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Time-harmonic eddy current problem

Maxwell equations + time-harmonic structure (for a given
frequency ω) + low frequency lead to:
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curlHC − σEC = Je in ΩC

curlHI = 0 in R
3 \ ΩC

curlEC + iωµCHC = 0 in ΩC

div(µH) = 0 in R
3

HC × n − HI × n = 0 on ∂ΩC

HI(x) = O(|x|−1) as |x| → ∞ .

(1)
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curlHC − σEC = Je in ΩC

curlHI = 0 in R
3 \ ΩC

curlEC + iωµCHC = 0 in ΩC

div(µH) = 0 in R
3

HC × n − HI × n = 0 on ∂ΩC

HI(x) = O(|x|−1) as |x| → ∞ .

(1)

[Here: H magnetic field; E electric field; σ conductivity; µ

magnetic permeability; Je applied density current (in ΩC);
ΩC conductor, a simply-connected bounded open set; n

unit outward normal vector on ∂ΩC .]
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Electro–magnetostatics problem

The electro–magnetostatics problem is obtained by setting
ω = 0 in (1). In that case equations are decoupled and one
can find at first EC from











curlEC = 0 in ΩC

div(σEC) = − div Je in ΩC

σEC · n = −Je · n on ∂ΩC

(2)

(as div curlHC = 0 in ΩC and curlHC · n = 0 on ∂ΩC).
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Electro–magnetostatics problem

The electro–magnetostatics problem is obtained by setting
ω = 0 in (1). In that case equations are decoupled and one
can find at first EC from











curlEC = 0 in ΩC

div(σEC) = − div Je in ΩC

σEC · n = −Je · n on ∂ΩC

(2)

(as div curlHC = 0 in ΩC and curlHC · n = 0 on ∂ΩC).
Then H is determined by solving











curlH = J in R
3

div(µH) = 0 in R
3

HI(x) = O(|x|−1) as |x| → ∞ ,

(3)

where JC = σEC + Je, JI = 0.
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Electro–magnetostatics problem (cont’d)

An even simpler approach consists in looking for
EC = gradϕC , solution to

{

div(σgradϕC) = − div Je in ΩC

σgradϕC · n = −Je · n on ∂ΩC ,
(4)

followed by the solution of (3) [when µ is constant, via the
Biot–Savart formula].

A unified FEM–BEM approach for electro–magnetostatics and eddy-current problems – p.4/23



Electro–magnetostatics problem (cont’d)

An even simpler approach consists in looking for
EC = gradϕC , solution to

{

div(σgradϕC) = − div Je in ΩC

σgradϕC · n = −Je · n on ∂ΩC ,
(4)

followed by the solution of (3) [when µ is constant, via the
Biot–Savart formula].

However, this simple and decoupled approach cannot
be used for ω 6= 0, as curlEC = −iωµCHC 6= 0.
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Unified approach via vector and scalar potentials

Aim: devise a unified approach, suitable for both
electro–magnetostatics (ω = 0) and eddy-current
problems (ω 6= 0), employing a reduced number of
degrees of freedom.
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Unified approach via vector and scalar potentials

Aim: devise a unified approach, suitable for both
electro–magnetostatics (ω = 0) and eddy-current
problems (ω 6= 0), employing a reduced number of
degrees of freedom.

[A first step towards the solution of inverse EEG–MEG
problems in a general setting: any ω, ΩC not spherical,
σ 6= const., µC 6= const. in ΩC .]
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Unified approach via vector and scalar potentials

Aim: devise a unified approach, suitable for both
electro–magnetostatics (ω = 0) and eddy-current
problems (ω 6= 0), employing a reduced number of
degrees of freedom.

[A first step towards the solution of inverse EEG–MEG
problems in a general setting: any ω, ΩC not spherical,
σ 6= const., µC 6= const. in ΩC .]

Tools: potentials. More precisely, a couple of magnetic
vector and scalar potentials, and an electric scalar
potential.
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Potentials and the Coulomb gauge

This means: new unknowns AC , ψI and VC such that

curlAC = µCHC , gradψI = HI , −iωAC − gradVC = EC .
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Potentials and the Coulomb gauge

This means: new unknowns AC , ψI and VC such that

curlAC = µCHC , gradψI = HI , −iωAC − gradVC = EC .

[In particular, for ω = 0 one has −gradVC = EC .]

Faraday equation in ΩC and Ampère equation in R
3 \ΩC are

then satisfied. Moreover, also div(µCHC) = 0 in ΩC follows.

