A unified FEM–BEM approach for electro–magnetostatics and eddy-current problems

Alberto Valli

(with Ana Alonso Rodríguez)

Department of Mathematics

University of Trento

Time-harmonic eddy current problem

Maxwell equations + time-harmonic structure (for a given frequency ω) + low frequency lead to:

$$\begin{cases} \operatorname{curl} \mathbf{H}_C - \boldsymbol{\sigma} \mathbf{E}_C = \mathbf{J}_e & \text{in } \Omega_C \\ \operatorname{curl} \mathbf{H}_I = \mathbf{0} & \operatorname{in} \mathbb{R}^3 \setminus \overline{\Omega_C} \\ \operatorname{curl} \mathbf{E}_C + i \omega \boldsymbol{\mu}_C \mathbf{H}_C = \mathbf{0} & \operatorname{in} \Omega_C \\ \operatorname{div}(\boldsymbol{\mu} \mathbf{H}) = 0 & \operatorname{in} \mathbb{R}^3 \\ \mathbf{H}_C \times \mathbf{n} - \mathbf{H}_I \times \mathbf{n} = \mathbf{0} & \operatorname{on} \partial \Omega_C \\ \mathbf{H}_I(\mathbf{x}) = O(|\mathbf{x}|^{-1}) & \operatorname{as} |\mathbf{x}| \to \infty \,. \end{cases}$$

Time-harmonic eddy current problem

Maxwell equations + time-harmonic structure (for a given frequency ω) + low frequency lead to:

 $\begin{cases} \operatorname{\mathbf{curl}} \mathbf{H}_C - \boldsymbol{\sigma} \mathbf{E}_C = \mathbf{J}_e & \text{in } \Omega_C \\ \operatorname{\mathbf{curl}} \mathbf{H}_I = \mathbf{0} & \text{in } \mathbb{R}^3 \setminus \overline{\Omega_C} \\ \operatorname{\mathbf{curl}} \mathbf{E}_C + i \omega \boldsymbol{\mu}_C \mathbf{H}_C = \mathbf{0} & \text{in } \Omega_C \\ \operatorname{div}(\boldsymbol{\mu} \mathbf{H}) = 0 & \text{in } \mathbb{R}^3 \\ \mathbf{H}_C \times \mathbf{n} - \mathbf{H}_I \times \mathbf{n} = \mathbf{0} & \text{on } \partial \Omega_C \\ \mathbf{H}_I(\mathbf{x}) = O(|\mathbf{x}|^{-1}) & \text{as } |\mathbf{x}| \to \infty \,. \end{cases}$

[Here: H magnetic field; E electric field; σ conductivity; μ magnetic permeability; J_e applied density current (in Ω_C); Ω_C conductor, a simply-connected bounded open set; n unit outward normal vector on $\partial\Omega_C$.]

(1)

Electro-magnetostatics problem

The electro-magnetostatics problem is obtained by setting $\omega = 0$ in (1). In that case equations are decoupled and one can find at first \mathbf{E}_C from

$$\begin{cases} \operatorname{\mathbf{curl}} \mathbf{E}_C = \mathbf{0} & \operatorname{in} \Omega_C \\ \operatorname{div}(\boldsymbol{\sigma} \mathbf{E}_C) = -\operatorname{div} \mathbf{J}_e & \operatorname{in} \Omega_C \\ \boldsymbol{\sigma} \mathbf{E}_C \cdot \mathbf{n} = -\mathbf{J}_e \cdot \mathbf{n} & \operatorname{on} \partial \Omega_C \end{cases}$$
(2)

(as div curl $\mathbf{H}_C = 0$ in Ω_C and curl $\mathbf{H}_C \cdot \mathbf{n} = \mathbf{0}$ on $\partial \Omega_C$).

Electro-magnetostatics problem

The electro-magnetostatics problem is obtained by setting $\omega = 0$ in (1). In that case equations are decoupled and one can find at first \mathbf{E}_C from

$$\begin{cases} \operatorname{\mathbf{curl}} \mathbf{E}_C = \mathbf{0} & \operatorname{in} \Omega_C \\ \operatorname{div}(\boldsymbol{\sigma} \mathbf{E}_C) = -\operatorname{div} \mathbf{J}_e & \operatorname{in} \Omega_C \\ \boldsymbol{\sigma} \mathbf{E}_C \cdot \mathbf{n} = -\mathbf{J}_e \cdot \mathbf{n} & \operatorname{on} \partial \Omega_C \end{cases}$$
(2)

(as div curl $\mathbf{H}_C = 0$ in Ω_C and curl $\mathbf{H}_C \cdot \mathbf{n} = \mathbf{0}$ on $\partial \Omega_C$). Then \mathbf{H} is determined by solving

$$\begin{cases} \operatorname{\mathbf{curl}} \mathbf{H} = \mathbf{J} & \text{in } \mathbb{R}^3 \\ \operatorname{div}(\boldsymbol{\mu} \mathbf{H}) = 0 & \text{in } \mathbb{R}^3 \\ \mathbf{H}_I(\mathbf{x}) = O(|\mathbf{x}|^{-1}) & \text{as } |\mathbf{x}| \to \infty \,, \end{cases}$$
(3)

-where $\mathbf{J}_C = \boldsymbol{\sigma} \mathbf{E}_C + \mathbf{J}_e$, $\mathbf{J}_I = \mathbf{0}$.

