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Finite elements

-

A finite element method is an approximation method for T
variational problems of the form

findueV : a(u,v)=F@w) VveV, (1)

where the real/complex vector space V, the

bilinear/sesquilinear form «(-, -) and the linear/antilinear
functional F(-) are data of the problem.

Its basic ingredients are:

# a triangulation of the computational domain 2 (mesh)

# a (finite dimensional) vector space V}, constituted by
piecewise-polynomial functions.
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Finite elements (cont’d)

fThe finite element method thus reads T
find up, € Vi, @ ap(up,vp) = Fnlvp) Yo, € Vy. (2)

Here:

® ay(-,-) and F(-) are suitable approximations of af(-, -)
and F(-) (often, they coincide with them).

Remark. A first natural requirement is that V;, must be a
“good” approximation of V' in the sense that

dist(v,Vy) - 0 VoveV. (3)

# Itis not necessary that V;, ¢ V, but very often this is the

L case. J
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Degrees of freedom and basis functions

f # In order to operate with V},, it is necessary to find a basisj
of it (easy to construct and suitable for computations...).

Denoting by N, the dimension of V},, it is enough to find NV,
linear functionals G, such that

thVh,Q@-(vh):O Vi=1,...,N;, = v, =0. (4)

[The G, are called degrees of freedom.]
The basis Is then given by the functions ¢; € V}, such that

Gi() = {(1) ol 5)

L[Hint: check directly that ¢; are linearly independent...] J
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Nodal degrees of freedom

. N

A natural choice (not the only possible one... we will see
another example later on) of the degrees of freedom is the
following: having selected N, nodes x; in the computational
domain (2, define

Gi(p) = p(xi) - (6)

[This definition requires that the point values of ¢ are
well-defined scalar quantities; this is surely true if ¢ Is a
continuous scalar function, not necessatrily if o € V...]

Clearly, the choice of the nodes must be co-ordinated with
the choice of V}, In order to satisfy (4).

o |
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Nodal finite elements

-

Let us make precise the context in a specific case.

-

#® Assume that Q ¢ R? and that the elements K of the
triangulation are tetrahedra.

A natural choice of the finite elements is the following:
Vi, =Ly == {v, € CUQ) | vy €Pr V K} (7)

having denoted by P, the set of polynomials of degree less
than or equal to r, r > 1.
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Nodal finite elements (cont’d)

-

It Is not difficult to determine how to choose the nodes In
this situation: for instance,

-

® r = 1: the vertices of all the tetrahedra

® r = 2: the vertices of all the tetrahedra and the middle
points of all the edges

o r = 3. the vertices of all the tetrahedra, all the points
dividing an edge in three equal parts and the
barycenters of all the faces.

o |
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Nodal finite elements (cont’d)

The degrees of freedom for tetrahedra (r =1, r = 2, r = 3).
Only the visible nodes are indicated.

Exercise. Condition (4) Is satisfied. [Hint: show that an
element of P, vanishing at the nodes of a face must vanish
on that face...]

o |
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Nodal finite elements (cont’d)

- N

Remark. In the proof of the exercise one verifies that it is
possible to construct element-by-element a polynomial

g € P, by assigning the value of its nodal degrees of
freedom, and that on the interelements it is uniquely
determined (if it vanishes on the nodes of a face, then it
vanishes on the whole face...).

Hence putting the pieces together one finds a continuous
function, namely, an element of the finite element space V},
defined in (7).

This element is uniguely determined by the values of the
assigned degrees of freedom: in other words, the total
number of the nodal degrees of freedom is equal to the
dimension of V},.

o |
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Nodal finite elements (cont’d)

- N

Remark. Indeed, for the finite elements introduced in (7),
with nodal degrees of freedom, a more restrictive condition
than (4) is satisfied. In fact, denoting by Ng the number of
nodes belonging to the element K, one has

q € P, Qi(q):() Vi=1,.... Ny, — ¢qg=0,
and consequently

thVh,QZ-(vMK):O Vi=1,...,Ng :>Uh|K:O- (8)

Therefore, it is easily seen that the basis functions have a
“small” support: ¢; Is non-vanishing only in the elements K
of the triangulation that contain the node x;.

o |
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Approximation error

fQuestion. Having done the choice T
Vi = Lj == {v, € CUQ) | vy € PV K}

with nodal degrees of freedom, is condition (3) satisfied?

To find an answer, let us begin with this remark. Denote by
Y the space of “smooth” functions and suppose that each
function in V' can be approximated by an element of V [this
IS very often the case for partial differential equations
expressed in variational form: but there are exceptions...].

Then, given v € V, a proof of (3) can start observing that
dist(v, V3,) < dist(v, w) + dist(w, V},),

~ where w € V, and dist(v, w) can be taken arbitrarily small. |
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Finite element interpolant

fOn the other hand, T

dist(w, V3,) < dist(w,wp,) Y wy €V},

therefore the problem is to select a “good” approximation wy,
of a smooth function w.

To this end, it is useful to consider the finite element
interpolant of a function. It is defined as follows: given a
function ¢ (say, continuous), the interpolant 7, ¢ of ¢ Is the
unique function belonging to 1}, such that

(mhe)(xi) = p(x;) Vi=1,..., Np. (9)

[Existence and uniqueness of 7, are a consequence of
L(4)...] J
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Interpolation operator

The interpolation operator 7, : C°(Q) — V}, is then trivially
defined as the operator which associates to a function its

Interpolant:
Th @ — THY . (10)
It is readily seen that
N,
The = Y o(x;)@j - (11)
j=1

[Hint: just check that 3=, o(x;)¢;(xi) = ¢(x;)...]

o |
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Interpolation error

fLet us focus now on the estimate of the interpolation error T
for a “smooth” function.

An estimate of the interpolation error depends on the
characteristics of the space V, namely, depends on the
distance defined in V. [Clearly, there are many distances
defined in a vector space V: the right one is that making V/
a Hilbert space...]

Typically, for second order partial differential equations we
have that V' is a closed subspace of 4'(Q)), the Sobolev

space of first order. (This is not always the case... we will
see a different situation later on.)

Therefore one can think that

L dist(w, Tpw) = ||lw — Tpw|10- J
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Interpolation error (cont’'d)

flt can be proved that for a “regular” family of triangulations T
and for the choice (7) with nodal degrees of freedom one

has
|w — mhw|1 0 < C(w)h' (12)

for each “smooth” function w, hence condition (3) Is
satisfied.

[A family of triangulations 7;,, h > 0, Is said “regular” if

diam K

_ <const VK eT,Vh>0,
diam By

where By denotes the largest ball contained in K: namely,
the elements are not becoming more and more distorted as

the mesh is refined.]
- -
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Interpolation error (cont’'d)

-

fIt can be useful to look deeper at the interpolation error
estimate (12), in order to make explicit the regularity of w
that is sufficient for obtaining the result.

In this respect, it can be proved that (12) holds provided that
w belongs to L?(9)) together with all its derivatives up to
order r + 1: In other words, the interpolation error is of order
r (with respect to the natural H'(Q2)-norm) if the (Sobolev)
regularity of the solution is equal to » + 1.

This result will be useful for checking that the order of
convergence of the finite element method is related to the
(Sobolev) regularity of the exact solution.

o |
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Discretization error

fWhat IS missing now Is an estimate of the discretization T
error, namely, the distance between the exact solution
u € V of problem (1) and the approximate solution u; € V},
of problem (2).

[Clearly, we expect that the approximation condition (3),
dist (v, V},) — 0 for each v € V, Is a crucial one; but the
discretization error cannot avoid reading also the type of
differential problem we have at hand...]

The procedure we present is quite general (for linear
problems). However, let us assume for the sake of
simplicity that

ah('? ) — a('v ) ; Fh() — F() , Vp C V. (13)

o |
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Discretization error (cont’'d)

-

[Note that the condition V};, C V' Is clearly satisfied for the
choice (7)...]

The argument of the so-called Céa lemma is the following.

-

By subtracting (2) from (1) (for v = v, € V') we have
a(u —up,vp) =0 Yo, €V, (14)
[This property is often called consistency of the finite

element scheme.]

Hence
a(u — up,u—up) = alu — up,u) (15)
a(u — up,u—vp) Yo, €V,

o |
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Discretization error (cont’'d)

fSuppose now that T
# VU is a Hilbert space
o the (bilinear/sesquilinear) form a(-,-) Is
s continuous, namely

a(w,v)] < yllwllvllvlly YwoveV (16)
s coercive, namely
a(v,0)| > allly YveV. (17)

[In particular, by Lax—Milgram lemma these conditions

guarantee that there exists a unique solution « to (1) and a

unique solution uy, to (2), for any linear/antilinear and
Lcontinuous functional F.] J
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Discretization error (cont’'d)

r

rom (15) one has

allu —upllf < alu—up,u—up)
= a(u — up,u — vp)

< vlu—upllviu—wvpllv Vo, €V,

hence
lu—uplly < 2 dist (u, Vi) (18)
8

and convergence is proved, provided that (3) holds.

o |
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Order of convergence

-

Suppose now that V is a closed subspace of H'(Q)) and
that (16) and (17) are satisfied.

If one is working with the finite elements (7) with nodal

degrees of freedom, it is possible to estimate the order of
convergence of the finite element method.

In fact, we start from (18) and we find

Ju—upll1o < % dist (u, V3,)

19
< I u-mpulg < Clyhr, O

provided that 7;, is a “regular”’ family of triangulations and
the (Sobolev) reqularity of u is equal to » + 1.

o |
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Maxwell equations in electromagnetism

fThe complete Maxwell system of electromagnetism reads T

(0D . .
e + J =curl’H Maxwell-Ampere eqguation
oB .

N +curl€ =0 Faraday equation
divD = p Gauss electrical equation
| divB =0 Gauss magnetic equation .

#® H and & are the magnetic field and electric field,
respectively

# BB and D are the magnetic induction and electric
iInduction, respectively

#® 7 and p are the (surface) electric current density and
L (volume) electric charge density, respectively. J
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Maxwell equations in electromagnetism (cont’d)

-

These fields are related through some constitutive T
equations: it is usually assumed a linear dependence like

D =¢€e& ; B:HJH, j:(fg"‘je;

where € and p are the electric permittivity and magnetic
permeability, respectively, and o Is the electric conductivity.

[In general, €, u and o are not constant, but are symmetric
and uniformly positive definite matrices (with entries that
are bounded functions of the space variable x). Clearly, the
conductivity o Is only present in conductors, and Is
identically vanishing in any insulator.]

#» 7. Is the applied electric current density.

o |
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Eddy currents

-

fAs observed in experiments and stated by the Faraday law,
a time-variation of the magnetic field generates an electric
field. Therefore, in each conductor a current density
Jeaay = oE arises; this term expresses the presence In

conducting media of the so-called eddy currents.

This phenomenon, and the related heating of the conductor,
was observed and studied in the mid of the nineteenth
century by the French physicist L. Foucault, and in fact the
generated eddy currents are also known as Foucault
currents.

o |
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Slowly varying fields

fln many real-life applications, the time of propagation of thej
electromagnetic waves is very small with respect to some
characteristic time scale, or, equivalently, their wave length
IS much larger than the diameter of the physical domain.

Therefore one can think that the speed of propagation is

infinite, and take into account only t
electromagnetic fields, neglecting e

ne diffusion of the
ectromagnetic waves.

Rephrasing this concept, one can a

sSo say that, when

considering time-dependent problems in electromagnetism,
one can distinguish between "fast" varying fields and
"slowly" varying fields. In the latter case, one is led to
simplify the set of equations, neglecting time derivatives, or,
depending on the specific situation at hand, one time

A : oD OB
Lderlvatlve, either Sr or o7,

|
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Eddy current approximation

-

Typically, problems of this type are peculiar of electrical
engineering, where low frequencies are involved, but not of
electronic engineering, where the frequency ranges in
much larger bands.