A unified FEM–BEM approach for electro–magnetostatics and eddy-current problems – p.6/23



Potentials and the Coulomb gauge

This means: new unknowns AC , ψI and VC such that

curlAC = µCHC , gradψI = HI , −iωAC − gradVC = EC .

[In particular, for ω = 0 one has −gradVC = EC .]

Faraday equation in ΩC and Ampère equation in R
3 \ΩC are

then satisfied. Moreover, also div(µCHC) = 0 in ΩC follows.

On the other hand, the magnetic vector potential AC is not
uniquely determined: we need to impose some additional
conditions.
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Potentials and the Coulomb gauge

This means: new unknowns AC , ψI and VC such that

curlAC = µCHC , gradψI = HI , −iωAC − gradVC = EC .

[In particular, for ω = 0 one has −gradVC = EC .]

Faraday equation in ΩC and Ampère equation in R
3 \ΩC are

then satisfied. Moreover, also div(µCHC) = 0 in ΩC follows.

On the other hand, the magnetic vector potential AC is not
uniquely determined: we need to impose some additional
conditions.

We choose the so-called Coulomb gauge

div AC = 0 in ΩC , AC · n = 0 on ∂ΩC .
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Strong formulation

We are thus left with:

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



curl(µ−1

C curlAC)

+iωσAC + σ gradVC = Je in ΩC

∆ψI = 0 in R
3 \ ΩC

div AC = 0 in ΩC

AC · n = 0 on ∂ΩC

µ
−1

C curlAC × n − gradψI × n = 0 on ∂ΩC

curlAC · n − µ0 gradψI · n = 0 on ∂ΩC

|ψI(x)| + |gradψI(x)| = O(|x|−1) as |x| → ∞
∫

ΩC
VC = 0

(5)

(having assumed that µ = µ0 > 0 in R
3 \ ΩC).
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Penalization

The divergence-free constraint can be inserted in the
formulation, via penalization [µ∗ > 0 freely chosen]:
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

curl(µ−1

C curlAC)−µ−1
∗ grad div AC

+iωσAC + σ gradVC = Je in ΩC

div(iωσAC + σ gradVC) = div Je in ΩC

∆ψI = 0 in R
3 \ ΩC

(iωσAC + σ gradVC) · n = Je · n on ∂ΩC

AC · n = 0 on ∂ΩC

µ
−1

C curlAC × n − gradψI × n = 0 on ∂ΩC

curlAC · n − µ0 gradψI · n = 0 on ∂ΩC

|ψI(x)| + |gradψI(x)| = O(|x|−1) as |x| → ∞
∫

ΩC
VC = 0 .

(6)
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Coupling strategy

The idea of coupling a variational approach in one region
with a potential approach in another region has been
proposed by engineers [e.g., Zienkiewicz, Kelly and
Bettess, 1977].
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Coupling strategy

The idea of coupling a variational approach in one region
with a potential approach in another region has been
proposed by engineers [e.g., Zienkiewicz, Kelly and
Bettess, 1977].

The mathematical analysis of this procedure has been
performed for many problems, starting from the pioneering
works of Brezzi, Johnson and Nédélec (1979, 1980)
devoted to the Laplace operator.
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Coupling strategy

The idea of coupling a variational approach in one region
with a potential approach in another region has been
proposed by engineers [e.g., Zienkiewicz, Kelly and
Bettess, 1977].

The mathematical analysis of this procedure has been
performed for many problems, starting from the pioneering
works of Brezzi, Johnson and Nédélec (1979, 1980)
devoted to the Laplace operator.

An important improvement is due to the work of Costabel
(1987), that shows how to arrive to a symmetric (or positive)
problem.
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Coupling strategy (cont’d)

Among others, extensions to nonlinear elasticity [Costabel
and Stephan (1990)], nonlinear elliptic problems [Gatica
and Hsiao (1989, 1992), Gatica and Wendland (1996,
1997), Carstensen and Wriggers (1997)], variational
inequalities [Carstensen and Gwinner (1997)], transonic
flows [Berger, Warnecke and Wendland (1994, 1997)], and
Maxwell equations [Ammari and Nédélec (1998, 1999)]
have been also considered.
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Coupling strategy (cont’d)

Among others, extensions to nonlinear elasticity [Costabel
and Stephan (1990)], nonlinear elliptic problems [Gatica
and Hsiao (1989, 1992), Gatica and Wendland (1996,
1997), Carstensen and Wriggers (1997)], variational
inequalities [Carstensen and Gwinner (1997)], transonic
flows [Berger, Warnecke and Wendland (1994, 1997)], and
Maxwell equations [Ammari and Nédélec (1998, 1999)]
have been also considered.

