ −D(ψΓ)

+ 1
µ0
S(curl AC · nC)] curl wC · nC

=
∫
ΩC

Je,C · wC
∫
ΩC

(iωσAC · gradQC + σ grad VC · gradQC)

=
∫
ΩC

Je,C · gradQC
∫
Γ[12 curl AC · nC + D′(curl AC · nC) + µ0H(ψΓ)]η = 0 ,

(78)

having used (76) for obtaining the first equation.

[See Alonso Rodríguez and V. (2009).]
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A FEM–BEM approach (cont’d)

The sesquilinear form at the left hand side is coercive in
[H(curl; ΩC) ∩H0(div; ΩC)] ×H1(ΩC)/C ×H1/2(Γ)/C,
uniformly with respect to ω (the case ω = 0 is admitted!).
[The crucial point is that S and H are coercive; the rest
of the proof is similar to that employed for the
(A, VC)-formulation.]

Existence and uniqueness follow by the Lax–Milgram
lemma.

Having determined AC and ψΓ (up to an additive
constant), then ψI := D(ψΓ) − 1

µ0
S(curl AC · nC).

Numerical approximation is performed with nodal finite
elements in ΩC and on Γ [boundary elements on Γ].
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A FEM–BEM approach (cont’d)

Convergence is ensured provided that ΩC is a convex
polyhedron. If this is not true, one can modify the
approach, using the vector potential A on a convex set
ΩA larger than ΩC , keeping VC in ΩC and looking for ψΓA

on ΓA := ∂ΩA.
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Other FEM–BEM couplings

Bossavit and Vérité(1982, 1983) (for the magnetic field,
and using the Steklov–Poincaré operator) [numerical
code TRIFOU].

Mayergoyz, Chari and Konrad (1983) (for the electric
field, and using special basis functions near Γ).

Hiptmair (2002) (unknowns: EC in ΩC , H× n on Γ).

Meddahi and Selgas (2003) (unknowns: HC in ΩC ,
µH · n on Γ).

Bermúdez, Gómez, Muñiz and Salgado (2007) (for
axisymmetric problems associated to the modeling of
induction furnaces).
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Weak formulations for H and E

Other coupled formulations stem from a deeper analysis of
the weak formulations for the magnetic and electric fields.

First of all, under the necessary conditions

div Je,I = 0 in ΩI , Je,I · n = 0 on ∂Ω , Je,I ⊥ HI ,

it can be shown that there exists a field He ∈ H(curl; Ω)
satisfying {

curl He,I = Je,I in ΩI

BCH(He,I) = 0 on ∂Ω

[the boundary conditions for Je,I and He,I have to be
dropped if considering the electric boundary condition].
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Weak H-formulation (cont’d)

Setting

V := {v ∈ H(curl; Ω) | curl vI = 0 in ΩI ,vI × n = 0 on ∂Ω}

[the boundary condition has to be dropped if considering
the electric boundary condition], multiplying the Faraday
equation by v, with v ∈ V , integrating in Ω and integrating
by parts one finds
∫

ΩC

EC ·curl vC +

∫

ΩI

EI ·curl vI +

∫

∂Ω
n×E·v+

∫

Ω
iωµH·v = 0 ,

thus ∫

ΩC

EC · curl vC +

∫

Ω
iωµH · v = 0 ,

as curl vI = 0 in ΩI .
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Weak H-formulation (cont’d)

Using the Ampère equation in ΩC for expressing EC , we
end up with the following problem

Find (H− He) ∈ V :
∫
ΩC

σ−1 curl HC · curl vC +
∫
Ω iωµH · v

=
∫
ΩC

σ−1Je,C · curl vC

for each v ∈ V .