-

Let us focus on the case in which the displacement current
term %—? can be disregarded, while the time-variation of the

magnetic induction is still important, as well as the related
presence of eddy currents in the conductors.

#® The resulting equations are called eddy current
equations.

o |
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Eddy current approximation (cont’d)

-

A thumb rule for deciding wheter D can be dropped is the

following: if L is a typical length in Q (say, its diameter) and
we choose the inverse of the angular frequency w—! as a

typical time, it is possibile to disregard the displacement
current term provided that

Dllw| < [HIL™ , [D||w] < |o€].
Using the Faraday equation, we can write £ Is terms of H,
finding
EIL7 & |wl|wH].

o |
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Eddy current approximation (cont’d)

fHence, recalling that D = e£ and putting everything T
together, one should have

Hmax 5maXW2L2 <1, O-r;ljlngmax‘w‘ <1,

where umax and e are uniform upper bounds in 2 for the
maximum eigenvalues of u(x) and e(x), respectively, and

omin denotes a uniform lower bound in Q¢ for the minimum
eigenvalues of o(x).

Since the magnitude of the velocity of the electromagnetic

wave can be estimated by (ftmax emax) /2, the first relation
IS requiring that the wave length is large compared to L.

o |
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Eddy current approximation (cont’d)

-

Let us also note that for electrical industry applications
some typical values of the parameters involved are

1o = 4m x 1077 H/m, g9 = 8.9 x 10~12 F/m,
Teopper = 5.7 X 107 S/m, w = 27 x 50 rad/s (power frequency
of 50 Hz), hence In that case

-

1
VHogo|w]

and dropping the displacement current term looks
appropriate.

106 ~1 N 17
~10°m , opperfolw| A 4.9 x 10777,

Though less apparent, the same Iis true for a typical
conductivity in physiological problem, say,
Latissue ~ 107! S/m, for which o} eolw| ~ 2.8 x 1078, J

tissue
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Time-harmonic Maxwell and eddy current equations

W N

hen interested Iin time-periodic phenomena, it is assumed

that
Je(t,x) = RelJe(x)exp(iwt)]
E(t,x) = RelE(x)exp(iwt)] (20)
H(t,x) = Re[H(x)exp(iwt)] .

#® w # 01is the (angular) frequency.

Inserting these relations in the Maxwell equations one
obtains the so-called time-harmonic Maxwell equations

. . (21)
cul E+wuH =0 In €.

o |
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Time-harmonic Maxwell and eddy current equations (cont’'d)

fAs a consequence one has div(uH) = 0 In €2, and the
electric charge in conductors is defined by p = div(eE).

-

It can be proved that the time-harmonic Maxwell equations
have a unique solution (provided that suitable boundary
conditions are added, and that the conductor is not empty;
we will come back later on to the case in which the
conductor is empty).

On the other hand, dropping the displacement current term
the time-harmonic eddy current equations are

IH-ocE=J. In{
{cur o J | (22)

curlE +iwpH =0 In ().

o |
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Gauge conditions for the electric field

. N

et us spend some more words about eddy current

equations.
Since In an insulator one has o = 0, i1t follows that E is not

uniquely determined in that region (E + V1 is still a
solution).

Some additional conditions ("gauge" conditions) are thus
necessary. the most natural idea is to impose the
conditions satisfied by the solution E of the Maxwell

equations.
As Iin the insulator (2; we have no charges, the first

additional condition is
diV(E]E[) =0 N Q7 (23)

L(Ej~ means Eq,, and similarly for other quantities). J
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Topological gauge conditions for the electric field

-

fOther gauge conditions are related to the topology of the
Insulator €2;. Denoting by )~ the conductor (strictly
contained in the physical domain 2, and surrounded by the

insulator Q;) and by I" := Q- N Q7, let us define

Hr:={Gy € (L*(Q))? |curtG; = 0,div(e;G) = 0
G;xn=0onI,BCgr(Gy)=0o0n0},

where BCy denotes the boundary condition imposed on E;
(see later on for a precise description).
The topological gauge conditions can be written as

E[E[J_H[. (24)

o |
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Topological gauge conditions for the electric field (cont’dl

fThus these conditions are ensuring that, if in addition one T
has curl E; = 01n 7, diV(EI[E[) =0, E;xn=00nT
and BCg(E;) = 0 on 012, then it follows E; = 0 In ;.

# It can be shown that the orthogonality condition
erEr L Hy Is equivalent to impose that the flux of e;E;
IS vanishing on a suitable set of surfaces.
[These surfaces depend on the choice of the boundary
condition for E;; for instance, for E; x n = 0 on 0f) they
are the connected components of 02 UT'.]

o |
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Boundary conditions

fWe will distinguish between two types of boundary T
conditions.

# Electric. One imposes E x n = 0 on 9€). [As a
consequence, one also has pH - n = 0 on 0f).]

# Magnetic (Maxwell). One imposes H x n = 0 on 0f).

[As a consequence, one also has eE -n = —(iw) 'J, - n
on 0f1.]

# Magnetic (eddy currents). One imposes H x n = 0 and
eE -n = 0 on 09). [Note that H x n = 0 on 02 implies
Je-n=00n 9]

For eddy current equations, the notation BCy(E;) on 9f)
therefore refers to E; x n for the electric boundary condition,
Land to ;E; - n for the magnetic boundary conditions. J
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The spaces of harmonic fields

- N

Let us consider a couple of questions.

# If a vector field satisfies curlv =0 and divv =01n a
domain, together with the boundary conditions v xn =0
on a part of the boundary and v - n = 0 on the other
part, is it non-trivial, namely, not vanishing everywhere
In the domain? [A field like that is called harmonic field.]

# |f that is the case, do harmonic fields appear in
electromagnetism?

Both questions have an affermative answer.

o |
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The spaces of harmonic fields (cont’d)

- N

Let us start from the first question.

If the domain O is homeomorphic to a three-dimensional
ball, a curl-free vector field v must be a gradient of a scalar
function v, that must be harmonic due to the constraint on
the divergence.

If the boundary condition is v x n = 0 on 90, which In this
case Is a connected surface, then it follows ) = const. on
00, and therefore ¢y = const. In @ and v=01n O.

o |
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The spaces of harmonic fields (cont’d)

-

fIf the boundary condition is v - n = 0 on 00, then ) satisfies
a homogeneous Neumann boundary condition and thus
Y =const. iInOandv =01n O.

The same result follows if the boundary conditions are
vxn=0onI'pandv-n=0o0nIy, andI'p Is a connected
surface: in fact, we still have ¢ = const. on I"p and

grady - n = 0 on I'y, hence ¢ satisfies a mixed boundary
value problem and we obtain ) = const. In ® and v =0 in O.

o |
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The spaces of harmonic fields (cont’d)

- N

However, the problem is different in a more general
geometry.

In fact, take the magnetic field generated in the vacuum by
a current of constant intensity 7° passing along the z3-axis:
as it is well-known, for x§ + 23 > 0 it is given by

IV 9 1
H(z1,29,23) = — | — , 0] .
(21,2, 3) 27T( x%+x% x%+w% )

o |
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The spaces of harmonic fields (cont’d)

fIt IS easily checked that, as Maxwell equations require, T
curlH= 0 and divH = 0.

Let us consider now the torus 7 obtained by rotating
around the z3-axis the disk of centre (a,0,0) and radius b,
with 0 < b < a. One sees atoncethat H-n =0 on 907;
hence we have found a non-trivial harmonic field H in 7

satisfying H-n = 0 on 07.

o |
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The spaces of harmonic fields (cont’d)

fOn the other hand, consider now the electric field T
generated in the vacuum by a pointwise charge pgy placed at

the origin. For x # 0 it is given by

po X
47T€() ’X’g 7

E(:Ela L2, :ES) —

where ¢ Is the electric permittivity of the vacuum.

It satisfies divE = 0 and curl E = 0, and moreover E x n = 0
on the boundary of C := Bp, \ Bg,, where 0 < R; < Ry and
Br = {x € R?||x| < R} is the ball of centre 0 and radius R.
We have thus found a non-trivial harmonic field E in C
satisfying E x n = 0 on oC.

o |
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The spaces of harmonic fields (cont’d)

-

These two examples show that the geometry of the domain
and the type of boundary conditions play an essential role
when considering harmonic fields.

-

What are the relevant differences between the set O,
homeomorphic to a ball, and the sets 7 and C?

For the former, the point is that in 7 we have a
non-bounding cycle, namely, a cycle that is not the
boundary of a surface contained in 7 (take for instance the
circle of centre 0 and radius a In the (z1, z2)-plane).

In the latter case, the boundary of C is not connected.

o |
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The spaces of harmonic fields (cont’d)

-

Four types of spaces of harmonic fields are coming into
play.

-

® For the electric field

HWY = (G € (L2(9))3 | eurl G = 0,div(e;G) = 0

Grxn=0onI,G; xn=0o0n0d},

HPB) = {G] e (L2(9))3 | curl G = 0,div(e;G]) = 0
Grxn=0onT,e;G;-n=00n0d0},

o |
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The spaces of harmonic fields (cont’d)

- N

# For the magnetic field

HO = (G € (L2(Q))® |cur G = 0, div(p; G 1) = 0

prGr-n=0onT,G; xn=0on 0},

(D

HP) = (G € (L2(Q)3 | curl G = 0, div(p;Gp) = 0

piGr-n=0onT, u;G;-n=0o0n00}.

All are finite dimensional! Their dimension is a topological
Invariant (precisely,... see below!).

o |

Numerical analysis of problems in electromagnetism — p.44/195



The basis functions of the spaces of harmonic fields

Let us make precise which are the basis functions of Hﬁ-D )
and H§C).

For Hﬁ-D ) one has first to introduce the "cutting” surfaces

= CQna=1,...,nq,, with 0= C 0Q UT, such that every
curl-free vector field in 2; has a global potential in
Wi \ U= -

The number ng, is the number of (independent)
non-bounding cycles in 2;, namely, the first Betti number of
(27, or, equivalently, the dimension of the first homology
space of ;.

These surfaces "cut" the non-bounding cycles in €;.

o |
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The basis functions of the spaces of harmonic fields (cont’d)

-

The basis functions p* ; are the (L*(;))3-extensions of
grad p* ;, where p’ ; Is the solution to

( div(p; grad py, ;) =0 in Q7 \ =*
proradpy p-np =0 on (0QUTI)\ =%
< p grad pz,l - ng*} _ =0 (25)
p:é’[i|_* — y
. L =x

having denoted by |- |z« the jump across the surface =, and
by n=- the unit normal vector on =}..

o |
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The basis functions of the spaces of harmonic fields (cont’d)

The basis functions for ch) can be defined as follows.

First of all we have grad z; 7, the solutions to

y

div(uygradz; 1) =0 In Q;
proradz;r-ny =0 onI’

211 = 0 on of) \ (aQ)l
g7 =1 on (09); ,

(26)

\

where l =1,...,psq, and pyq + 1 Is the number of
connected components of of2.

o |
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The basis functions of the spaces of harmonic fields (cont’d)

o .

To complete the construction of the basis functions we have
to proceed further.