For the eddy-current problem, the first FEM–BEM couplings
have been proposed by Bossavit and Vérité (1982) [for the
magnetic field, and using the Steklov–Poincaré operator]
and Mayergoyz, Chari and Konrad (1983) [for the electric
field, and using special basis functions near ∂ΩC ].
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Coupling strategy (cont’d)

Symmetric formulations à la Costabel are due to Hiptmair
(2002) [unknowns: EC in ΩC , H× n on ∂ΩC ] and Meddahi
and Selgas (2003) [unknowns: HC in ΩC , µH · n on ∂ΩC ].
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Coupling strategy (cont’d)

Symmetric formulations à la Costabel are due to Hiptmair
(2002) [unknowns: EC in ΩC , H× n on ∂ΩC ] and Meddahi
and Selgas (2003) [unknowns: HC in ΩC , µH · n on ∂ΩC ].

For magnetostatics, an approch in terms of magnetic vector
potentials has been proposed by Kuhn, Langer and
Schöberl (2000), Kuhn and Steinbach (2002).
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Coupling strategy (cont’d)

Symmetric formulations à la Costabel are due to Hiptmair
(2002) [unknowns: EC in ΩC , H× n on ∂ΩC ] and Meddahi
and Selgas (2003) [unknowns: HC in ΩC , µH · n on ∂ΩC ].

For magnetostatics, an approch in terms of magnetic vector
potentials has been proposed by Kuhn, Langer and
Schöberl (2000), Kuhn and Steinbach (2002).

With respect to the choice of potentials, our approach is
close to this last one.
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Coupling strategy (cont’d)

Symmetric formulations à la Costabel are due to Hiptmair
(2002) [unknowns: EC in ΩC , H× n on ∂ΩC ] and Meddahi
and Selgas (2003) [unknowns: HC in ΩC , µH · n on ∂ΩC ].

For magnetostatics, an approch in terms of magnetic vector
potentials has been proposed by Kuhn, Langer and
Schöberl (2000), Kuhn and Steinbach (2002).

With respect to the choice of potentials, our approach is
close to this last one.

[Other related results for vector magnetic potentials (but no
coupling FEM–BEM): Bíró and V. (2005), Acevedo and
Rodríguez (2006).]
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Single layer and double layer potentials

To reduce the number of unknowns, we want to transform
the problem for ψI to a problem on the interface ∂ΩC .
Let us introduce on ∂ΩC the single layer and double layer
potentials

SL(λ)(x) :=

∫

∂ΩC

1

4π|x − y|
λ(y)dSy

DL(η)(x) :=

∫

∂ΩC

(x − y) · n(y)

4π|x − y|3
η(y)dSy ,

and the hypersingular integral operator

H(η)(x) := −grad

(
∫

∂ΩC

(x − y) · n(y)

4π|x − y|3
η(y)dSy

)

· n(x) .
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Integral equations

Due to the matching condition

curlAC · n − µ0 gradψI · n = 0 on ∂ΩC ,

from potential theory it is well-known that the trace
ψ := ψI|∂ΩC

satisfies

1

2
ψ −DL(ψ) +

1

µ0

SL(curlAC · n) = 0 on ∂ΩC

1

2
curlAC · n + DL

′(curlAC · n) + µ0H(ψ) = 0 on ∂ΩC .

[These equations are the basis of the symmetric approach à

la Costabel.]
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Weak formulation

Coupled problem: look for (AC , ψ, VC) such that

∫

ΩC
(µ−1

C curlAC · curlwC + µ−1
∗ div AC div wC

+iωσAC · wC + σ gradVC · wC)

+
∫

∂ΩC
[−ψ + 1

2
ψ −DL(ψ) + 1

µ0
SL(curlAC · n)] curlwC · n

=
∫

ΩC
Je · wC

∫

∂ΩC
[1
2
curlAC · n + DL

′(curlAC · n) + µ0H(ψ)]η = 0

∫

ΩC
(iωσAC · gradQC + σ gradVC · gradQC)

=
∫

ΩC
Je · gradQC

for suitable test functions (wC , η,QC).
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Weak formulation (cont’d)

Deriving the first equation one has used the matching
condition

n × µ
−1

C curlAC − n × gradψI = 0 on ∂ΩC

and the relation
∫

∂ΩC

n × gradψI · wC =

∫

∂ΩC

−ψ curlwC · n .
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Weak formulation (cont’d)

Deriving the first equation one has used the matching
condition

n × µ
−1

C curlAC − n × gradψI = 0 on ∂ΩC

and the relation
∫

∂ΩC

n × gradψI · wC =

∫

∂ΩC

−ψ curlwC · n .