Electro-magnetostatics problem (cont'd)

An even simpler approach consists in looking for $E_C = \operatorname{grad} \varphi_C$, solution to

$$\begin{aligned} \operatorname{div}(\boldsymbol{\sigma} \operatorname{\mathbf{grad}} \varphi_C) &= -\operatorname{div} \operatorname{\mathbf{J}}_e & \operatorname{in} \Omega_C \\ \boldsymbol{\sigma} \operatorname{\mathbf{grad}} \varphi_C \cdot \operatorname{\mathbf{n}} &= -\operatorname{\mathbf{J}}_e \cdot \operatorname{\mathbf{n}} & \operatorname{on} \partial \Omega_C , \end{aligned}$$
(4)

followed by the solution of (3) [when μ is constant, via the Biot–Savart formula].

Electro-magnetostatics problem (cont'd)

An even simpler approach consists in looking for $E_C = \operatorname{grad} \varphi_C$, solution to

$$\begin{aligned} \operatorname{div}(\boldsymbol{\sigma} \operatorname{\mathbf{grad}} \varphi_C) &= -\operatorname{div} \operatorname{\mathbf{J}}_e & \operatorname{in} \Omega_C \\ \boldsymbol{\sigma} \operatorname{\mathbf{grad}} \varphi_C \cdot \operatorname{\mathbf{n}} &= -\operatorname{\mathbf{J}}_e \cdot \operatorname{\mathbf{n}} & \operatorname{on} \partial \Omega_C , \end{aligned}$$
(4)

followed by the solution of (3) [when μ is constant, via the Biot–Savart formula].

However, this simple and decoupled approach cannot be used for $\omega \neq 0$, as curl $\mathbf{E}_C = -i\omega \boldsymbol{\mu}_C \mathbf{H}_C \neq 0$.

Unified approach via vector and scalar potentials

Aim: devise a unified approach, suitable for both electro-magnetostatics ($\omega = 0$) and eddy-current problems ($\omega \neq 0$), employing a reduced number of degrees of freedom.

Unified approach via vector and scalar potentials

Aim: devise a unified approach, suitable for both electro-magnetostatics ($\omega = 0$) and eddy-current problems ($\omega \neq 0$), employing a reduced number of degrees of freedom.

[A first step towards the solution of inverse EEG–MEG problems in a general setting: any ω , Ω_C not spherical, $\sigma \neq \text{const.}, \mu_C \neq \text{const.}$ in Ω_C .]

Unified approach via vector and scalar potentials

Aim: devise a unified approach, suitable for both electro-magnetostatics ($\omega = 0$) and eddy-current problems ($\omega \neq 0$), employing a reduced number of degrees of freedom.

[A first step towards the solution of inverse EEG–MEG problems in a general setting: any ω , Ω_C not spherical, $\sigma \neq \text{const.}, \mu_C \neq \text{const.}$ in Ω_C .]

Tools: potentials. More precisely, a couple of magnetic vector and scalar potentials, and an electric scalar potential.

This means: new unknowns A_C , ψ_I and V_C such that

 $\operatorname{curl} \mathbf{A}_C = \boldsymbol{\mu}_C \mathbf{H}_C , \ \operatorname{grad} \psi_I = \mathbf{H}_I , \ -i\omega \mathbf{A}_C - \operatorname{grad} V_C = \mathbf{E}_C .$

This means: new unknowns A_C , ψ_I and V_C such that

 $\operatorname{curl} \mathbf{A}_C = \boldsymbol{\mu}_C \mathbf{H}_C$, $\operatorname{grad} \psi_I = \mathbf{H}_I$, $-i\omega \mathbf{A}_C - \operatorname{grad} V_C = \mathbf{E}_C$.

[In particular, for $\omega = 0$ one has $-\operatorname{grad} V_C = \mathbf{E}_C$.]

This means: new unknowns A_C , ψ_I and V_C such that

 $\operatorname{curl} \mathbf{A}_C = \boldsymbol{\mu}_C \mathbf{H}_C$, $\operatorname{grad} \psi_I = \mathbf{H}_I$, $-i\omega \mathbf{A}_C - \operatorname{grad} V_C = \mathbf{E}_C$.