(79)

This formulation is well-posed via the Lax–Milgram lemma,
as the sesquilinear form

a(u,v) :=

∫

ΩC

σ−1 curl uC · curl vC +

∫

Ω
iωµu · v

is clearly continuous and coercive in V .
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Weak E-formulation

For deriving the weak E-formulation one starts from the
Ampère equation: multiplying by z, integrating in Ω and
integrating by parts one easily sees that

∫
Ω H · curl z +

∫
∂Ω n × H · z −

∫
ΩC

σEC · zC =
∫
Ω Je · z

for all z ∈ H(curl; Ω).
The boundary term disappears if H satisfies the magnetic
boundary condition, or if z satisfies the electric boundary
condition.
Set

Z := {z∈H(curl; Ω) | div(εIzI) = 0 in ΩI ,

BCE(zI) = 0, εIzI⊥HI} .
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Weak E-formulation (cont’d)

Expressing H through the Faraday equation, the weak
E-formulation finally reads

Find E ∈ Z :
∫
Ω µ−1 curl E · curl z + iω

∫
ΩC

σEC · zC

= −iω
∫
Ω Je · z

for each z ∈ Z .

(80)

Though less straightforward, it can be proved that the
sesquilinear form

ae(w, z) :=
∫
Ω µ−1 curl w · curl z + iω

∫
ΩC

σwC · zC

is continuous and coercive in Z, and well-posedness of the
weak E-formulation follows from Lax–Milgram lemma.
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Numerical approximation

Both problems (79) and (80) contain a differential constraint:
the former on the curl, the latter on the divergence.

Numerical approximation needs some care!

Possible ways of attack:

saddle-point formulations [Lagrange multipliers]

a scalar potential for HI − He,I

a vector potential for εIEI .
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Numerical approximation (cont’d)

The first choice has been considered by Alonso Rodríguez,
Hiptmair and V. (2004a) (for the magnetic field) and by
Alonso Rodríguez and V. (2004) (for the electric field);
hybrid (coupled) formulations in terms of (HC ,EI) or
(EC ,HI) have been also proposed and analyzed (Alonso
Rodríguez, Hiptmair and V. (2004b, 2005)).

The second possibility, also leading to coupled
formulations, will be described here below.

To our knowledge, the third choice has not been completely
exploited. [However, in a different though related situation
we have before presented a similar procedure: the
(classical) approach based on a vector potential for the
divergence free vector field µH.]
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Scalar potential formulation

For the sake of definiteness let us consider the electric
boundary condition.

The starting point is to consider He ∈ H(curl; Ω) satisfying

curl He,I = Je,I in ΩI .

Then the main step is to use the Helmholtz orthogonal
decomposition

HI − He,I = gradψ∗
I +

nΩI∑

α=1

η∗I,αρ∗
α,I , (81)

where ψ∗
I ∈ H1(ΩI)/C and η∗I,α ∈ C (the two terms of the

decomposition are orthogonal, with respect to the scalar
product (uI ,vI)µI ,ΩI

:=
∫
ΩI

µIuI · vI).
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Orthogonal decompositions

There are infinitely many of these decomposition results...

Let us recall the two that are interesting for the magnetic
field:

vI = µ−1
I curl Q∗

I + gradχ∗I +

nΩI∑

α=1

θ∗I,αρ∗
α,I

and

vI = µ−1
I curl QI + gradχI +

p∂Ω∑

l=1

aI,l grad zl,I +

nΓ∑

m=1

bI,mρm,I .
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Orthogonal decompositions (cont’d)

Let us explain the first decomposition.

The vector function Q∗
I is the solution to





curl(µ−1
I curl Q∗

I) = curl vI in ΩI

div Q∗
I = 0 in ΩI

Q∗
I × nI = 0 on Γ ∪ ∂Ω

Q∗
I⊥H(A)

I,ε0

[H(A)
I,ε0

denotes H(A)
I for εI = ε0, a positive constant].

The scalar function χ∗I is the solution to the elliptic
Neumann boundary value problem

{
div(µI gradχ∗I) = div(µIvI) in ΩI

µI gradχ∗I · nI = µIvI · nI on Γ ∪ ∂Ω .
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Orthogonal decompositions (cont’d)

Finally the vector θ∗I,α is the solution of the linear system

nΩI∑

α=1

A∗
βαθ

∗
I,α =

∫

ΩI

µIvI · ρ∗
β,I ,

where
A∗

βα :=
∫
ΩI

µIρ
∗
α,I · ρ∗

β,I ,

and the harmonic vector fields ρ∗
α,I are the basis functions

of the space H(D)
I .
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Orthogonal decompositions (cont’d)

Let us explain the second decomposition.