For that, as in the preceding case, let us recall that in Q;
there exists a set of "cutting” surfaces =,, with 0=, C T,
such that every curl-free vector field in 2; with vanishing
tangential component on 9€) has a global potential in

i \ Ug=q-

These surfaces "cut" the 0f)-independent non-bounding
cycles in Q; (whose number is denoted by nr).

o |
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The basis functions of the spaces of harmonic fields (cont’d)

-

Then introduce the functions p, r, ¢ =1,...,nr, defined in
(; \ £, and solutions to

-

[ div(py gradp, 1) = 0 In Q7 \ =,
progradp,r-ny =0 onI'\ 0=,
{ pg1 =0 on Jf} (27)
[.U’I grad Pq.,I - HE} =, =0
\ [pq,f}zq =1,

having denoted by |- |= the jJump across the surface =, and
by n= the unit normal vector on =,.

The other basis functions p, ; are the (L*(€27))*-extensions
~ of gradp, ; (computed in Q; \ E,). o
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Vector potential formulation

fMotivated by the fact that the magnetic induction B = uH isj
divergence-free in €2, a classical approach to the Maxwell
equations and to eddy current problems is that based on
the introduction of a vector magnetic potential A such that
curl A = pH. Often, this is also accompanied by the use of a
scalar electric potential V¢ In the conductor €2, satisfying
—iwAc —grad Vo = Eq.

Summing up, one looks for A and V such that
Ec=—iwAg—gradVeo , puH =curl A . (28)

[Note that A and V> are not uniquely defined...]

For the time being, let us focus on the eddy current
equations. For the sake of definiteness we consider the
Lelectric boundary condition. J
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Vector potential formulation (cont’d)

flmposing the Ampere equation one has: T

curl(p L curl A) + iwocAc +ogradVo =J. in Q.
On the other hand, from (28) we see at once that
curlBEg = —iwceurl Ag = —iwp-He

thus the Faraday equation in Q¢ Is satisfied. Moreover, uH

IS equal to curl A In €, therefore it is a solenoidal vector field
In €.

If we require A; x n = 0 on 0f?, the boundary condition
pwrHr -n = 0on 0 Is satisfied: in fact,

L prHr-n=culA; -n=dv.(A; xn)=0.

|
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Vector potential formulation (cont’d)

-

[A remark on the relation
cul A - n =div;.(A xn) on 0,

which is very often used in electromagnetism.
Given a function n defined in ©, we have

faQ culA-nn = fQ div(n curl A) = fQ grad 7 - curl A
= [5q0radn - (n X A) = — [;n divy(n x A),

and, since n Is arbitrary, the conclusion follows.]

o |

Numerical analysis of problems in electromagnetism — p.52/195



Don’t forget the Faraday equation!

- N

A little bit surprisingly, what we have presented is not the
complete formulation in terms of H and E.: something is
still missing.

# In fact, the Faraday equation is not completely solved.

More precisely, in - we have solved the Faraday equation
In differential form, but we are not imposing the Faraday
equation in integral form for all the surfaces contained in €.

Let us see in more detail: the Faraday equation relates the
flux of the magnetic induction through a surface with the line
Integral of the electric field on the boundary of that surface.

o |
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Don’t forget the Faraday equation! (cont’d)

-

Since we know the magnetic field in the whole €, surfaces
can stay everywhere in €2; but we know the electric field
only in Q ¢, therefore the boundary of the surface must stay

in Qc.

-

On the other hand, since the Faraday equation (in
differential form) is satisfied in €, for a surface contained
In Q- everything is all right.

Thus we must verify if there are surfaces in €); with
boundary on I', and moreover such that this boundary is not
the boundary of a surface in Q¢ [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in ()...].

o |
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Don’t forget the Faraday equation! (cont’d)

- N

# Conclusion: the Faraday equation has not been
Imposed on the "cutting" surface A! [The non-bounding
cycle is the boundary of the surface 3..]

o012

o |
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Back to the vector potential formulation

- -

It can be seen that the integral form of the Faraday equation
on these surfaces is satisfied if

/ iwquJ-pl’?:—/(Ecxnc)-p?,
Qr r

where p7 Is curl-free in €2;.

Let us verify if this condition holds when the (A, V)
formulation is used: we have

Jq, iwpHy - p7 = [ dwcurl Ay - pj
= iw [p(n7 X Ag) - pj = iw [ (Ac X ng) - pp
= — [r(Ec xn¢) - pj — J-(grad Vo x ne) - pf .

o |
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Back to the vector potential formulation (cont’d)

fOn the other hand T

Jr (grad Vo X ng) - p}
= [r(p} x ny) - grad Vo
= — [pdiv.(p} x ny) Vo
= — [peurlpl -0 Ve =0.

In conclusion, using of the (A, V) formulation guarantees
that the Faraday equation is completely solved.

# This approach opens the problem of determining
correct gauge conditions ensuring the unigueness of A
and Vo (these conditions can be necessary when
considering numerical approximation, in order to avoid
L that the discrete problem becomes singular). J
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Gauge conditions

o N

The most frequently used is the Coulomb gauge

divA =0 in (). (29)

In a general geometrical situation, this can be not enough
for determining a unique vector potential A in . In fact,
there exist non-trivial irrotational, solenoidal vector fields
with vanishing tangential component, namely, the elements

of the space of harmonic fields

H(e; Q) :={w € (L*(Q))?| curlw = 0,divw = 0,
w xn=0o0noN},

o |
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Gauge conditions (cont’d)

fwhose dimension is given by the number of connected T
components of 9€2 minus 1 (say, as stated before, pyq).
Imposing orthogonality, namely, A 1 H(e;(2), turns out to be
equivalent to require

A-n=20 Vlzl,...,pgg. (30)
(092),

In conclusion, we are left with the problem

/

curl(pp™teurl A) + iwo A

+ograd Vo =J. in ()
divA =0 in € (31)
f(aQ)lA-Il:O \V/ZZI,...,pg)Q

\_ \Axn:O on Of) . J
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Penalization

-

[Clearly, V- Is determined up to an additive constant in eac
connected component Q¢ ; of Q¢, j =1,...,pr + 1.]

-

The solenoidal constraint can be imposed by adding a
penalization term. Introducing the constant ., > 0,
representing a suitable average in (2 of the entries of the
matrix p, the Coulomb gauge condition div A = 0 Iin ) can
be incorporated in the Ampere equation, which becomes

curl(p=tcurl A) — ;! grad div A + iwo A + o grad Vi
= J, in ().

A boundary condition for div A IS now necessary, and we
Impose

L divA =0 on 0f) . J
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Penalization (cont’d)

fI\/Ioreover one adds the two equations

div(iwoAc + o grad V) = div], ¢ in Q¢
(iwocAc+ogadVe) -nec =Jec-neg+Jes-ng onI",

that are necessary as, due to the modification in the
Ampere equation, it is no more ensured that the electric
field Ec = —iwA o — grad Vo satisfies the necessary
conditions

div(cEqg) = —div Je.C in Q¢
ockc -ng=-Jeo-neg—Jey-ny onl.

o |
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Vector potential strong formulation

-

The complete (A, Vo) formulation is therefore

’

curl(pe =t curl A) — ;! grad div A

+iwoA +ograd Vo =J,.  in ()
div(iwocAc + ograd Vo) =divd. o in Q¢
(twocAg + ograd Vi) - ng

< =Jeoc ng+Jder-ng on I’ (32)
f(@Q)ZA'n:O \V/Z:L...,pag
divA =0 on 0f)

 AXn=0 on 0f) .

[For the magnetic boundary conditions see Bir6 and V.

2007).
L( )] |
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Vector potential strong formulation (cont’d)

fThis formulation deals directly with curl A and div A, hence T
nor A x n neither A - n are admitted to jump on a surface: Iin
other words, the vector A cannot jump on a surface internal
to (2.

Therefore at the finite element level one is led to
approximate each component of A by continuous nodal
finite elements (say, the elements belonging to the space V,
Introduced in (7)).

[If the constraint div A = 0 is imposed by requiring that A Is
orthogonal to a suitable space of gradients, it is no longer
mandatory that A - n has no jumps: therefore one could
also use vector finite elements for which some components
are not continuous. We will see a different example of this

type later on...]
| -
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Vector potential strong formulation (cont’d)

flt IS Important to show that any solution to (32) satisfies T
div A = 0 In Q. In fact, taking the divergence of (32); and
using (32)2 we have —AdivAqs = 0in Q. Moreover, since
divJ. ; = 01In €, one also obtains —AdivA; =01n ;. On
the other hand, using (32)s, on the interface I" we have

—u; tgraddivAc - ne
=—Jes-nj — Curl(ua1 cul Ag) - ne
= —Je.7-ny— divT[(u,(_j1 curl Ag) X ng| ,

and also

—u tgraddivAr - ng
=Jer-n5 — curl(u,jTl cul Aj) - nj

\_ :Jej-1r1[—div7[(u,l_1 curl A7) X njp] . J

Numerical analysis of problems in electromagnetism — p.64/195



Vector potential strong formulation (cont’d)

fMoreover, a solution to (32); satisfies on the interface I T

ng X (,Ll,a1 curl Ag) — u;l divAc-ong
+ njy X (ufl curl A7) — puytdivArn; =0,

therefore, due to orthogonality,
ne X (us' cul Ag) +nr x (u; culAf) =0, divAg =divA;.
Hence we have obtained

graddivAc -ngo +graddivA;-ny; =0 onl',

and this last condition, together with the matching of div A
on ', furnishes that div A Is a harmonic function in the
Lwhole (). Since it vanishes on 052, It vanishes in ).
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Vector potential weak formulation

fWe are now interested in finding a weak formulation of (32).T

First of all, multiplying (32); by w with w x n = 0 on 02 and
Integrating in €2, we obtain by integration by parts

Jo(p teurl A - curlw + p; Hdiv A diviw)
+ fQC(iwaA(; W +ograd Vo - wo)
— fQ Je - W,

having used (32)5.
Let us now multiply (32)s by iw™ Q- and integrate in Qc: by
Integration by parts and using (32)s we find

fQC(—O'AC .grad Q¢ + iw to grad Vi - grad Q)
\_ — jw L ch Jec-grad Qe +iw™ [ Jer-nrQc . J
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Vector potential weak formulation (cont’d)

hntroducing the sesquilinear form T

Al(A, V), (W, Qc)]
= [o(p " eurl A - curlw + p; Hdiv A diviw)

+ fQC(iwaAC -W¢o + ograd Vo - W) (33)
— fﬂc oAq -grad Q¢ o
jw 1 Ja,, o grad Vi - grad Qc

we have finally rewritten (32) as

Find (A, Vo) € Wy x Hﬁl(ﬂc) such that
A[(A, VC) aQC fQ L
+iw™! fQC e,C + grad Qc + Zw_l fp Jer-nr Qe

\_ for all (w,Qc) € Wy x Hﬁl(ﬂ(;) , J
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Vector potential weak formulation (cont’d)

fwhere T

Wy = {w € Hy(curl; 2) N H (div; 2) |
Joo, W n=0VIi=1.. poa}.

and
pr+1

H}(Qc) - H H'(Q¢,4)/C

® The sesquilinear form A|-, -] is continuous and coercive
[we will see this result later on...], therefore existence

and uniqueness of the solution is ensured by the
L Lax—Milgram lemma.

|
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Vector potential: from the weak to the strong formulation

To complete the argument, it is necessary to show that a T
solution of the weak problem is in fact a solution of the eddy
current problem.

# This is not a trivial fact, as the functional spaces W, and
Hﬁl(QC) contain some constraints.

The first step is to show that (34) Is satisfied for any

w € Hy(curl; Q) N H(div;Q), Qc € HY(Qp).