[In particular, for $\omega = 0$ one has $-\operatorname{grad} V_C = \mathbf{E}_C$.]

Faraday equation in Ω_C and Ampère equation in $\mathbb{R}^3 \setminus \overline{\Omega_C}$ are then satisfied. Moreover, also $\operatorname{div}(\mu_C \mathbf{H}_C) = 0$ in Ω_C follows.

This means: new unknowns A_C , ψ_I and V_C such that

 $\operatorname{curl} \mathbf{A}_C = \boldsymbol{\mu}_C \mathbf{H}_C , \ \operatorname{grad} \psi_I = \mathbf{H}_I , \ -i\omega \mathbf{A}_C - \operatorname{grad} V_C = \mathbf{E}_C .$

[In particular, for $\omega = 0$ one has $-\operatorname{grad} V_C = \mathbf{E}_C$.]

Faraday equation in Ω_C and Ampère equation in $\mathbb{R}^3 \setminus \overline{\Omega_C}$ are then satisfied. Moreover, also $\operatorname{div}(\boldsymbol{\mu}_C \mathbf{H}_C) = 0$ in Ω_C follows.

On the other hand, the magnetic vector potential A_C is not uniquely determined: we need to impose some additional conditions.

This means: new unknowns A_C , ψ_I and V_C such that

 $\operatorname{curl} \mathbf{A}_C = \boldsymbol{\mu}_C \mathbf{H}_C , \ \operatorname{grad} \psi_I = \mathbf{H}_I , \ -i\omega \mathbf{A}_C - \operatorname{grad} V_C = \mathbf{E}_C .$

[In particular, for $\omega = 0$ one has $-\operatorname{grad} V_C = \mathbf{E}_C$.]

Faraday equation in Ω_C and Ampère equation in $\mathbb{R}^3 \setminus \overline{\Omega_C}$ are then satisfied. Moreover, also $\operatorname{div}(\boldsymbol{\mu}_C \mathbf{H}_C) = 0$ in Ω_C follows.

On the other hand, the magnetic vector potential A_C is not uniquely determined: we need to impose some additional conditions.

We choose the so-called Coulomb gauge

div
$$\mathbf{A}_C = 0$$
 in Ω_C , $\mathbf{A}_C \cdot \mathbf{n} = 0$ on $\partial \Omega_C$.

Strong formulation

We are thus left with:

```
\begin{cases} \operatorname{curl}(\boldsymbol{\mu}_{C}^{-1}\operatorname{curl}\mathbf{A}_{C}) \\ +i\omega\boldsymbol{\sigma}\mathbf{A}_{C}+\boldsymbol{\sigma}\operatorname{grad}V_{C}=\mathbf{J}_{e} & \operatorname{in}\Omega_{C} \\ \Delta\psi_{I}=0 & \operatorname{in}\mathbb{R}^{3}\setminus\overline{\Omega_{C}} \\ \operatorname{div}\mathbf{A}_{C}=0 & \operatorname{in}\Omega_{C} \\ \mathbf{A}_{C}\cdot\mathbf{n}=0 & \operatorname{on}\partial\Omega_{C} \\ \boldsymbol{\mu}_{C}^{-1}\operatorname{curl}\mathbf{A}_{C}\times\mathbf{n}-\operatorname{grad}\psi_{I}\times\mathbf{n}=\mathbf{0} & \operatorname{on}\partial\Omega_{C} \\ \operatorname{curl}\mathbf{A}_{C}\cdot\mathbf{n}-\mu_{0}\operatorname{grad}\psi_{I}\cdot\mathbf{n}=0 & \operatorname{on}\partial\Omega_{C} \\ |\psi_{I}(\mathbf{x})|+|\operatorname{grad}\psi_{I}(\mathbf{x})|=O(|\mathbf{x}|^{-1}) & \operatorname{as}|\mathbf{x}|\to\infty \\ \int_{\Omega_{C}}V_{C}=0 \end{cases}
```

(having assumed that $\mu = \mu_0 > 0$ in $\mathbb{R}^3 \setminus \Omega_C$).