Moreover, since DL(1) = −1

2
and H(1) = 0, we can rewrite

the preceding problem replacing ψ with q := ψ − ψ♯, where
ψ♯ := [meas (∂ΩC)]−1

∫

∂ΩC
ψ.
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Variational space

Therefore, we are looking for the solution (AC , q, VC) of the
coupled problem in the space

W ×H
1/2

♯ (∂ΩC) ×H1
♯ (ΩC) ,

where

W := {wC ∈ H(curl; ΩC) | div wC ∈ L2(ΩC) , wC ·n = 0 on ∂ΩC}

H
1/2

♯ (∂ΩC) :=
{

η ∈ H1/2(∂ΩC) |

∫

∂ΩC

η = 0
}

H1
♯ (ΩC) :=

{

QC ∈ H1(ΩC) |

∫

ΩC

QC = 0
}

,

choosing the test functions in the same space.
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Existence and uniqueness

Recalling that the operators SL and H satisfy
∫

∂ΩC

SL(λ)λ ≥ c1||λ||
2

−1/2

∫

∂ΩC

H(η) η ≥ c2||η||
2

1/2

for each λ ∈ H−1/2(∂ΩC) and η ∈ H
1/2

♯ (∂ΩC), it can be
shown that the sesquilinear form associated to this weak
formulation is continuous and coercive [for ω 6= 0, one has
to multiply the third equation for i/ω; for ω = 0, one has to
multiply the third equation for β, a parameter large enough].
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Existence and uniqueness

Recalling that the operators SL and H satisfy
∫

∂ΩC

SL(λ)λ ≥ c1||λ||
2

−1/2

∫

∂ΩC

H(η) η ≥ c2||η||
2

1/2

for each λ ∈ H−1/2(∂ΩC) and η ∈ H
1/2

♯ (∂ΩC), it can be
shown that the sesquilinear form associated to this weak
formulation is continuous and coercive [for ω 6= 0, one has
to multiply the third equation for i/ω; for ω = 0, one has to
multiply the third equation for β, a parameter large enough].

Therefore, there exists a unique solution (AC , q, VC) to the
coupled problem.
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Existence and uniqueness (cont’d)

Then the scalar magnetic potential ψI in ΩI is given by

ψI = DL(q) −
1

µ0

SL(curlAC · n) .
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Existence and uniqueness (cont’d)

Then the scalar magnetic potential ψI in ΩI is given by

ψI = DL(q) −
1

µ0

SL(curlAC · n) .

[Clearly, q is not the correct value of the trace ψ = ψI|∂ΩC
, as

q = ψ − ψ♯. Though not necessary to reconstruct ψI , the
constant ψ♯ can be determined as

ψ♯ :=
1

meas (∂ΩC)

∫

∂ΩC

[

−
1

2
q+DL(q)−

1

µ0

SL(curlAC ·n)
]

.]
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Behaviour with respect toω

Thanks to the positiveness of the sesquilinear form
associated to the coupled problem, an interesting feature of
the proposed approach comes into play: it is suitable for the
static limit ω → 0 (this was known to engineers and
practitioners; however, to our knowledge, a mathematical
proof was still missing).
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Behaviour with respect toω

Thanks to the positiveness of the sesquilinear form
associated to the coupled problem, an interesting feature of
the proposed approach comes into play: it is suitable for the
static limit ω → 0 (this was known to engineers and
practitioners; however, to our knowledge, a mathematical
proof was still missing).

More precisely, we have

||Aω
C − A0

C ||W + ||qω − q0||1/2,∂ΩC
+ ||V ω

C − V 0
C ||1,ΩC

= O(|ω|)

[in agreement with the asymptotic result obtained for EC

and HC by Ammari, Buffa and Nédélec, 2000].
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Behaviour with respect toω

Thanks to the positiveness of the sesquilinear form
associated to the coupled problem, an interesting feature of
the proposed approach comes into play: it is suitable for the
static limit ω → 0 (this was known to engineers and
practitioners; however, to our knowledge, a mathematical
proof was still missing).

More precisely, we have

||Aω
C − A0

C ||W + ||qω − q0||1/2,∂ΩC
+ ||V ω

C − V 0
C ||1,ΩC

= O(|ω|)

[in agreement with the asymptotic result obtained for EC

and HC by Ammari, Buffa and Nédélec, 2000].