First note that (34) does not change if we add to Q¢ a
(different) constant in 2¢ ;. In fact, the necessary conditions
onJ.rarediv]J.; =01inQr and J. ; L'H;, and the latter can
be rewritten as frj Jer-ny=0foreachj=1,...,pr + 1 and

Jio, Jes -m=0foreach i =1,... pao. Hence a solution
L(A, V) of (34) satisfies it also for each Q¢ € HY(Q¢). J
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Vector potential: from the weak to the strong formulation (cont’d)

o N

Taking w = 0, a first general result is that any solution to
(34) satisfies

div(iwoAc + ograd Vo) = divd, ¢ In Q¢
(in'AC+0'gradVC)-nC:JG,C-nC%—Je,[-n] onl'.

Therefore, setting

7. —iwoAc —ograd Vo +J. o in{¢o
T Je,l in {27,

we have proved that divJ = 0 in €.

o |
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Vector potential: from the weak to the strong formulation (cont’d)

- N

For any w € Hoy(curl; Q) N H(div; 2) we can define by w. the
harmonic field in H(e; 2) satisfying [ 5o), We - n = [50), W - n

foralll =1,..., psn. Clearly, the difference w — w,. belongs
to W;. Hence

Al(A, Ve), (w, Qc)]
= A[(A, VC) (W —we, Qc)] + Al(A, Vo), (We, 0)]
= JoJe (W—We) +iw™" o, Jec - grad Qc
+iw™ [pJer-nrQc
+ o (iwoAc + o grad Vi) - We o
= JoJde - WHiw™ [ Jec-gradQc
+iw ™! fF Jer- n; Qc — fQJ - We .

o |
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Vector potential: from the weak to the strong formulation (cont’d)

- Therefore, the only result that remains to be proved is o

[3w=0.
Q

The basis functions of H(e; (2) are given by grad w;,
, poq, Where w; Is the (real-valued) solution to

[=1,...
Awf =0 In O
w; =0 on (0Q) \ (09);
wzk =1 on (89); :
and we have

JoJ -gradw; = — [,divIw/ + [, -nw
:f(fm) J-n:f(aml.]e’[-n:(). J

\— l
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Vector potential: from the weak to the strong formulation (cont’d)

-

Taking now in (34) a test function w € (C5°(Q2))°, by
Integration by parts we find at once that

curl(pe ™t curl A) — ;! grad div A
+iwoA +ogradVo =J, in().

Repeating the same argument for w € Hy(curl; 2) N H (div; 2)
gives div A = 0 on 052, and therefore a weak solution (A, V)
to (34) is a solution to the strong problem (32).

o |
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Vector potential formulation: existence and unigueness

o N

The proof of existence and uniqueness derives from the

Lax—Milgram lemma.
We have only to check that the sesquilinear form A[-, -] is

coercive in Wy x Hﬁl(Qc), namely, that there exists a

constant xo > 0 such that for each (w,Q¢) € Wy x H'(Q¢)
with fQCj QC’]Qj =0,9=1,...,pr+1, It holds

‘A[(W7Q0)7 (WaQC)”
> /ﬁ&()(fQ(‘W‘Q + |curlw|? + | divw|?) (35)

+ Jo.. (IQc|” + | grad QCP)) .

o |
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Vector potential formulation: existence and uniqueness @nt’d)

-

First of all, we can easily obtain

-

Al(w Qc) (W Qc)]

— fQ Leurlw - curlw 4 p | divw|?) o
w™! fQC (iwwe + grad Q¢) - (—iwWe + grad Qc) -

Then, observe that, given a couple of real numbers « and b,
foreach 0 < 6 < 11t holds

2ab| < da® + 5 1%

o |
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Vector potential formulation: existence and uniqueness @nt’d)

L N

ence one has

w] ™1 Ja,, olivwe + grad Qc) - (—iwWe + grad Qc)
> |w| ™ omin [ [lorad Qc|* + w?|lwe
+2 Re(iwwe - grad Q)]
> |w| ™ omin(1 = 9) fq,, | orad Qc|?
—|w|omin(1 — )0~ fQC 'wel?,

where o4, 1S an uniform lower bound in Q- of the minimum
eigenvalues of o(x).

o |
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Vector potential formulation: existence and uniqueness @nt’d)

-

The Poincaré inequality gives that

-

1
Joo larad Qol* = 32000 [, arad Qg
1
> K Zpﬁ Jae |9radQcyQC * +1Qciac, %)
= K1 [o,.(|orad Qc* + 1Qc?)

[recall that [, Qciac, =0,7=1,...,pr +1].
Moreover, the Pomcare like inequality yields

o (L eurw - curl W + p7 | divwl?)
> [ (max | curt w2 + it div w|?)
> Ky [o(|curtw]? + | divw|* + |w|?) |

o |
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Vector potential formulation: existence and uniqueness @nt’d)

-

where umax 1S @ uniform upper bound in €2 of the maximum
eigenvalues of u(x) [recall that, for a divergence-free vector

field, the conditions f(c‘m)l w-n=0foralll=1,... pyq are

equivalent to the orthogonality to H(e; 2)].
Choosing (1 — §) so small that oy, |w|(1 — §) < K24, we find
at once (35).

-

o |
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Vector potential formulation: numerical approximation

o Numerical approximation is performed by means of T
nodal finite elements, for all the components of A and
for V¢ [all the components of A, and V-, are elements

of the space V}, introduced in (7)].
Via Céa lemma we have
(Jo(IA = Ap? + [eur(A — A + |div(A — Ap)?)

)\ 1/2
+ Jo.. lorad(Ve — Vo u)| )
< Co(fQ(\A — wp|* + [curl(A — wp,) | + | div(A — wy) %)

N\ 172
+ fQC |grad (Ve — QC,h)‘ ) ;

for each choice of w;, and Q¢ (the former satisfying the
Lconstraints f(c‘m)l wi,-n=0foralll=1,...,p50). J
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Vector potential formulation: numerical approximation (c ont’d)

~ Denote by I,w the nodal interpolant of w [this means that |
I,w = (thl,ﬂhwz, thg), with w = (wl, wa, wg)]

# Itis not possible to choose w;, = I, A, as the constraints
f(m)l wj, - n = 0 have to be satisfied forall [ =1, ..., pyq.

However, for each unconstrained discrete function vy, it
IS possible to find a constrained discrete function wy,
such that

A —wpllw < C|A = villw.

[Here notation is W := H (curl; 2) N H (div; €2).]
In particular, this can be done for v, = I,A. Therefore,
convergence Is ensured provided that A Is smooth
enough [precisely, the convergence is of order r
L provided A is in the Sobolev space of order r + 1]. J
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Vector potential formulation: numerical approximation (c ont’d)

f #® The reqgularity of A is a delicate point! In fact, it must bej
noted that it is not guaranteed if (2 has re-entrant
corners or edges, namely, if it Is a non-convex
polyhedron (see Costabel and Dauge (2000), Costabel,
Dauge and Nicaise (2003)).
More important, in that case the space
H(Q) = (HYQ))? N Hy(curl; Q) turns out to be a proper
closed subspace of Hy(curl; Q) N H(div; Q) (H}(2) and
Ho(curl; ) N H(div; 2) coincide if and only if ) is convex).
Hence the nodal finite element approximate solution
A; € H(Q) cannot approach an exact solution
A € Hy(curl; Q) N H(div; Q) with A ¢ H1(Q), and
convergence in W = H(curl; Q) N H(div; 2) Is lost: this Is
a general problem for the nodal finite element

L approximation of Maxwell equations. J
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Vector potential formulation: numerical approximation (c ont’d)

fRemark. This is a case in which “smooth” functions are not
approximating the functions belonging to the variational
space Hy(curl; ©2) N H (div; 2), but only the functions
belonging the closed proper subspace H!(€): Céa lemma
and interpolation estimates are not enough to conclude the
convergence proof...

-

o |
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Vector potential formulation: numerical approximation (c ont’d)

-

# Summing up: the nodal finite element approximation is

-

convergent either if the solution is regular (and this
Information could be available even for a non-convex
polyhedron €2) or else if the domain 2 Is a convex
polyhedron, as in this case the space of smooth normal
vector fields is dense in H!(Q) = Hy(curl; Q) N H(div; ),
and one can apply Céa lemma and interpolation
estimates in the standard way.

Let us also note that the assumption that 2 is convex is
not a severe restriction, as in most real-life applications
0L} arises from a somehow arbitrary truncation of the
whole space. Hence, re-entrant corners and edges of (2
can be easily avoided.

-
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Vector potential formulation: numerical approximation (c ont’d)

- N

# Itis worth noting that a cure for the lack of convergence
of nodal finite element approximations in the presence
of re-entrant corners and edges has been proposed by
Costabel and Dauge (2002). They introduce a special
weight in the grad div penalization term, thus permitting
to use standard nodal finite elements in a numerically
efficient way.

# In numerical implementation, imposing the boundary
condition A;, x n = 0 on 99} is clearly straightforward if
the boundary of the computational domain €2 is formed
by planar surfaces, parallel to the reference planes.

o |
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Vector potential formulation: numerical approximation (c ont’d)

f # |[f that is not the case, for each node p on 912 introduce T
a local system of coordinates with one axis aligned with
n,, a suitable average of the normals to the surface
elements containing p, and express, through a rotation,
the vector A, with respect to that system: the condition
A x n, = 01s then trivially imposed (see Rodger and
Eastham (1985)).

# Another possible approach, which avoids the
arbitrariness inherent in the averaging process of the
normals at corner points, is described by Bossavit
(1999). Itis based on imposing A;, x n = 0 at the center
of the element faces on 02 the drawback Is that it
results in a constrained problem, requiring the
Introduction of as many Lagrange multipliers as the

L (double of the) number of surface elements on o).
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Vector potential formulation: numerical approximation (c ont’d)

- N

# Ungauged formulation have been also proposed (see
Ren (1996), Kameari and Koganezawa (1997), Bird
(1999)): edge elements are employed for the
approximation of the potential A, without requiring that
the gauge condition div A = 0 in €2 is satisfied.

Clearly, in this way the resulting linear system is
singular: however, in many cases the right-hand sides
turn out to be compatible, so that suitable iterative
algebraic solvers can still be convergent.

[Warning: lack of a complete theory...]

o |
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Numerical results

-

fThe numerical results we present here have been obtained
In Biré and V. (2007), for the magnetic boundary conditions
(€2 Is a torus and €. Is a ball-like set).
The employed finite elements are second order hexahedral
“serendipity" elements, with 20 nodes (8 at the vertices and
12 at the midpoints of each edge), for all the components of
A, and for V},.
The values of the physical coefficients have been assumed
as follows: 1 = u, = 47 x 1077 H/m, o0 = 5.7 x 107 S/m,
w=2r x f =100x rad/s, I.e., f = 50 Hz.
The half of the domain is described here below. The colls
(the support of J. ;, therefore modeled as insulators) are

red, while the conductor €2 Is green; the yellow “cutting”
surface X, Is also drawn.

o |
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Numerical results (cont’d)

100

100

Z
Il _x

LThe computational domain [one half]. J
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Numerical results (cont’'d)

. N

he current density Iis given by J.c =0 and J. 1 = J. rey,
where e, Is the azymuthal unit vector in the cylindrical

system centered at the point (100,0,0), oriented
counterclockwise, and

109 A/m? if 60 < r < 80, 60 < z < 80
Jer=14 —10°Am*  if60 <r <80, 20 < z < 40
0 otherwise .

In the two figures below some details of the computed
solution are presented: the magnitude of the computed flux
density B in the first figure, the magnitude of the computed
current density Jo := —iwoc A~ — o grad V- In the second

Lfigure. J
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Numerical results (cont’d)

B o
max|B| [107 T]

11.95I

8.965

— o) 5.977H

2.988F

O.OOOI

LThe magnitude of the flux density B. J
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Numerical results (cont’d)

max|J| [103 A/m?] \

462.9
347.1
231.4
118.7
_ 0.000
Y\JZ/,)( .
The magnitude of the current density J
\_JC = —woAc — ograd V.
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Pros and cons

f ® Pros T

o Standard nodal finite elements for all the unknowns;

s no difficulty with the topology of the conducting
domain;

» "positive definite" algebraic problem.
® Cons

» many degrees of freedom;

s lack of convergence for re-entrant corners of the
computational domain.

o |
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Edge finite elements

-

fElectromagnetic problems can be approximated by means
of a different type of vector finite elements, for which the
continuity of all the components is not required.