(5)

Penalization

The divergence-free constraint can be inserted in the formulation, via penalization [$\mu_* > 0$ freely chosen]:

 $\operatorname{curl}(\boldsymbol{\mu}_{C}^{-1}\operatorname{curl}\mathbf{A}_{C}) - \boldsymbol{\mu}_{*}^{-1}\operatorname{\mathbf{grad}}\operatorname{div}\mathbf{A}_{C} + i\omega\boldsymbol{\sigma}\mathbf{A}_{C} + \boldsymbol{\sigma}\operatorname{\mathbf{grad}}V_{C} = \mathbf{J}_{e} \quad \text{in } \Omega_{C}$ $div(i\omega\sigma \mathbf{A}_{C} + \sigma \operatorname{\mathbf{grad}} V_{C}) = div \mathbf{J}_{e}$ $\Delta \psi_{I} = 0$ $(i\omega\sigma \mathbf{A}_{C} + \sigma \operatorname{\mathbf{grad}} V_{C}) \cdot \mathbf{n} = \mathbf{J}_{e} \cdot \mathbf{n}$ $\mathbf{A}_{C} \cdot \mathbf{n} = 0$ in Ω_C in $\mathbb{R}^3 \setminus \overline{\Omega_C}$ on $\partial \Omega_C$ on $\partial \Omega_C$ $\boldsymbol{\mu}_C^{-1}\operatorname{curl} \mathbf{A}_C imes \mathbf{n} - \operatorname{grad} \psi_I imes \mathbf{n} = \mathbf{0}$ on $\partial \Omega_C$ $\operatorname{curl} \mathbf{A}_C \cdot \mathbf{n} - \mu_0 \operatorname{grad} \psi_I \cdot \mathbf{n} = 0$ on $\partial \Omega_C$ $\begin{aligned} |\psi_I(\mathbf{x})| + |\operatorname{grad} \psi_I(\mathbf{x})| &= O(|\mathbf{x}|^{-1}) \\ \int_{\Omega_C} V_C &= 0 \end{aligned}$ as $|\mathbf{x}| \to \infty$

Coupling strategy

The idea of coupling a variational approach in one region with a potential approach in another region has been proposed by engineers [e.g., Zienkiewicz, Kelly and Bettess, 1977].

Coupling strategy

The idea of coupling a variational approach in one region with a potential approach in another region has been proposed by engineers [e.g., Zienkiewicz, Kelly and Bettess, 1977].

The mathematical analysis of this procedure has been performed for many problems, starting from the pioneering works of Brezzi, Johnson and Nédélec (1979, 1980) devoted to the Laplace operator.

Coupling strategy

The idea of coupling a variational approach in one region with a potential approach in another region has been proposed by engineers [e.g., Zienkiewicz, Kelly and Bettess, 1977].

The mathematical analysis of this procedure has been performed for many problems, starting from the pioneering works of Brezzi, Johnson and Nédélec (1979, 1980) devoted to the Laplace operator.

An important improvement is due to the work of Costabel (1987), that shows how to arrive to a symmetric (or positive) problem.

Among others, extensions to nonlinear elasticity [Costabel and Stephan (1990)], nonlinear elliptic problems [Gatica and Hsiao (1989, 1992), Gatica and Wendland (1996, 1997), Carstensen and Wriggers (1997)], variational inequalities [Carstensen and Gwinner (1997)], transonic flows [Berger, Warnecke and Wendland (1994, 1997)], and Maxwell equations [Ammari and Nédélec (1998, 1999)] have been also considered.

Among others, extensions to nonlinear elasticity [Costabel and Stephan (1990)], nonlinear elliptic problems [Gatica and Hsiao (1989, 1992), Gatica and Wendland (1996, 1997), Carstensen and Wriggers (1997)], variational inequalities [Carstensen and Gwinner (1997)], transonic flows [Berger, Warnecke and Wendland (1994, 1997)], and Maxwell equations [Ammari and Nédélec (1998, 1999)] have been also considered.

For the eddy-current problem, the first FEM–BEM couplings have been proposed by Bossavit and Vérité (1982) [for the magnetic field, and using the Steklov–Poincaré operator] and Mayergoyz, Chari and Konrad (1983) [for the electric field, and using special basis functions near $\partial \Omega_C$].

Symmetric formulations à la Costabel are due to Hiptmair (2002) [unknowns: E_C in Ω_C , $H \times n$ on $\partial \Omega_C$] and Meddahi and Selgas (2003) [unknowns: H_C in Ω_C , $\mu H \cdot n$ on $\partial \Omega_C$].

Symmetric formulations à la Costabel are due to Hiptmair (2002) [unknowns: E_C in Ω_C , $H \times n$ on $\partial \Omega_C$] and Meddahi and Selgas (2003) [unknowns: H_C in Ω_C , $\mu H \cdot n$ on $\partial \Omega_C$].

For magnetostatics, an approch in terms of magnetic vector potentials has been proposed by Kuhn, Langer and Schöberl (2000), Kuhn and Steinbach (2002).

Symmetric formulations à la Costabel are due to Hiptmair (2002) [unknowns: E_C in Ω_C , $H \times n$ on $\partial \Omega_C$] and Meddahi and Selgas (2003) [unknowns: H_C in Ω_C , $\mu H \cdot n$ on $\partial \Omega_C$].