Therefore, the coupled approach yields a unified and
ω-stable procedure for electro–magnetostatics and
eddy-current problems.
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Discrete approximation

Numerical approximation is now standard: assume that ΩC

is a (convex) polyhedral domain, and use nodal finite
elements in ΩC for all the components of AC and for VC ,
and nodal boundary elements on ∂ΩC for q.
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Discrete approximation

Numerical approximation is now standard: assume that ΩC

is a (convex) polyhedral domain, and use nodal finite
elements in ΩC for all the components of AC and for VC ,
and nodal boundary elements on ∂ΩC for q.

Error estimates follow directly from Céa lemma:

||AC,h − AC ||W + ||qh − q||1/2,∂ΩC
+ ||VC,h − VC ||1,ΩC

≤ C(||wC,h − AC ||W + ||ηh − q||1/2,∂ΩC
+ ||QC,h − VC ||1,ΩC

)

for each (wC,h, ηh, QC,h) ∈Wh × Bh × Vh, where Wh ⊂W ,

Bh ⊂ H
1/2

♯ (∂ΩC) and Vh ⊂ H1

♯ (ΩC) are the discrete
subspaces.
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Discrete approximation (cont’d)

We also note that the static limit ω → 0 holds in the discrete
case as well, uniformly with respect to h:

||Aω
C,h − A0

C,h||W + ||qωh − q0h||1/2,∂ΩC

+||V ω
C,h − V 0

C,h||1,ΩC
≤ C |ω| for all h > 0 .
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Final remarks

The assumption of convexity for ΩC is motivated by the fact
that in general (H1(ΩC))3 is a proper closed subspace of W
[Costabel and Dauge, 1997]; therefore nodal finite elements
are not the right choice for approximation if the solution
AC 6∈ (H1(ΩC))3, and this can happen in the polyhedral
non-convex case.
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Final remarks

The assumption of convexity for ΩC is motivated by the fact
that in general (H1(ΩC))3 is a proper closed subspace of W
[Costabel and Dauge, 1997]; therefore nodal finite elements
are not the right choice for approximation if the solution
AC 6∈ (H1(ΩC))3, and this can happen in the polyhedral
non-convex case.

Alternative (not yet fully analyzed) assumptions or
procedures are:
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Final remarks

The assumption of convexity for ΩC is motivated by the fact
that in general (H1(ΩC))3 is a proper closed subspace of W
[Costabel and Dauge, 1997]; therefore nodal finite elements
are not the right choice for approximation if the solution
AC 6∈ (H1(ΩC))3, and this can happen in the polyhedral
non-convex case.

Alternative (not yet fully analyzed) assumptions or
procedures are:

∂ΩC smooth: need of controlling the non-conformity
error due to ΩC,h 6= ΩC [as in Johnson-Nédélec, 1980];
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Final remarks (cont’d)

include the polyhedral domain ΩC in a convex
polyhedral domain Ω∗

C [clearly, in Ω∗
C \ ΩC the

conductivity σ is vanishing], and solve for ψI only in
R \ Ω∗

C (assuming also that µ is smooth in Ω∗
C) [see

Acevedo and Rodríguez, 2006];
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Final remarks (cont’d)

include the polyhedral domain ΩC in a convex
polyhedral domain Ω∗

C [clearly, in Ω∗
C \ ΩC the

conductivity σ is vanishing], and solve for ψI only in
R \ Ω∗

C (assuming also that µ is smooth in Ω∗
C) [see

Acevedo and Rodríguez, 2006];

correct the penalization term in (6) by adapting it to the
geometry of the domain [as in Costabel and Dauge,
2002].
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Final remarks (cont’d)

include the polyhedral domain ΩC in a convex
polyhedral domain Ω∗

C [clearly, in Ω∗
C \ ΩC the

conductivity σ is vanishing], and solve for ψI only in
R \ Ω∗

C (assuming also that µ is smooth in Ω∗
C) [see

Acevedo and Rodríguez, 2006];

correct the penalization term in (6) by adapting it to the
geometry of the domain [as in Costabel and Dauge,
2002].

impose the divergence-free constraint by means of a
Lagrange multiplier, employing edge elements [as in
Kuhn, Langer and Schöberl (2000), Kuhn and
Steinbach (2002) for magnetostatics]; however, due to
the presence of the additional unknown, this is more
expensive from the computational point of view.
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