In fact, looking at Maxwell or eddy current equations it is
apparent that what is really needed is that the curl operator
IS well-defined: not necessarily the gradient operator or the
divergence operator (see (21) and (22)).

Therefore, in order that a discrete function w, iIs also an
element of the variational space [still to be defined... but
only involving the curl operator!], what is needed is the
continuity of w;, x n on all the interelements.

o |
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Edge finite elements (cont’d)

- N

#® These elements are called edge elements, and have
been proposed by Nedelec (1980).

Let us assume that the triangulation is composed by

tetrahedra. N
For » > 1 denote by P, the space of homogeneous

polynomials of degree r and define
Sy :={a € ()’ |q(x) - x = 0}

R, = (Pr_l)g DS, .
The first family of Nédélec finite elements is

o

Ny = {wy € H(cur; Q) |wy g € R, VK € Tp} . (36)

|
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Edge finite elements (cont’d)

fThe degrees of freedom are not nodal values, but: T
® edge degrees of freedom m,(w)

{ [wercaasvaer o] (37

» face degrees of freedom m(w) (for r > 2)

{ [ xny-ads vae PP} 9

# volume degrees of freedom mg(w) (for » > 3)

{/KW-qu Vaqe (R«g)g} - (39)J
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Edge finite elements (cont’d)

fHere T. denotes a unit vector with the direction of e, while T
ns is the unit normal vector on f.

The total number of degrees of freedom on a tetrahedron K
IS equal to the dimension of R,., and it can be shown that, if
all the degrees of freedom vanish, then a polynomial

w € R, is identically vanishing in K, hence conditions (8)
and (4) are satisfied.

It can also be proved that, if a vector function w € R, has all

Its degrees of freedom vanishing on a face f of K and on

the three edges contained in f, then the tangential

component of w vanishes on f. This means that, using

these degrees of freedom for identifying a

piecewise-polynomial function that locally belongs to R,., we
Lobtain an element of H (curl; 2), hence an element of N;. J
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Lowest order edge finite elements

- N

® Let us specify the form of Nedelec edge elements and
their degrees of freedom for » = 1.

The condition q - x = 0 for q € (P1)? says that g = a x x with
a € R3. Hence the space R; is given by the polynomials of
the form

q(x)=b+axx , abeR’. (40)

For r = 1 only edge degrees of freedom are active, and are
given by

/(b—l—axx)-Teds (41)

for the six edges ¢ of the tetrahedron K.

o |
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Lowest order edge finite elements (cont’d)

- N

# Let us show that if all the degrees of freedom of
q=Db+axxon K are equal to O, then q = 0: in other
words, (8) and (4) are satisfied.

A direct computation shows that curlq = 2 a. Moreover, from
Stokes theorem for each face f we have

0 =>cJ).a Teds= [5,q-Tds
= J;eurlq-nydS =2a-nymeas(f),

hence a-n; = 0 on f. Since three of the vectors n; are
linearly independent, it follows a = 0.

o |
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Lowest order edge finite elements (cont’d)

-

Then for each edge ¢

0 =/ a-Teds= [ b-T.ds
=b - 7. length(e),

and three of the vectors . are linearly independent, so that
b = 0 and in conclusion q = 0.

o |
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Lowest order edge finite elements (cont’d)

- N

#® Another point is to prove that if the three edge degrees

of freedomof q = b +a x x on aface f are equalto O
thenq xny =0o0n f.

We have already seen thata-ny = 0on f. On the other
hand,

qxny =bxny+(axx)Xny
=bxns+(a-nf)x—(x-nys)a.

Since on a face one has x - ny = const, It follows that g x ny
Is equal on f to a constant vector c¢, with cy - ny = 0.

o |

Numerical analysis of problems in electromagnetism — p.100/195



Lowest order edge finite elements (cont’d)

r

inally,

0 =) q-Teds= [ (nfxqxny) T.ds
= (nf X cf) - T¢length(e) .

Since two of the vectors 7. are generating the plane
containing f (and the vector ny x cy), it follows cy = 0 and

consequently g x ny = 0 on f.

o |
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Lowest order edge finite elements (cont’d)

» In particular, we have shown that the dimension of N} is

equal to the total number of the edge degrees of
freedom (i.e., the total number of edges).

The basis functions are defined as in (5), namely, for each
edge e,, we construct the function ¢,, such that

1 ifm=1
rds = 42
/el(’om T {0 if m 1. (42)

Since (8) Is satisfied, the basis functions have a “small”
support: ¢, IS non-vanishing only in the elements K of the
triangulation that contain the edge e,,.

o |
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Lowest order edge finite elements (cont’d)

-

f # The explicit construction of a basis for the edge element
space N, is easily done.

In fact, it can be proved that the basis function ; ;
associated to the edge e; ; joining the nodes x; and x; and

satisfying feij @, i - T ds = 11is given by
@i ; = pigrad p; — @;grad ¢; , (43)

where ¢; Is the piecewise-linear nodal basis function
associated to the node x;.

o |
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Interpolation operator

-

As usual, the interpolant r,w of a (smooth enough) vector
function w is the unique vector function belonging to N}

such that

-

Me(TpW) = Me(W)
m(rpw) = m¢(w) (44)
m(rpw) = mg (W)

for each edge ¢, face f and element K.

The interpolation operator ry, : S — N/ Is defined as

ry, T W — W (45)

(having denoted by S the space of “smooth enough” vector
qunctions: we will come back to this here below...). J
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Interpolation operator (cont’d)

e, . B

he interpolant r,w can be written as

FhWZZme(W)SOe+me 90f+ZmK W) (46)
€ f

(having denoted by ¢, the set of basis functions associated
to the edge e and similarly for the other cases).

# Question: what about the space S, where the
Interpolation operator is defined?

It is necessary to give a meaning to line integrals and
surface integrals, which is not possible for functions
belonging to the space H (curl; ).

o |
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Interpolation operator (cont’d)

fUp today, the best result is due to Amrouche, Bernardi, T
Dauge and Girault (1998): if we know that for some p > 2

the function w satisfies w ¢ (LP(Q))? with curlw € (LP(Q))?
and w i x v € ((LP(9K))’ for each K € T3, then the

Interpolant r,w Is well-defined.

For instance, this is true if w has a sufficiently large Sobolev
regularity, namely, if w € H?(curl; 2) for s > 1/2, where

He(curl; Q) == {w € (H5(Q))? | curlw € (H5(Q))%}.  (47)

[Since the exponent s can be non-integer, this space looks
a little bit “exotic”... However, it iIs hecessary to take it into
consideration, as in general the solutions of Maxwell and
eddy current equations are not very regular in the scale of
~ Sobolev spaces: it happens that s < 1.] o
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Interpolation error

flf the family of triangulations 7;, is regular and T
w € H?%(curl; ), 1/2 < s < r, it is possible to prove the
following interpolation error estimate

|w —rpwloq + || culw — curl(rpw)||o.0

48
< Ch¥(|lwllsq + | curlw (48)

S,Q)

(see Alonso and V. (1999)).

Since each vector function belonging to H(curl; {2) can be
approximated by smooth vector functions, we can conclude
that approximation property (3), namely,

dist(v,V3) - 0 VoeveV

Lis satisfied for V.= H(curl; Q) and V}, = N/. J
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The cavity problem

- N

#® Edge elements are therefore a suitable tool for
numerical approximation of Maxwell and eddy current
equations.

In order to give an example, let us consider the cavity
problem for the time-harmonic Maxwell equations (21), with
electric boundary condition. This means that the
computational domain €2 is an empty cavity surrounded by a
perfectly conducting medium.

In this situation, it is also reasonable to assume that £ and
p are scalar constants, say, e = ¢g and u = p, the electric
permittivity and the magnetic permeability of the vacuum.

o |
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The cavity problem (cont’d)

-

Therefore the problem reads

-

[ curlH — iwsgE = J, in Q
¢ curlE +iwpugH=0 1In ¢ (49)
| Exn=0 on of).

Using the Faraday equation to write H in terms of E and

substituting the result H = —(iwpug) ! curl E in the Ampére
equation, one is left with

curl curl B2 — wz,uoeoE = —iwpugJe 1IN
Exn=0 on of).

o |
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The cavity problem (cont’d)

-

ntroducing the wave number T

k= |wly/fioes (50)

we can finally write

curlcurl E — k°E = —iwpogJ, in Q
Exn=0 on of}.

Splitting J. into its real and imaginary parts, we can solve
two problems of the same form for the real and imaginary
parts of E.

o |
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The cavity problem (cont’d)

- N

Hence, we can focus on the problem

(51)

curlcurlE — k°E=F in
Exn=0 on of),

where all the functions are real valued.

# Problem (51) Is associated to a bilinear form that is not
coercive in H(curl; Q) [—k? has the “wrong” sign...]. What
we can say about existence and uniqueness of a
solution?

o |
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Maxwell eigenvalue problem

-

Consider the Maxwell eigenvalue problem

-

{ curlcurl E = \E In () (52)

Exn=0 on of).

The classical Hilbert—Schmidt theory can be applied to
obtain

# Besides )\g = 0, there exists a sequence of positive,
Increasing and diverging to oo eigenvalues )\, of
problem (52) [see, e.g., Leis (1986)].

o |
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The cavity problem: existence and unigueness

. N

® Whenk#£ v\, m=0,1,2,..., there exists a unique
solution of problem (51).

redholm alternative theory can be used to prove

Numerical approximation of (51) is important in order to
simulate the real physical situation and obtain informations
for shape optimization (for instance, an electromagnetic
cavity is a model for microwave ovens).

[Clearly, to this aim another issue is the numerical
simulation of (52); however, here we do not consider this
problem, referring to Boffi, Fernandes, Gastaldi and Perugia

(1999), Caorsi, Fernandes and Raffetto (2000) and Monk
(2003a).]

o |
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The cavity problem: variational formulations

- The variational formulation of (51) is o

find E € Hy(curl;2)
[qeulE -culw — k% [(E-w= [(F-w (53)
V' w e Hy(curl; Q).

The finite element approximation problem with edge
elements reads

find B, € Wy, -
[qeul Ey - curlwy, — k2 [ Ep - wi= [ F - wy, (54)
Vwy,elW,,

where
L W, == N; N Hyg(curl; 2) . J
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The cavity problem: numerical approximation

-

The existence and unigueness of the solution to the T
discrete problem (54) has to be proved. We will do that later
on, and for the time being we assume that the solution E;,,
does exist.

Let us focus on the convergence of the numerical scheme
and on the error estimate, following Monk (2003b) [for
different approaches, see Monk and Demkowicz (2001),
Boffi and Gastaldi (2002)]. Setting e¢;, := E — E;,, by
subtracting (54) from (53) we find

/curleh-curlwh—kz/eh-wh:() VwyeW,. (55
Q) Y/

o |
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The cavity problem: numerical approximation (cont’d)

o N

first trivial remark is that grad L) C N; (L; defined in (7)),
therefore using in (55) wy, = grad v, with v, € L} N H} () we
have

/ ey, -gradvy, = 0. (56)
Q

In other words, e, Is discrete divergence free.