For magnetostatics, an approch in terms of magnetic vector potentials has been proposed by Kuhn, Langer and Schöberl (2000), Kuhn and Steinbach (2002).

With respect to the choice of potentials, our approach is close to this last one.

Symmetric formulations à la Costabel are due to Hiptmair (2002) [unknowns: E_C in Ω_C , $H \times n$ on $\partial \Omega_C$] and Meddahi and Selgas (2003) [unknowns: H_C in Ω_C , $\mu H \cdot n$ on $\partial \Omega_C$].

For magnetostatics, an approch in terms of magnetic vector potentials has been proposed by Kuhn, Langer and Schöberl (2000), Kuhn and Steinbach (2002).

With respect to the choice of potentials, our approach is close to this last one.

[Other related results for vector magnetic potentials (but no coupling FEM–BEM): Bíró and V. (2005), Acevedo and Rodríguez (2006).]

Single layer and double layer potentials

To reduce the number of unknowns, we want to transform the problem for ψ_I to a problem on the interface $\partial \Omega_C$. Let us introduce on $\partial \Omega_C$ the single layer and double layer potentials

$$\begin{split} \mathcal{S}_{\mathcal{L}}(\lambda)(\mathbf{x}) &:= \int_{\partial \Omega_C} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \,\lambda(\mathbf{y}) dS_y \\ \mathcal{D}_{\mathcal{L}}(\eta)(\mathbf{x}) &:= \int_{\partial \Omega_C} \frac{(\mathbf{x} - \mathbf{y}) \cdot \mathbf{n}(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|^3} \,\eta(\mathbf{y}) dS_y \;, \end{split}$$

and the hypersingular integral operator

$$\mathcal{H}(\eta)(\mathbf{x}) := -\operatorname{\mathbf{grad}}\left(\int_{\partial\Omega_C} \frac{(\mathbf{x} - \mathbf{y}) \cdot \mathbf{n}(\mathbf{y})}{4\pi |\mathbf{x} - \mathbf{y}|^3} \eta(\mathbf{y}) dS_y\right) \cdot \mathbf{n}(\mathbf{x}) \ .$$

Integral equations

Due to the matching condition

$$\operatorname{curl} \mathbf{A}_C \cdot \mathbf{n} - \mu_0 \operatorname{grad} \psi_I \cdot \mathbf{n} = 0 \text{ on } \partial \Omega_C ,$$

from potential theory it is well-known that the trace $\psi := \psi_{I|\partial\Omega_C}$ satisfies

$$\frac{1}{2}\psi - \mathcal{D}_{\mathcal{L}}(\psi) + \frac{1}{\mu_0}\mathcal{S}_{\mathcal{L}}(\operatorname{curl} \mathbf{A}_C \cdot \mathbf{n}) = 0 \text{ on } \partial\Omega_C$$

$$\frac{1}{2}\operatorname{\mathbf{curl}}\mathbf{A}_C\cdot\mathbf{n} + \mathcal{D}_{\mathcal{L}}'(\operatorname{\mathbf{curl}}\mathbf{A}_C\cdot\mathbf{n}) + \mu_0\mathcal{H}(\psi) = 0 \text{ on } \partial\Omega_C .$$

[These equations are the basis of the symmetric approach à la Costabel.]

Weak formulation

Coupled problem: look for $(\mathbf{A}_C, \psi, V_C)$ such that

$$\begin{aligned} \int_{\Omega_C} (\boldsymbol{\mu}_C^{-1} \operatorname{\mathbf{curl}} \mathbf{A}_C \cdot \operatorname{\mathbf{curl}} \overline{\mathbf{w}_C} + \boldsymbol{\mu}_*^{-1} \operatorname{div} \mathbf{A}_C \operatorname{div} \overline{\mathbf{w}_C} \\ &+ i\omega \boldsymbol{\sigma} \mathbf{A}_C \cdot \overline{\mathbf{w}_C} + \boldsymbol{\sigma} \operatorname{\mathbf{grad}} V_C \cdot \overline{\mathbf{w}_C}) \\ &+ \int_{\partial\Omega_C} [-\boldsymbol{\psi} + \frac{1}{2} \boldsymbol{\psi} - \mathcal{D}_{\mathcal{L}}(\boldsymbol{\psi}) + \frac{1}{\mu_0} \mathcal{S}_{\mathcal{L}}(\operatorname{\mathbf{curl}} \mathbf{A}_C \cdot \mathbf{n})] \operatorname{\mathbf{curl}} \overline{\mathbf{w}_C} \cdot \mathbf{n} \\ &= \int_{\Omega_C} \mathbf{J}_e \cdot \overline{\mathbf{w}_C} \end{aligned}$$

