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Maxwell equations

fl\/laxwell equations can be written as: T
( 0€ .
€5~ curlH = —0& — J. (Maxwell-Ampere)
| oM
u— +curl€ =0 (Faraday),
. Ot
where
# £ and ‘H are the electric and magnetic fields,

o o

respectively

e IS the electric permittivity

p 1S the magnetic permeability

o IS the conductivity

J. IS the applied current density. J
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Time-harmonic Maxwell equations

W N

hen interested Iin time-periodic phenomena, it is assumed

that
Je(t,x) = Rel[Je(x)exp(iwt)]
E(t,x) = RelE(x)exp(iwt)]
H(t,x) = Re[H(x)exp(iwt)],

where w # 0 Is the assigned frequency, and one obtains

curlH — weE — ocE = J,
curl E +wuH = 0.

o |
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Time-harmonic eddy-current equations

If the frequency is small the displacement currents e %—f can

be disregarded. Thus one finds the so-called eddy-current
(or quasi-static) problem

curlH-cE=J. InQ
{ (1)

curlE +iwpH =0 In (.

o |
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Time-harmonic eddy-current equations

- _—_—

If the frequency is small the displacement currents e e can

be disregarded. Thus one finds the so-called eddy-current
(or quasi-static) problem

(1)

curlH-cE=J. InQ
curlE +iwpH =0 In (.
Here Q is a bounded domain in R?, composed by two parts:
()¢, a conductor, and €y, its complementary part, an
iInsulator, where the conductivity o Is vanishing.
We consider the case in which the geometry of Q2 Is simple
(a “box"), while that of 2 can be of two different types: a
LCylinder that touches the boundary or an internal torus. J
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"Gauge" conditions

- N

® Problem: in an insulator one has o = 0, therefore E is
not uniquely determined in that region (E + Vv is still a
solution).

o |
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"Gauge" conditions

- N

® Problem: in an insulator one has o = 0, therefore E is
not uniquely determined in that region (E + Vv is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): as in {2; we have no
charges, we impose

div(eE) =0  in Q. (2)

o |
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"Gauge" conditions

- N

® Problem: in an insulator one has o = 0, therefore E is
not uniquely determined in that region (E + Vv is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): as in {2; we have no
charges, we impose

div(eE) =0  in Q. (2)

[Depending on the geometrical properties of (2; as well as
on the boundary conditions on 02, other "gauge" conditions
for E in Q; can be necessary: here we will not enter this

Laspect.] J
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Geometry and boundary conditions

-

We will distinguish among two different geometrical
situations, and three types of boundary conditions.

-

o |
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Geometry and boundary conditions

fWe will distinguish among two different geometrical T
situations, and three types of boundary conditions.

#® First geometrical case: electric ports. The conductor Q¢
IS not strictly contained in . For simplicity, Q¢ Is simply
connected with 0Qx- N =T ULy, where ' and I';
are connected and disjoint surfaces on 052 (“electric
ports"). Notation: I' = Q- NQ;, 00 =T ULy UTp,

o =T'rpul';Uul',00; =TpUT.
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Geometry and boundary conditions

o N

We will distinguish among two different geometrical
situations, and three types of boundary conditions.

#® First geometrical case: electric ports. The conductor Q¢
IS not strictly contained in . For simplicity, Q¢ Is simply
connected with 0Qx- N =T ULy, where ' and I';
are connected and disjoint surfaces on 052 (“electric
ports"). Notation: I' = Q- NQ;, 00 =T ULy UTp,

o =T'rpul';Uul',00; =TpUT.

#® Second geometrical case: internal conductor. The
conductor ()¢ Is strictly contained in Q2. For simplicity,
Qc IS a torus. Notation: 0Q¢c =17, 0y = 0Q U T.

o |
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The geometrical configurations

of2

(1]
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Geometry and boundary conditions (cont’d)

-

The boundary conditions are of three different types:

-

o |
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Geometry and boundary conditions (cont’d)

-

The boundary conditions are of three different types:

-

# Electric. One imposes E x n = 0 on 912 for both the
geometrical cases.

o |
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Geometry and boundary conditions (cont’d)

fThe boundary conditions are of three different types: T

# Electric. One imposes E x n = 0 on 912 for both the
geometrical cases.

# Magnetic. Oneimposes E xn=0onIT'gUTl,
H xn=0andeE - -n=0o0onIp for the electric port
case, while one requires H x n = 0 and €eE - n = 0 on 9
for the internal conductor case.
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Geometry and boundary conditions (cont’d)

o N

The boundary conditions are of three different types:

# Electric. One imposes E x n = 0 on 912 for both the
geometrical cases.

# Magnetic. Oneimposes E xn=0onIT'gUTl,
H xn=0andeE - -n=0o0onIp for the electric port
case, while one requires H x n = 0 and €eE - n = 0 on 9
for the internal conductor case.