Denote by P, the orthogonal projection from H(curl; €2) onto
Wh, by m(-, ) the bilinear form at the left hand side of (55),
and by || - |curt,0 (respectively, (-, )eut,q) the norm
(respectively, the scalar product) in H(curl; €2). One obtains

€n - Wp
e lout < [E— PyEllout o+ (1452) sup 22 (57)

\— wrEWh Hwhucurl,Q | J
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The cavity problem: numerical approximation (cont’d)

fLet us prove (57). We have T

lenll2u o = (en, E = BiE)euo + (e, PLE — Ep)culo
= (ep, E — PhE)cur1 o + m(ep, BLE — Ep)
+(1 4+ k%) [gen - (PLE — Ep)
= (en, E = PiE)cuno + (1 +47%) [gen (PE —Ep),

having used (55).
On the other hand,

e, - 'W
/eh°(PhE—Eh)§ Sup Jo on W
Q

HPhE — Ethurl,Q :
wpeWn HWthurl,Q

Since E;, = P,E, and || Prep[lcurl,a < [l€nllcurno, (57) follows

Lat once. J
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The cavity problem: numerical approximation (cont’d)

. N

et us estimate

Joen - W
sup ,
wWnEWh ||Wh||curl,Q

A Helmholtz orthogonal decomposition result ensures that
we can write e, = curlqg + ko + grad pg, where grad pg IS the
(L*(£2))3-orthogonal projection of e, on grad Hi (£2) (in
particular, py € H;(f2)), and kg is a harmonic field belonging
to H(e; 2) (namely, curlkg = 0, divkg = 0 and kg x n = 0 on
0101). We set eg := curlqp + ko, and thus divey = 0,

curleg = curley, eg x n = 0 on 9.

Since ¢, Is discrete divergence free, it follows that grad pg IS
discrete divergence free, too.

o |
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The cavity problem: numerical approximation (cont’d)

- N

Due to the properties of orthogonal projections, we also
have || grad pg

0.0 < |lernllo.q-

Similarly, the discrete orthogonal decomposition

w, = wo , + grad &, holds, with &, € L} n H} () and

wo n € Wy, The function wy j, Is discrete divergence free and
clearly satisfies curl wg j, = curlwy, and ||wg nlj0.0 < [|[w|o.0-

Having obtained these preliminaries results, we find

/eh'Wh:/(eO+9rade)'Wh:/eO'Wh‘I‘/gradPO'WO,h-
Q Q Q Q

We will see later on how to estimate |, grad py - W .

o |
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The cavity problem: numerical approximation (cont’d)

~ Concerning the term |, ey - wy, we find o

/Q e0 - ws < lleollo [wallo, (58)

and we need to estimate ||ep||o .

The required estimate can be obtained by means of a
duality argument (see Nitsche (1970), Schatz (1974)). Let
z € H(curl; Q2) be the solution to

{ curlcurlz — k?z = ey in ) (59)

zxn=0 on o€},

which satisfies the estimate ||z||cy1.0 < C|leol|o.n. Since
Ldiv ep = 0, we also have divz = 0. J
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The cavity problem: numerical approximation (cont’d)

-

Moreover, curl z satisfies

-

curl(curlz) = k?z +eg in Q
div(curlz) = 0 in ¢
curlz-n =0 on of).

A couple of reqularity results due to Amrouche, Bernardi,
Dauge and Girault (1998) say that z € H*({2) with
curlz € H%(Q2) for s > 1/2, and the following estimates hold

HZ 5,0 < C”Z”curl,ﬂ < OHeO| 0,82

| curlz||s o < C(]| curleurlz|jg o + || curl z||p )

L < C(HZchrl,Q + He0| O,Q) < CHeO

0,Q -
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The cavity problem: numerical approximation (cont’d)

-

Hence the interpolant r;z is defined and we have

-

5,0) < Ch*[leo]

1z — 142 cun,0 < CR3(||2]|s,0 + || curl z| 0, -

Using (59) we find

|eo] (2)79 = m(z,eqg) = m(z,e, — grad pg) = m(z, ey) ,

since z is divergence free and py s = 0.
Moreover, taking into account (55)

m(za eh) — m(z — I'pz, eh) < CHZ — I'hz”curl,Q
< Ch*leollo.allenl cur,q -

o |
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The cavity problem: numerical approximation (cont’d)

- N

leollo < Ch7[[eplcuna - (60)

n conclusion,

Let us come to the estimate of |, grad py - wg j,.

Since wy ;, Is discrete divergence free, it Is possible to find a
divergence free vector function U, such that

[wor — Ublloa < CR¥(||lwonllo.n + | curlwo pll0.0)
< CRA(||whllo + || curtwylloq) -

o |
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The cavity problem: numerical approximation (cont’d)

ﬁThis can be done by taking the solution U of the problem T

( curl Uy = curl W0 h In
divUg =0 In
Upxn=20 on o)

_ Jo Uo-gradyyy = [, wop-gradyyy YI=1,...,psq,

where ¢ Is the discrete function, defined on a fixed coarse
mesh, taking value 1 on (012); and value 0 on all the other

nodes in ). It can be shown that
1Uollewra < C(||curtwopllo.o + ;1 Jo Wo,n - grad ¢y|)
< C||lwo.nlcurl.q ;

and that w ;, = r, Ug + grad ¢y, With ¢, € L} and constant on
each (092);; hence wg ;, = r,Ug + grad vy, + ) _; ¢; grad ¢; with

€ LT NHNQ).
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The cavity problem: numerical approximation (cont’d)

fTherefore T

Iwo.n — Uollg.q = Jo(Won — Uo) - (wo,n — Up)
= Jo(wo,n — Uo) - (wo, — 1, Uop)
+ Jo(wo,n — Ug) - (rpUg — Up)
— fQ(W(),h — Uy) - (grad vy, + >, ¢; grad ¢;)
+ [o(Wor — Up) - (rpUg — Uy)
= [o(won — Up) - (r,Ug — Up)
< |lwo.x — Uollo.llrtnUo — Uollo.a -

On the other hand, if curl Uy € curl W}, it can be proved that

IrnUo — Upllo,o < CRP(||Uol|s,0 + || curl Uplo,0)

\— < ChSHWO,h”(:url,Q' ] J

Numerical analysis of problems in electromagnetism — p.125/195




The cavity problem: numerical approximation (cont’d)

fThen T

Joaradpg - wop = [ gradpo - (wo p, — Up)
< || grad pol|o.l|Wo.n — Uollo.0

) (61)
< Ch ||Wh||curl,Q \grad P00,
< Ohsnwhncurl,ﬁ ‘eh“(),Q-
In conclusion
€y, - Wy,
sup 2 < Ch¥llenlourtr - (62)

wrEWh ||WhH(:url,Q

and from (57) for h small enough we have

\— ||eh||cur1,Q < C”E_PhEchrl,Q : (GB)J
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The cavity problem: numerical approximation (cont’d)

fThis estimate ensures that for ~ small enough problem (54) T
IS well-posed. Since it iIs enough to prove unigueness,
suppose that E;, is a solution corresponding to F = 0. We
know that for this right hand side the exact solution E of (53)

IS vanishing, therefore e;, = —E;,. Using (63) it follows
e, = 0, hence the uniqueness of the solution to (54).

Moreover, since

”E — PhEchrl,Q = Inf ”E — Wthurl,Q ;
wreEW

we have also obtained the guasi-optimal error estimate

Hethurl,Q <C inf HE — Wthurl,Qa (64)
whreW),

Lvalid for » small enough. J
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E and H formulations

fWe want now to present some coupled approaches. In
order to understand more clearly the situation, we start
going back to the formulations of the Maxwell and eddy
current problems.

In terms of the electric field, the time-harmonic Maxwell
equations read

curl(p~tcurl E) — w?nE = —iwJ, inQ
Exn=0 on of2,

having setn :=e —iw~lo.

[The condition E x n = 0 on 92 has to be substituted by

p~curlE x n = 0 on 99 when considering the magnetic
Lboundary condition.]

-

(65)

|
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E and H formulations (cont’d)

-

Similarly, in terms of the magnetic field they are written as

-

curl(n™teur H) — w?uH = curl(n=1J,) inQ
{ nleurlHxn=n""'J,xn on of). (66)
Once the electric field E is available, one sets
H=iwp tcurlE in (2. (67)
On the other hand, from H one determines
E=—iwintcunH-1J,) in 2. (68)

o |
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E and H formulations (cont’d)

-

The structure of (65) and (66) is quite similar, since Ren = ¢
IS positive definite.

A Fredholm alternative approach can be used for proving
well-posedness, and, similarly to the case of the cavity
problem, numerical approximation by means of edge
elements is the standard option.

In this framework, coupled formulations are not particularly
appealing.

o |
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E and H formulations (cont’d)

- For the eddy current equations, this symmetry is broken, |
and a degeneration occurs where o Is vanishing. We have

» E formulation

( curl(pw™ L curl E) + iwoE = —iwJ, in Q
diV(&‘[E[) =0 N 7
{ pleulExn=0 on o) (69)
BCr(E;) =0 on of?
\ €[E[ 1 H[

[where the condition g~ curlE x n = 0 on 912 has to be
dropped if considering the electric boundary condition].

LThe magnetic field H is computed as in (67). J
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E and H formulations (cont’d)

f #® H formulation T

( curl(oc™tcurl He) +iwp-He
= curl(a_lJe,C) In Q¢
CUle]:JeJ N i
! div(uH) = 0 in 0 (70)
BCH(H[) =0 on of
H; xn;+Heg xXxng =0 onI’
| TOP(H) =0,

where BCy (H;) means u;H; - n for the electric

boundary condition, and H; x n for the magnetic

boundary conditions, and TOP(H) = 0 is a set of

topological conditions that have to be satisfied by the
L magnetic field H.
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E and H formulations (cont’d)

-

Eq- = a_l(curl Hq- — JG’C) in Q¢ (71)

and solving the problem

-

Having determined H, the electric field is obtained by
setting

( curlE; = —iquH[ N i
diV(&?]E[) =0 N Q7
¢ BCp(E;) =0 on o (72)
E;rxny=—-Ec xno onl
\ €]E[ J_H].

This last problem is not always solvable, but needs that
Lsome compatibility conditions on the data are satisfied. J
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Topological conditions on the magnetic field

fBesides the conditions div(uH) = 0in Q and u;H; - n =0 onj
00 (iIf E; x n = 0 on 9f), that are clearly satisfied, it is
Important to underline that the other needed compatibility
conditions are the topological conditions TOP(H) = 0.

Let us make clear their structure. For the sake of
definiteness, let us focus on the electric boundary condition.
We need to consider again the (finite dimensional) space

HP) = (G e (L2(Q7))3 | curl Gy = 0, div(pa;Gp) = 0
piGr-n=00n0QUTI},

and its basis functions p? ;, a =1,...,nq, [let us recall that

nq, 1S the first Betti number of Q2;, or, equivalently, the
Lnumber of (independent) non-bounding cycles in y]. J
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Topological conditions on the magnetic field (cont’'d)

. N

he topological conditions TOP(H) = 0 mean that

Ja, iwquI Pi 1

73
+fI‘ CUFIHC Jec)] ><n(j~p:;’1~:0 ( )

foreach a =1,... nq,.

Note that one has nqg, > 1 If the conductor ¢ is not
simply-connected, and therefore in that case these
conditions have to be taken into account.

# |t can be proved that the topological conditions
TOP(H) = 0 are equivalent to the integral form of the
Faraday equation on each surface that "cuts" a
L non-bounding cycle [Selfert surface]. J
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A FEM-BEM approach

-

fWe are now ready to present an approach based on a
coupled formulation: variational in €2, by means of
potential theory in ;.