$$\int_{\partial\Omega_C} \left[\frac{1}{2}\operatorname{\mathbf{curl}} \mathbf{A}_C \cdot \mathbf{n} + \mathcal{D}_{\mathcal{L}}'(\operatorname{\mathbf{curl}} \mathbf{A}_C \cdot \mathbf{n}) + \mu_0 \mathcal{H}(\psi)\right] \overline{\eta} = 0$$

$$\int_{\Omega_C} (i\omega \boldsymbol{\sigma} \mathbf{A}_C \cdot \operatorname{\mathbf{grad}} \overline{Q_C} + \boldsymbol{\sigma} \operatorname{\mathbf{grad}} V_C \cdot \operatorname{\mathbf{grad}} \overline{Q_C}) \\ = \int_{\Omega_C} \mathbf{J}_e \cdot \operatorname{\mathbf{grad}} \overline{Q_C}$$

for suitable test functions $(\mathbf{w}_C, \eta, Q_C)$.

Deriving the first equation one has used the matching condition

$$\mathbf{n} imes oldsymbol{\mu}_C^{-1} \operatorname{\mathbf{curl}} \mathbf{A}_C - \mathbf{n} imes \operatorname{\mathbf{grad}} \psi_I = \mathbf{0}$$
 on $\partial \Omega_C$

and the relation

$$\int_{\partial \Omega_C} \mathbf{n} \times \operatorname{\mathbf{grad}} \psi_I \cdot \overline{\mathbf{w}_C} = \int_{\partial \Omega_C} -\psi \operatorname{\mathbf{curl}} \overline{\mathbf{w}_C} \cdot \mathbf{n} \; .$$

Deriving the first equation one has used the matching condition

$$\mathbf{n} imes oldsymbol{\mu}_C^{-1} \operatorname{\mathbf{curl}} \mathbf{A}_C - \mathbf{n} imes \operatorname{\mathbf{grad}} \psi_I = \mathbf{0}$$
 on $\partial \Omega_C$

and the relation

$$\int_{\partial \Omega_C} \mathbf{n} \times \operatorname{\mathbf{grad}} \psi_I \cdot \overline{\mathbf{w}_C} = \int_{\partial \Omega_C} -\psi \operatorname{\mathbf{curl}} \overline{\mathbf{w}_C} \cdot \mathbf{n} \; .$$

Moreover, since $\mathcal{D}_{\mathcal{L}}(1) = -\frac{1}{2}$ and $\mathcal{H}(1) = 0$, we can rewrite the preceding problem replacing ψ with $q := \psi - \psi_{\sharp}$, where $\psi_{\sharp} := [\text{meas}(\partial \Omega_C)]^{-1} \int_{\partial \Omega_C} \psi$.

Variational space

Therefore, we are looking for the solution (\mathbf{A}_C, q, V_C) of the coupled problem in the space

$$W \times H^{1/2}_{\sharp}(\partial \Omega_C) \times H^1_{\sharp}(\Omega_C) ,$$

where

 $W := \{ \mathbf{w}_C \in H(\mathbf{curl}; \Omega_C) \mid \operatorname{div} \mathbf{w}_C \in L^2(\Omega_C) , \ \mathbf{w}_C \cdot \mathbf{n} = 0 \text{ on } \partial \Omega_C \}$

$$H^{1/2}_{\sharp}(\partial\Omega_C) := \left\{ \eta \in H^{1/2}(\partial\Omega_C) \mid \int_{\partial\Omega_C} \eta = 0 \right\}$$

$$H^1_{\sharp}(\Omega_C) := \left\{ Q_C \in H^1(\Omega_C) \mid \int_{\Omega_C} Q_C = 0 \right\} \,,$$

choosing the test functions in the same space.

Existence and uniqueness

Recalling that the operators $\mathcal{S}_{\mathcal{L}}$ and \mathcal{H} satisfy

$$\int_{\partial \Omega_C} \mathcal{S}_{\mathcal{L}}(\lambda) \,\overline{\lambda} \ge c_1 ||\lambda||_{-1/2}^2$$

$$\int_{\partial\Omega_C} \mathcal{H}(\eta) \,\overline{\eta} \ge c_2 ||\eta||_{1/2}^2$$

for each $\lambda \in H^{-1/2}(\partial \Omega_C)$ and $\eta \in H^{1/2}_{\sharp}(\partial \Omega_C)$, it can be shown that the sesquilinear form associated to this weak formulation is continuous and coercive [for $\omega \neq 0$, one has to multiply the third equation for i/ω ; for $\omega = 0$, one has to multiply the third equation for β , a parameter large enough].