The vector function QI is the solution to




curl(µ−1
I curl QI) = curl vI in ΩI

div QI = 0 in ΩI

QI × nI = 0 on Γ

QI · n = 0 on ∂Ω

(µ−1
I curl QI) × n = vI × n on ∂Ω

QI⊥H(B)
I,ε0

[H(B)
I,ε0

denotes H(B)
I for εI = ε0, a positive constant].
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Orthogonal decompositions (cont’d)

The scalar function χI is the solution to the elliptic mixed
boundary value problem





div(µI gradχI) = div(µIvI) in ΩI

µI gradχI · nI = µIvI · nI on Γ

χI = 0 on ∂Ω .

Finally the vector (aI,l, bI,m) is the solution of the linear
system

A

(
aI,l

bI,m

)
=

( ∫
ΩI

µIvI · grad zs,I∫
ΩI

µIvI · ρn,I

)
,
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Orthogonal decompositions (cont’d)

where A :=

(
D B

BT C

)
with

Dsl :=
∫
ΩI

µI grad zl,I · grad zs,I

Bsm :=
∫
ΩI

µIρm,I · grad zs,I

Cmn :=
∫
ΩI

µIρn,I · ρm,I ,

and the harmonic vector fields grad zs,I and ρn,I are the

basis functions of the space H(C)
I .
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Scalar potential formulation (cont’d)

Coming back to the scalar potential formulation, in (79)
each test function v ∈ V can be thus written as

vI = gradχ∗I +

nΩI∑

α=1

θ∗I,αρ∗
α,I . (82)

Inserting (81) and (82) in (79) and using orthogonality one
easily finds, for the unknowns ZC := HC − He,C , ψ∗

I , η∗I,α,

∫
ΩC

σ−1 curl ZC · curl vC +
∫
ΩC

iωµCZC · vC

+
∫
ΩI
iωµI gradψ∗

I · gradχ∗I + iω[A∗η∗
I ,θ

∗
I ]

= −
∫
ΩC

σ−1 curl He,C · curl vC −
∫
ΩC

iωµCHe,C · vC

−
∫
ΩI
iωµIHe,I · (gradχ∗I +

∑nΩI

α=1 θ
∗
I,αρ∗

α,I)

+
∫
ΩC

σ−1Je,C · curl vC ,

(83)
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Scalar potential formulation (cont’d)

where we recall that the matrix A∗ is defined by

A∗
βα :=

∫

ΩI

µIρ
∗
α,I · ρ∗

β,I ,

and is symmetric and positive definite (the fields ρ∗
α,I form a

basis for the space H(D)
I ).

Clearly, the solutions ZC , ψ∗
I and η∗

I have to satisfy on Γ the
matching condition

ZC × nC + gradψ∗
I × nI +

nΩI∑

α=1

η∗I,αρ∗
α,I × nI = 0 .

The same holds for the test functions vC , χ∗I and θ∗
I .

Numerical analysis of problems in electromagnetism – p.165/195



Scalar potential formulation (cont’d)

The left hand side in (83) is a continuous and coercive
sesquilinear form, therefore the problem is well-posed.

The numerical approximation is standard:

(vector) edge finite elements in ΩC

(scalar) nodal finite elements in ΩI .

In addition, one looks for

other nΩI
degrees of freedom (expressing the line

integrals of HI − He,I along the non-bounding cycles
contained in ΩI).

Convergence is ensured by Céa lemma.

[Bermúdez, Rodríguez and Salgado (2002), Alonso
Rodríguez, Fernandes and V. (2003).]
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Scalar potential formulation (cont’d)

Some remarks about implementation issues:

The matching condition on the interface Γ is easily
imposed by eliminating the degrees of freedom of vC,h

associated to the edges and faces on Γ in terms of
those of gradχ∗I,h +

∑nΩI

α=1 θ
∗
I,αρ∗

α,I .