In this case, it is reasonable to consider Q; := R3 \ Qc.
Moreover, for the sake of simplicity let us require that Q¢ Is
a simply-connected open set with a connected boundary,
so that we have not to take into account the topological
conditions on H.

Finally, it Is assumed that the applied current density J. Is
vanishing in €7, and that the magnetic permeability p; and
the electric permittivity €; are positive constants in 27, say
1o > 0 and g > 0, the permeability and the permittivity of
the vacuum.

o |
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A FEM—-BEM approach (cont’d)

-

As we have seen before, in terms of the magnetic field H

-

and the electric field E- the eddy current problem reads

2

curlEg + iwwprHe =0
culHo —ocEc = J. ¢
curlHy =0

q div(uogH7) =0
poHeo -ng + poHyp -ny =0
He Xxng+Hypxnyp =0
H(x) = O(x| )

in Q¢

in Q¢

in (7

in (27 (74)
on I’

on I’

as |x| — o0

|
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A FEM—-BEM approach (cont’d)

-

[If needed, the electric field E; can be computed after
having determined H; and E« in (74), by solving

’

cul B = —iwpuoH7 in $27
div(egEr) =0 in (7

{ E;fyxn;=—-E¢g Xne on I
fF €QE[ -1 = 0

| Ei(x) = O(x| ) as x| = 00 . ]

o |
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A FEM—-BEM approach (cont’d)

. N

or obtaining a formulation which is stable with respect to
the frequency w, it is better to look for a vector magnetic
potential A, a scalar electric potential V- and a scalar
magnetic potential vy such that

poHe =culAg , Eg = —twAg —gradVeo , Hy =gradyy .
[See Pillsbury (1983), Rodger and Eastham (1983), Emson

and Simkin (1983).]

Gauging Is necessary only in Q~: we require the Coulomb
gauge dvAq- =01In Q¢, with A - nc =0 on I'. Moreover,
we also impose that

[Y1(x)| = O(1x]™") as |x| — 0.

o |
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A FEM—-BEM approach (cont’d)

W

e have thus obtained the problem

( curl(pg' curl Ag)

+iwoAc +ograd Vo = J. ¢ in Q¢

Ay =0 in ()7
dvAo =0 in Q¢
| Ac-no=0 on I
culAg -ng + pograd iy - ny = 0 on I

(p,al culAg) X ng +gradyy x ny =0 on I’
[¥1(x)] + | grad ¥ (x)| = O(|x|™") as [x| — oo,

\

where V¢ Is determined up to an additive constant.

o |

Numerical analysis of problems in electromagnetism — p.140/195



A FEM-BEM approach (cont’d)

[—Inserting the Coulomb gauge condition in the Ampere T
equation as a penalization term, one has

2

Curl(ua1 curl Ac) — p; ' grad div A

+iwoAc +ograd Vo = J. ¢ in Q¢
AYr =10 in {27
div(iwoAg + o grad Vi) = div]. ¢ in Q¢
(twocAc + ograd Vi) - ng

X =J.c - nc on I’ (75)
Ac-no=0 on I
culAg -ng + pograd iy - ny = 0 on I
(' curl Ag) x ne
+gradyy Xxny =0 on [’

| )+ lgrad g (x)| = O(x[)) asfx[—oo. |
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A FEM—-BEM approach (cont’d)

fSince In 2; we have to solve the Laplace equation, using T
potential theory it is possible to transform the problem for «;
Into a problem on the interface I', thus reducing in a
significative way the number of unknowns in numerical
computations.

We introduce on I" (using suitable functional spaces...) the
single layer and double layer potentials

SO0 = [ o €3S,

F47T\X—Y’

D(n)(x) := /F MTX__yy,g -n(y)nc(y)dS,

o |
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A FEM—-BEM approach (cont’d)

~ and the hypersingular integral operator o

H@X@ﬁz—wm<x: X_yg-MYmdyM%)-mﬂ@-

drlx —y

We also recall that the adjoint operator D’ reads

DO = ( [ 5148, ) nox)

dr|x —y|?

o |
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A FEM—-BEM approach (cont’d)

fWe have Ay; =01In Q; and grad ¢y - ny = —i curlAc - ng onj
[, therefore from potential theory the trace ¢r := ¢y p
satisfies the bounday integral equations

%wr — D(yYr) + %S(curl Ac-ng)=0onT (76)
0

1 1
——curlA¢g -neo + —D’(curl Ac- Ilc) -+ H(@DF) =0 onl, (77)
2110 140

and the unknown «; can be replaced by its trace .

We can now devise a weak form of this (A¢, Vo) — ¥r
formulation. From the matching condition

\_ nCxualcurIAC+nIxgrad@b[:OOﬂF J
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A FEM—-BEM approach (cont’d)

fwe find T

1 _ __
Jrne X poculAg - We = — [rng X grad ;- We
= — Jr¢reurlwe - nc,

the last equality coming from standard integration by parts
onl.

Hence, multiplying by suitable test functions (w¢, Q¢, n) with
wce -ne = 0on I, integrating in Q- and I', and integrating by
parts we end up with the following weak problem

o |
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A FEM-BEM approach (cont’d)

-

Jo (e cunl A - cunwe + pt div A divwe)
+ [, (iwo Ag - Wg + o grad Vi - W)

+ Jpl=3¢r — D(¥r)

+%S(curl Ac -ng)|curlwe - ng
— fQC Je,C’ - W(

ch (iwo A - grad Q¢ + o grad Vo - grad Q)
= Jo. Je,c - grad Q¢

fr[% curl AC Vg + D/(CUH AC . HC) 4+ MOH(wI’)]ﬁ _ O |

(78)

having used (76) for obtaining the first equation.
[See Alonso Rodriguez and V. (2009).]

o |
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A FEM—-BEM approach (cont’d)

-

The sesquilinear form at the left hand side is coercive in
[H(curl; Qc) M H()(div; Q(j)] X Hl(QC)/C X Hl/Z(F)/C,
uniformly with respect to w (the case w = 0 is admitted!).
[The crucial point is that S and ‘H are coercive; the rest

of the proof is similar to that employed for the
(A, V)-formulation.]

Existence and unigueness follow by the Lax—Milgram
lemma.

Having determined A~ and r (up to an additive
constant), then ¢y := D(yr) — ;-S(curll Ac - nc).

Numerical approximation is performed with nodal finite
elements in - and on I' [boundary elements on I'].

|
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A FEM—-BEM approach (cont’d)

- N

#® Convergence is ensured provided that (¢ Is a convex
polyhedron. If this is not true, one can modify the
approach, using the vector potential A on a convex set
()4 larger than ¢, keeping Ve In Q¢ and looking for ¢,
onl'y:=00y4.

o |
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Other FEM-BEM couplings

-

Bossavit and Vérite(1982, 1983) (for the magnetic field,
and using the Steklov—Poincaré operator) [numerical
code TRIFOU].

Mayergoyz, Chari and Konrad (1983) (for the electric
field, and using special basis functions near I).

Hiptmair (2002) (unknowns: E- In Q-, H x non I).

Meddahi and Selgas (2003) (unknowns: Hq In Q,
puH-nonT).

Bermudez, GOmez, Mufiz and Salgado (2007) (for
axisymmetric problems associated to the modeling of
Induction furnaces).

|
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Weak formulations for H and E

-

Other coupled formulations stem from a deeper analysis of
the weak formulations for the magnetic and electric fields.

-

First of all, under the necessary conditions
divJe; =0inQy, Jey-n=00n900Q, Jo s L Hy,

It can be shown that there exists a field H, € H (curl; {2)
satisfying

culHer =Je 1 IN QY

BCH(H@]) =0 on o

[the boundary conditions for J. ; and H. ; have to be
dropped if considering the electric boundary condition].

o |
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Weak H-formulation (cont’d)

~ Setting o

Vi={ve H(curl;Q)| curlvy =01In Q;,vy x n =0 on 02}

[the boundary condition has to be dropped if considering
the electric boundary condition], multiplying the Faraday

equation by v, with v € V, integrating in €2 and integrating
by parts one finds

/ EC-curIW+/ E[-curlv_]+/ an-V+/ wpH-v =0,
Qc Qp o012 Q

thus

/ E(;-curlﬁ—l—/iwuH-V:O,
Qc Q)

Las curlvy =0 1In ;. J
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Weak H-formulation (cont’d)

Using the Ampere equation in Q- for expressing E., we T
end up with the following problem

Find (H—H.) e V :

ch o LcurlHe - curl v + fQ wpH - v

79
— ch o 1J.c-culvg (79)

foreachv € V .

This formulation is well-posed via the Lax—Milgram lemma,
as the sesquilinear form

a(u,v) ::/ o Lcurluc - curl Vg + / iwpl -V
Qc Q

Lis clearly continuous and coercive in V. J
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Weak E-formulation

-

For deriving the weak E-formulation one starts from the
Ampere equation: multiplying by z, integrating in Q2 and
Integrating by parts one easily sees that

-

JoH-cunz+ [jonxH-Z— [, 0Ec-72¢c = [yJc-Z

for all z € H(curl; Q).
The boundary term disappears if H satisfies the magnetic

boundary condition, or if z satisfies the electric boundary
condition.

Set

7 :=A{ze€ H(curl;Q) | div(eyzr) = 0in Qy,
BCE(Z[) = 0, EI[Z]J_H]}.

o |
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Weak E-formulation (cont’'d)

~ Expressing H through the Faraday equation, the weak o
E-formulation finally reads

Find E € 7 :

fop teunE - curlz + iw ch ocE- - Z¢o

= —W fQ Je-Z (80)

foreach z € /.

Though less straightforward, it can be proved that the
sesquilinear form

ac(w,z) = [op teulw-culz +iw [, owc-Zg

IS continuous and coercive in Z, and well-posedness of the
weak E-formulation follows from Lax—Milgram lemma.
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Numerical approximation

-

Both problems (79) and (80) contain a differential constraint
the former on the curl, the latter on the divergence.

-

# Numerical approximation needs some care!

Possible ways of attack:
# saddle-point formulations [Lagrange multipliers]
# a scalar potential for H;y — H, ;

# a vector potential for e;E;.

o |
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Numerical approximation (cont’d)

o N

The first choice has been considered by Alonso Rodriguez,
Hiptmair and V. (2004a) (for the magnetic field) and by
Alonso Rodriguez and V. (2004) (for the electric field);
hybrid (coupled) formulations in terms of (Hq, Ef) or

(Ec, Hy) have been also proposed and analyzed (Alonso
Rodriguez, Hiptmair and V. (2004b, 2005)).

The second possibility, also leading to coupled
formulations, will be described here below.

To our knowledge, the third choice has not been completely
exploited. [However, in a different though related situation
we have before presented a similar procedure: the
(classical) approach based on a vector potential for the
divergence free vector field pH.]

o |
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Scalar potential formulation

fFor the sake of definiteness let us consider the electric T
boundary condition.

The starting point is to consider H, € H (curl; 2) satisfying
Cur|H€7[:J67[ In ;.

Then the main step is to use the Helmholtz orthogonal
decomposition

TLQI

H; —H ;= grad 7 + > 10} oPhr (81)

a=1

where % € H'(Q7)/C and n; . € C (the two terms of the
decomposition are orthogonal, with respect to the scalar

Lproduct (ur, VD) uror = Jq, #rur - vi). J
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Orthogonal decompositions

-

There are infinitely many of these decomposition results...