Existence and uniqueness

Recalling that the operators $\mathcal{S}_{\mathcal{L}}$ and \mathcal{H} satisfy

$$\int_{\partial \Omega_C} \mathcal{S}_{\mathcal{L}}(\lambda) \,\overline{\lambda} \ge c_1 ||\lambda||_{-1/2}^2$$

$$\int_{\partial\Omega_C} \mathcal{H}(\eta) \,\overline{\eta} \ge c_2 ||\eta||_{1/2}^2$$

for each $\lambda \in H^{-1/2}(\partial \Omega_C)$ and $\eta \in H^{1/2}_{\sharp}(\partial \Omega_C)$, it can be shown that the sesquilinear form associated to this weak formulation is continuous and coercive [for $\omega \neq 0$, one has to multiply the third equation for i/ω ; for $\omega = 0$, one has to multiply the third equation for β , a parameter large enough].

Therefore, there exists a unique solution (\mathbf{A}_C, q, V_C) to the coupled problem.

Existence and uniqueness (cont'd)

Then the scalar magnetic potential ψ_I in Ω_I is given by

$$\psi_I = \mathcal{D}_{\mathcal{L}}(q) - \frac{1}{\mu_0} \mathcal{S}_{\mathcal{L}}(\operatorname{curl} \mathbf{A}_C \cdot \mathbf{n}) .$$

Existence and uniqueness (cont'd)

Then the scalar magnetic potential ψ_I in Ω_I is given by

$$\psi_I = \mathcal{D}_{\mathcal{L}}(q) - \frac{1}{\mu_0} \mathcal{S}_{\mathcal{L}}(\operatorname{curl} \mathbf{A}_C \cdot \mathbf{n}) .$$

[Clearly, q is not the correct value of the trace $\psi = \psi_{I|\partial\Omega_C}$, as $q = \psi - \psi_{\sharp}$. Though not necessary to reconstruct ψ_I , the constant ψ_{\sharp} can be determined as

$$\psi_{\sharp} := \frac{1}{\operatorname{\mathsf{meas}}\left(\partial\Omega_{C}\right)} \int_{\partial\Omega_{C}} \left[-\frac{1}{2}q + \mathcal{D}_{\mathcal{L}}(q) - \frac{1}{\mu_{0}} \mathcal{S}_{\mathcal{L}}(\operatorname{\mathbf{curl}} \mathbf{A}_{C} \cdot \mathbf{n}) \right] \, . \right]$$

Behaviour with respect to ω

Thanks to the positiveness of the sesquilinear form associated to the coupled problem, an interesting feature of the proposed approach comes into play: it is suitable for the static limit $\omega \to 0$ (this was known to engineers and practitioners; however, to our knowledge, a mathematical proof was still missing).

Behaviour with respect to ω

Thanks to the positiveness of the sesquilinear form associated to the coupled problem, an interesting feature of the proposed approach comes into play: it is suitable for the static limit $\omega \rightarrow 0$ (this was known to engineers and practitioners; however, to our knowledge, a mathematical proof was still missing).

More precisely, we have

$$||\mathbf{A}_{C}^{\omega} - \mathbf{A}_{C}^{0}||_{W} + ||q^{\omega} - q^{0}||_{1/2,\partial\Omega_{C}} + ||V_{C}^{\omega} - V_{C}^{0}||_{1,\Omega_{C}} = O(|\omega|)$$

[in agreement with the asymptotic result obtained for E_C and H_C by Ammari, Buffa and Nédélec, 2000].

Behaviour with respect to ω

Thanks to the positiveness of the sesquilinear form associated to the coupled problem, an interesting feature of the proposed approach comes into play: it is suitable for the static limit $\omega \rightarrow 0$ (this was known to engineers and practitioners; however, to our knowledge, a mathematical proof was still missing).

More precisely, we have

 $||\mathbf{A}_{C}^{\omega} - \mathbf{A}_{C}^{0}||_{W} + ||q^{\omega} - q^{0}||_{1/2,\partial\Omega_{C}} + ||V_{C}^{\omega} - V_{C}^{0}||_{1,\Omega_{C}} = O(|\omega|)$

[in agreement with the asymptotic result obtained for E_C and H_C by Ammari, Buffa and Nédélec, 2000].

Therefore, the coupled approach yields a unified and ω -stable procedure for electro–magnetostatics and eddy-current problems.

Discrete approximation

Numerical approximation is now standard: assume that Ω_C is a (convex) polyhedral domain, and use nodal finite elements in Ω_C for all the components of \mathbf{A}_C and for V_C , and nodal boundary elements on $\partial \Omega_C$ for q.