The construction of the fields ρ∗
α,I (or of a suitable

approximation of them) is not needed.
It is enough to construct nΩI

interpolants λ∗
α, each one

jumping by 1 on a "cutting" surface (and continuous
across all the others).
One looses (in part) orthogonality properties, but
everything works well.
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Scalar potential formulation (cont’d)

For the electric boundary condition, the construction of
the vector He,I can be done through the Biot–Savart
formula

He,I(x) := curl
( ∫

ΩI

1
4π|x−y| Je,I(y) dy

)

=
∫
ΩI

y−x

4π|x−y|3 × Je,I(y) dy

[at least for Je,I · n = 0 on ∂Ω ∪ Γ; if this is not satisfied,
one has to extend Je,I on a set larger than ΩI , in such a
way that Je,I is tangential on the boundary of this set].
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Scalar potential formulation (cont’d)

When considering the magnetic boundary condition, it
must be noted that the Biot–Savart formula gives a
vector field He,I that does not satisfy the boundary
condition He,I × n = 0 on ∂Ω.
Then, a couple of procedures can be adopted:

construct He,I (or a suitable approximation of it) by
means of a different approach, in such a way that
He,I × n = 0 on ∂Ω, and decompose HI − He,I as a
sum of orthogonal terms, each one with vanishing
tangential value on ∂Ω;
use again the Biot–Savart formula, and decompose
HI − He,I as in the case of the electric boundary
condition.
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Scalar potential formulation (cont’d)

Let us illustrate this second approach: we again write

ZI = HI − He,I = gradψ∗
I +

nΩI∑

α=1

η∗I,αρ∗
α,I ,

but now we have to consider a non-homogeneous
boundary value problem (on ∂Ω we have ZI × n 6= 0).

The problem reads as follows: one looks for ZC , ψ∗
I , η∗

I such
that
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Scalar potential formulation (cont’d)

gradψ∗
I × n +

∑nΩI

α=1 η
∗
I,α ρ∗

α,I × n = −He,I × n on ∂Ω
∫
ΩC

σ−1 curl ZC · curl vC +
∫
ΩC

iωµCZC · vC

+
∫
ΩI
iωµI gradψ∗

I · gradχ∗I + iω[A∗η∗
I ,θ

∗
I ]

= −
∫
ΩC

σ−1 curl He,C · curl vC −
∫
ΩC

iωµCHe,C · vC

−
∫
ΩI
iωµIHe,I · (gradχ∗I +

∑nΩI

α=1 θ
∗
I,αρ∗

α,I)

+
∫
ΩC

σ−1Je,C · curl vC ,

(84)

where the test functions have to satisfy

gradχ∗I × n +

nΩI∑

α=1

θ∗I,α ρ∗
α,I × n = 0 on ∂Ω ,
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Scalar potential formulation (cont’d)

and moreover the matching condition on Γ

ZC × nC + gradψ∗
I × nI +

nΩI∑

α=1

η∗I,αρ∗
α,I × nI = 0

is still imposed (also for vC , χ∗I , θ∗
I).

At the finite dimensional level the constraint on ∂Ω can be
imposed by means of a Lagrange multiplier [Bermúdez,
Rodríguez and Salgado (2002)].
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Scalar potential formulation (cont’d)

For implementation it is necessary to determine the
"cutting" surfaces of the non-bounding cycles (their
knowledge is necessary for constructing the basis
functions ρ∗

α,I or the interpolants λ∗
α). This can be easy

in many situations, but for a general topological domain
it can be computationally expensive.

Let us see a picture of the "cutting" surface when ΩC is the
trefoil knot (thanks to J.J. van Wijk).
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Scalar potential formulation (cont’d)
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Scalar potential formulation (cont’d)

Instead, if ΩC is a torus, we have the "cutting" surface Λ:
∂Ω

Σ

Γ

Λ

Some algorithms have been proposed to the aim of
constructing "cutting" surfaces: see Kotiuga (1987, 1988,
1989), Leonard and Rodger (1989) and the book by Gross
and Kotiuga (2004).
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Scalar potential formulation (cont’d)

A coupled formulation in terms of EC , ψ∗
I and η∗

I is also
possible.

From the Ampère equation in ΩC , multiplying by zC ,
integrating in ΩC and integrating by parts one finds

∫
ΩC

HC · curl zC +
∫
Γ nC × HC · zC −

∫
ΩC

σEC · zC

=
∫
ΩC

Je,C · zC .