-

Let us recall the two that are interesting for the magnetic
field:

nQI
vi=pyoul QF +grad X+ > 07 0
a=1
and
PoQ nr
V] = Hz_l curl Qr +grad x7 + Z arigrad z; 1 + Z 01 mPm. T -
[=1 m=1

o |
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Orthogonal decompositions (cont’'d)

~ Let us explain the first decomposition. o
The vector function Q7 Is the solution to

( curl(p,l_1 curl Q7) = curlvy In Qg

diVQ}E:O In )

Q?XIIIZO onI'U o
. (A

\ QIJ—Hg,)

€0

[Hg’g denotes HgA) for e; = ¢, a positive constant].
The scalar function 7 is the solution to the elliptic
Neumann boundary value problem

div(pey grad x7) = div(peyvy) 1IN €Yy
progradx7-ny = prvy-ny  onI'Uo. J

o
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Orthogonal decompositions (cont’'d)

-

Finally the vector 07  Is the solution of the linear system

-

TLQI

> A5bia = / BV Pl
a=1 Qr

where
A* = fQI Hlpa] ng 7
and the harmonic vector fields p” , are the basis functions

of the space HE,D )

o |

Numerical analysis of problems in electromagnetism — p.160/195



Orthogonal decompositions (cont’'d)

L

The vector function Q; is the solution to

et us explain the second decomposition.

( curl(u[_1 curl Qr) = curlvy In €
divQ; =20 In 7
; Q; xn;=0 onTI
Q; n=0 on of)
(u,fl curlQ7) xn=vy; xn on o2
\ QILH%B;)

0

[H@) denotes HgB ) for e ;1 = €0, @ positive constant].

o |
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Orthogonal decompositions (cont’'d)

-

The scalar function y; is the solution to the elliptic mixed
boundary value problem

div(pergrad x7) = div(prvy) 1IN Qg
prograd xy-ny = prvy-ny  onl
xr =20 on of) .

Finally the vector (az;, br.,) IS the solution of the linear

system
A e _ fQI prvr - grad zg
br.m Jo, B1VI - Py |

o |
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Orthogonal decompositions (cont’'d)

- N

where A = DT B with
B C

Dy = fQI py grad 21T grad Zs,I
Bay, = sz K1Pp 1 - 9rad 2 1
Omn = fQI HiPn, T Pm,I

and the harmonic vector fields grad z; ; and p,, ; are the

basis functions of the space HETC).

o |
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Scalar potential formulation (cont’d)

fComing back to the scalar potential formulation, in (79) T
each test function v € V can be thus written as

nQI

vy = grad x7 + Z 0T aPo.1 - (82)

a=1

Inserting (81) and (82) In (79) and using orthogonality one
easlily finds, for the unknowns Zq := He — He ¢, Y7, 07,

ch o teurl Zeo - curl vig + ch iwiczc Vo
+ Jq, iwprgrad ¥y - grad x7 + iw[A*n7, 07]
=—Jq, O “leurlHe ¢ - curl v — Ja, iwpncHe o - v (83)
= Jo, twnHe - (grad x5 + 3,2 07 0% 1)

\_ +fQC 1Je,C’ curl v, J
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Scalar potential formulation (cont’d)

o N

where we recall that the matrix A* is defined by

ABy = / 1Pl P3I
Qr

and Is symmetric and positive definite (the fields p* ; form a

basis for the space HgD)).

Clearly, the solutions Z¢, 7 and n} have to satisfy on I" the
matching condition

’rLQI

Zc X ng + grad 7 X n[+27ﬁ,apj;jl xny=0.

a=1

LThe same holds for the test functions v¢, x7 and 67. J
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Scalar potential formulation (cont’d)

fThe left hand side In (83) is a continuous and coercive T
sesquilinear form, therefore the problem is well-posed.

The numerical approximation is standard:
# (vector) edge finite elements in Q¢

# (scalar) nodal finite elements in €;.

In addition, one looks for

# other ng, degrees of freedom (expressing the line
integrals of Hy — H, ; along the non-bounding cycles

contained in Q).
Convergence is ensured by Céa lemma.

[Bermudez, Rodriguez and Salgado (2002), Alonso
LRodrl’guez, Fernandes and V. (2003).] J
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Scalar potential formulation (cont’d)

-

Some remarks about implementation issues:

-

# The matching condition on the interface I' is easily
iImposed by eliminating the degrees of freedom of v 5,

associated to the edges and faces on I' in terms of
those of grad x7 ;, + Zgifl 0T aPa.1-

# The construction of the fields p? ; (or of a suitable

approximation of them) is not needed.

It is enough to construct ng, interpolants A7, each one
jumping by 1 on a "cutting" surface (and continuous
across all the others).

One looses (in part) orthogonality properties, but
everything works well.

o |
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-

#® For the electric boundary condition, the construction of

Scalar potential formulation (cont’d)

-

the vector H, ; can be done through the Biot—Savart
formula

H, ;(x) = curl (sz m Je.1(y) dy)
— fQI 47T:’yX__Xy|3 X Je,I(Y) dy

[at least for J. ;- n = 0 on 0Q UT; If this Is not satisfied,
one has to extend J. ; on a set larger than €2y, in such a
way that J. ; Is tangential on the boundary of this set].

|
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Scalar potential formulation (cont’d)

- N

# When considering the magnetic boundary condition, it
must be noted that the Biot—Savart formula gives a
vector field H, ; that does not satisfy the boundary

condition H, ; x n = 0 on 912.
Then, a couple of procedures can be adopted:

s construct H, ; (or a suitable approximation of it) by
means of a different approach, in such a way that
H.; xn=0o0n 0, and decompose H; — H. ; as a
sum of orthogonal terms, each one with vanishing
tangential value on 0;

» Uuse again the Biot—Savart formula, and decompose
H; — H,. ; as in the case of the electric boundary
condition.

o |
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Scalar potential formulation (cont’d)

fLet us illustrate this second approach: we again write T
nQI
Zr =H;—H,;=grady7 + Z N ,aPa,l »
a=1

but now we have to consider a non-homogeneous
boundary value problem (on 02 we have Z; x n # 0).

The problem reads as follows: one looks for Z¢, 17, n7 such
that

o |
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Scalar potential formulation (cont’'d)

- N

grad {7 X n + ZZZ 77?,& PZ,I xn=—H,; xn on J

ch o teurl Ze - curl Vg + ch iwﬁCZC VO
+ fQI iwpy grad 7 - grad X7 + iw[A*n7, 07] (84)
= — ch o Lcurl H.c -curlvg — fQ iwp,CHe(; Vo
— Jo, iwnHe p - (grad X7 + 3202 0] aPar)
+ ch U_lJe,C - curl v,

where the test functions have to satisfy

'n/QI

gradx?xn+29iapz,]xn200n 002,

- " -
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Scalar potential formulation (cont’d)

fand moreover the matching condition on I’ T
nQI
Zc X ne +gradyr X ny + Z NP X 01 =0
a=1

is still imposed (also for v, x7, 67).

At the finite dimensional level the constraint on 02 can be
Imposed by means of a Lagrange multiplier [Bermudez,
Rodriguez and Salgado (2002)].

o |
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Scalar potential formulation (cont’d)

- N

# For implementation it is necessary to determine the
"cutting” surfaces of the non-bounding cycles (their
knowledge Is necessary for constructing the basis
functions py, ; or the interpolants A>). This can be easy

IN many situations, but for a general topological domain
It can be computationally expensive.

Let us see a picture of the "cutting"” surface when ¢ is the
trefoil knot (thanks to J.J. van Wijk).

o |
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Scalar potential formulation (cont’d)

|
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Scalar potential formulation (cont’d)

-

Instead, if 2 Is a torus, we have the "cutting" surface A:
o2

-

Some algorithms have been proposed to the aim of
constructing "cutting"” surfaces: see Kotiuga (1987, 1988,
1989), Leonard and Rodger (1989) and the book by Gross

and Kotiuga (2004).
L ga ( ) J
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Scalar potential formulation (cont’d)

f # A coupled formulation in terms of Ec, ¢7 and nj Is also T
possible.

From the Ampere equation in Q¢~, multiplying by z¢,
Integrating in Q) and integrating by parts one finds

fQCHC-curI%—I—anC X HC"%_IQCUEC'%
— fQCJe,C'%-

Using the Faraday equation for expressing H- and
recalling that no x Ho = no x Hy on I, it holds

ch(“al curl E¢ - curlzg + iwoE¢ - z¢)
—FiLUfFH] XnC'%:_iwaCJe,C'%-
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Scalar potential formulation (cont’d)

-

On the other hand, multiplying the Faraday equation in 2,
by a test function v; such that curlvy = 0 In Q; and recalling
that E; x n; = —E¢& x no on I, by integration by parts one
has

iw/ ;J,IH[-V_[:—/ Cur|E['V_[:—/E0><n0-V_[.
Qr Qr r

Setting

-

Vi(G) :={vr € H(curl; Q) | curlvy = Gin Q},

we are thus looking for E¢c € H(curl;Q)¢) and Hy € Vi(J. 1)
such that

o |
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Scalar potential formulation (cont’d)

- N

fQC(ual curlE¢ - curlzg + iwoE¢ - Z0)
—iwfrﬁxnc-H[:—iwaC Jeo - Zo (85)
—iwaEC X nC-V_]+w2fQI purHr - vy =0,
where zc € H(curl; Q2¢) and vy € V(0).

Using In (85) the orthogonal decompositions of Hy — H, ;
and v; one finds

IC((ECJ#??T'?) (ZC XI?HI))
:—iwa Jec - Zc+iw [ Her-Zo X no (86)

—w? fo, mHer - (grad X7 + 32,2 07 0% 1)

o |
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Scalar potential formulation (cont’d)

- where the sesquilinear form (-, ), that can be proved to be |
continuous and coercive, is given by

/C((Ec,w?m?) (zc, X7, 67))
= fQ LeurEc - curlzg + iwoEq - Zo)
—w fr grad 7 + >, N7 .aPe.1)  ZC X D¢
— W fr grad X[ + Zml 0% apa ;) -Ec xn¢
H-w? Jq, i orad iy - grad X
WQ[A*np 07] .
Note that the interaction between E~ and H; is driven in a

weak way by boundary integrals, and no strong matching
conditon on I" has to be imposed: non-matching meshes

Lcan be employed! J

Numerical analysis of problems in electromagnetism — p.179/195



Scalar potential formulation (cont’d)

-

f # Domain decomposition approaches can be devised. Let
us specify one of them for the formulation in terms of

Ec, v} and n7.
Given €94 on T, find the solutions to

( div(p; grad Vi) = —div(ipHer)  in€y

pygrad i - ny = —iw ™! div, efld (87)

_I«'JIHe,I ny on I’

L progrady;-n=—pu/H.r-n on 0f

* —1 1d * * *
(A™n7)p = iw™ [pep "Par— fQI prorad ¥y - pg (88)
* __
_fQI“IHe,I‘pg,] Vﬁ—l,...,nQI

o |
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Scalar potential formulation (cont’d)

|7 ( curl(ua1 curl E¢) + iwoEc = —iwd. ¢ in Q¢ T
\ (ual curlE¢) X ng = iwgrady7 X ny (89)
\ —I—MZHQI nlapalxn[+sze]><n] onI",

finally set
etV = (1 -0)edd+6Exxns onT (90)

and iterate until convergence (6 > 0 is an acceleration
parameter). At convergence one has ep” = E¢c x ng on T,

the right tangential value of the electric field on I".

This iteration-by-subdomain procedure has shown good
convergence properties (convergence rate independent of
Lthe mesh size [Alonso and V. (1997)]). J
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Pros and cons

f ® Pros. T

» few degrees of freedom;
» "positive definite" algebraic problem.

® Cons.
» need of computing in advance a vector potential of
the current density;

» some difficulties coming from the topology of the
computational domain, in particular of the conductor
[construction of the "cutting"” surfaces].

o |
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