Discrete approximation

Numerical approximation is now standard: assume that Ω_C is a (convex) polyhedral domain, and use nodal finite elements in Ω_C for all the components of \mathbf{A}_C and for V_C , and nodal boundary elements on $\partial \Omega_C$ for q.

Error estimates follow directly from Céa lemma:

$$\begin{aligned} ||\mathbf{A}_{C,h} - \mathbf{A}_{C}||_{W} + ||q_{h} - q||_{1/2,\partial\Omega_{C}} + ||V_{C,h} - V_{C}||_{1,\Omega_{C}} \\ &\leq C(||\mathbf{w}_{C,h} - \mathbf{A}_{C}||_{W} + ||\eta_{h} - q||_{1/2,\partial\Omega_{C}} + ||Q_{C,h} - V_{C}||_{1,\Omega_{C}}) \end{aligned}$$

for each $(\mathbf{w}_{C,h}, \eta_h, Q_{C,h}) \in W_h \times B_h \times V_h$, where $W_h \subset W$, $B_h \subset H^{1/2}_{\sharp}(\partial \Omega_C)$ and $V_h \subset H^1_{\sharp}(\Omega_C)$ are the discrete subspaces.

Discrete approximation (cont'd)

We also note that the static limit $\omega \rightarrow 0$ holds in the discrete case as well, uniformly with respect to *h*:

$$\begin{aligned} ||\mathbf{A}_{C,h}^{\omega} - \mathbf{A}_{C,h}^{0}||_{W} + ||q_{h}^{\omega} - q_{h}^{0}||_{1/2,\partial\Omega_{C}} \\ + ||V_{C,h}^{\omega} - V_{C,h}^{0}||_{1,\Omega_{C}} \leq C |\omega| \quad \text{for all } h > 0 . \end{aligned}$$

Final remarks

The assumption of convexity for Ω_C is motivated by the fact that in general $(H^1(\Omega_C))^3$ is a proper closed subspace of W[Costabel and Dauge, 1997]; therefore nodal finite elements are not the right choice for approximation if the solution $\mathbf{A}_C \notin (H^1(\Omega_C))^3$, and this can happen in the polyhedral non-convex case.

Final remarks

The assumption of convexity for Ω_C is motivated by the fact that in general $(H^1(\Omega_C))^3$ is a proper closed subspace of W[Costabel and Dauge, 1997]; therefore nodal finite elements are not the right choice for approximation if the solution $\mathbf{A}_C \notin (H^1(\Omega_C))^3$, and this can happen in the polyhedral non-convex case.

Alternative (not yet fully analyzed) assumptions or procedures are:

Final remarks

The assumption of convexity for Ω_C is motivated by the fact that in general $(H^1(\Omega_C))^3$ is a proper closed subspace of W[Costabel and Dauge, 1997]; therefore nodal finite elements are not the right choice for approximation if the solution $\mathbf{A}_C \notin (H^1(\Omega_C))^3$, and this can happen in the polyhedral non-convex case.

Alternative (not yet fully analyzed) assumptions or procedures are:

Final remarks (cont'd)

• include the polyhedral domain Ω_C in a convex polyhedral domain Ω_C^* [clearly, in $\Omega_C^* \setminus \overline{\Omega_C}$ the conductivity σ is vanishing], and solve for ψ_I only in $\mathbb{R} \setminus \overline{\Omega_C^*}$ (assuming also that μ is smooth in Ω_C^*) [see Acevedo and Rodríguez, 2006];

Final remarks (cont'd)

- include the polyhedral domain Ω_C in a convex polyhedral domain Ω_C^* [clearly, in $\Omega_C^* \setminus \overline{\Omega_C}$ the conductivity σ is vanishing], and solve for ψ_I only in $\mathbb{R} \setminus \overline{\Omega_C^*}$ (assuming also that μ is smooth in Ω_C^*) [see Acevedo and Rodríguez, 2006];
- correct the penalization term in (6) by adapting it to the geometry of the domain [as in Costabel and Dauge, 2002].

Final remarks (cont'd)

- include the polyhedral domain Ω_C in a convex polyhedral domain Ω_C^* [clearly, in $\Omega_C^* \setminus \overline{\Omega_C}$ the conductivity σ is vanishing], and solve for ψ_I only in $\mathbb{R} \setminus \overline{\Omega_C^*}$ (assuming also that μ is smooth in Ω_C^*) [see Acevedo and Rodríguez, 2006];
- correct the penalization term in (6) by adapting it to the geometry of the domain [as in Costabel and Dauge, 2002].
- impose the divergence-free constraint by means of a Lagrange multiplier, employing edge elements [as in Kuhn, Langer and Schöberl (2000), Kuhn and Steinbach (2002) for magnetostatics]; however, due to the presence of the additional unknown, this is more expensive from the computational point of view.