Using the Faraday equation for expressing HC and
recalling that nC × HC = nC × HI on Γ, it holds

∫
ΩC

(µ−1
C curl EC · curl zC + iωσEC · zC)

+iω
∫
Γ HI × nC · zC = −iω

∫
ΩC

Je,C · zC .
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Scalar potential formulation (cont’d)

On the other hand, multiplying the Faraday equation in ΩI

by a test function vI such that curl vI = 0 in ΩI and recalling
that EI × nI = −EC × nC on Γ, by integration by parts one
has

iω

∫

ΩI

µIHI · vI = −
∫

ΩI

curl EI · vI = −
∫

Γ
EC × nC · vI .

Setting

VI(G) := {vI ∈ H(curl; ΩI) | curl vI = G in ΩI} ,

we are thus looking for EC ∈ H(curl; ΩC) and HI ∈ VI(Je,I)
such that
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Scalar potential formulation (cont’d)

∫
ΩC

(µ−1
C curl EC · curl zC + iωσEC · zC)

−iω
∫
Γ zC × nC · HI = −iω

∫
ΩC

Je,C · zC

−iω
∫
Γ EC × nC · vI + ω2

∫
ΩI

µIHI · vI = 0 ,

(85)

where zC ∈ H(curl; ΩC) and vI ∈ VI(0).

Using in (85) the orthogonal decompositions of HI − He,I

and vI one finds

K((EC , ψ
∗
I ,η

∗
I), (zC , χ

∗
I ,θ

∗
I))

= −iω
∫
ΩC

Je,C · zC + iω
∫
Γ He,I · zC × nC

−ω2
∫
ΩI

µIHe,I · (gradχ∗I +
∑nΩI

α=1 θ
∗
I,αρ∗

α,I) ,

(86)
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Scalar potential formulation (cont’d)

where the sesquilinear form K(·, ·), that can be proved to be
continuous and coercive, is given by

K((EC , ψ
∗
I ,η

∗
I), (zC , χ

∗
I ,θ

∗
I))

:=
∫
ΩC

(µ−1
C curl EC · curl zC + iωσEC · zC)

−iω
∫
Γ(gradψ∗

I +
∑nΩI

α=1 η
∗
I,αρ∗

α,I) · zC × nC

−iω
∫
Γ(gradχ∗I +

∑nΩI

α=1 θ
∗
I,αρ∗

α,I) · EC × nC

+ω2
∫
ΩI

µI gradψ∗
I · gradχ∗I

+ω2[A∗η∗
I ,θ

∗
I ] .

Note that the interaction between EC and HI is driven in a
weak way by boundary integrals, and no strong matching
conditon on Γ has to be imposed: non-matching meshes
can be employed!
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Scalar potential formulation (cont’d)

Domain decomposition approaches can be devised. Let
us specify one of them for the formulation in terms of
EC , ψ∗

I and η∗
I .

Given eold
Γ on Γ, find the solutions to





div(µI gradψ∗
I ) = − div(µIHe,I) in ΩI

µI gradψ∗
I · nI = −iω−1 divτ eold

Γ

−µIHe,I · nI on Γ

µI gradψ∗
I · n = −µIHe,I · n on ∂Ω

(87)

(A∗η∗
I)β = iω−1

∫
Γ eold

Γ · ρ∗
β,I −

∫
ΩI

µI gradψ∗
I · ρ∗

β,I

−
∫
ΩI

µIHe,I · ρ∗
β,I ∀ β = 1, . . . , nΩI

(88)
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Scalar potential formulation (cont’d)





curl(µ−1
C curl EC) + iωσEC = −iωJe,C in ΩC

(µ−1
C curl EC) × nC = iω gradψ∗

I × nI

+iω
∑nΩI

α=1 η
∗
I,α ρ∗

α,I × nI + iωHe,I × nI on Γ ,

(89)

finally set

enew
Γ = (1 − δ)eold

Γ + δEC × nC on Γ (90)

and iterate until convergence (δ > 0 is an acceleration
parameter). At convergence one has e∞Γ = EC × nC on Γ,
the right tangential value of the electric field on Γ.

This iteration-by-subdomain procedure has shown good
convergence properties (convergence rate independent of
the mesh size [Alonso and V. (1997)]).
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Pros and cons

Pros:
few degrees of freedom;
"positive definite" algebraic problem.

Cons:
need of computing in advance a vector potential of
the current density;
some difficulties coming from the topology of the
computational domain, in particular of the conductor
[construction of the "cutting" surfaces].
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