# Mixed [Bossavit, 2000]. One imposes E x n = 0 on
ULy, uH-n=0and eE-n =0 on 'y for the electric
port case, while onerequires yuH-n=0and eE-n =20
on 92 for the internal conductor case.

o |
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Geometry and boundary conditions (cont’d)

fThus we have six alternative situations: three different T
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

o |
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Geometry and boundary conditions (cont’d)

fThus we have six alternative situations: three different T
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

#® Case A. Electric ports, E x n = 0 on 9f2

o |
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Geometry and boundary conditions (cont’d)

fThus we have six alternative situations: three different T
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

#® Case A. Electric ports, E x n = 0 on 9f2

® CaseB. Electricports, Exn=00onI'gUl'j, Hxn=0
andeE-n=0onTIp
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Geometry and boundary conditions (cont’d)

fThus we have six alternative situations: three different T
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

#® Case A. Electric ports, E x n = 0 on 9f2

® CaseB. Electricports, Exn=00onI'gUl'j, Hxn=0
andeE-n=0onTIp

® Case C. Electricports, Exn=0onIT'gUl'y,uH-n=20
and eE-n=0o0onTIp
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Geometry and boundary conditions (cont’d)

fThus we have six alternative situations: three different T
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

#® Case A. Electric ports, E x n = 0 on 9f2

® CaseB. Electricports, Exn=00onI'gUl'j, Hxn=0
andeE-n=0onTIp

® Case C. Electricports, Exn=0onIT'gUl'y,uH-n=20
and eE-n=0o0onTIp

® Case D. Internal conductor, E x n = 0 on 9f2

o |

Coupling between circuit problems and eddy-current problems — p.9/46



Geometry and boundary conditions (cont’d)

fThus we have six alternative situations: three different T
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

K
9

Case A. Electric ports, E x n = 0 on 9f)

Case B. Electric ports, Exn=0onT'gUl'y, Hxn=20
andeE-n=0onTIp

Case C. Electricports, Exn=0onI'prUl'y, uH-n =0
and eE-n=0o0onTIp

Case D. Internal conductor, E x n = 0 on 0f2

Case E. Internal conductor, H xn=0and eE - n = 0 on
o)

|
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Geometry and boundary conditions (cont’d)

fThus we have six alternative situations: three different T
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

K
9

Case A. Electric ports, E x n = 0 on 9f)

Case B. Electric ports, Exn=0onT'gUl'y, Hxn=20
andeE-n=0onTIp

Case C. Electricports, Exn=0onI'prUl'y, uH-n =0
and eE-n=0o0onTIp

Case D. Internal conductor, E x n = 0 on 0f2

Case E. Internal conductor, H xn=0and eE - n = 0 on
o)

Case F. Internal conductor, utH -n=0and €E-n =0 on

5. o
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Voltage and current intensity

fWhen one wants to couple the eddy-current problem with aT
circuit problem, one has to consider, as the only external
datum that determines the solution, a voltage V' or a current
intensity 1.

o |
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Voltage and current intensity

fWhen one wants to couple the eddy-current problem with aT
circuit problem, one has to consider, as the only external

datum that determines the solution, a voltage V' or a current
intensity 1.

Question:

o |
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Voltage and current intensity

fWhen one wants to couple the eddy-current problem with aT
circuit problem, one has to consider, as the only external
datum that determines the solution, a voltage V' or a current
intensity 1.

Question:

# how can we formulate the eddy-current problems when
the excitation is given by a voltage or by a current
Intensity?

o |
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Voltage and current intensity

fWhen one wants to couple the eddy-current problem with aT
circuit problem, one has to consider, as the only external
datum that determines the solution, a voltage V' or a current
intensity 1.

Question:

# how can we formulate the eddy-current problems when
the excitation is given by a voltage or by a current
Intensity?

This is a delicate point, as eddy-current problems, for the
five cases A, B, D, E, F, have a unique solution already
before a voltage or a current intensity is assigned!

o |
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Poynting Theorem (energy balance)

fln fact one has: T

Uniqueness theorem. In the cases A, B, D, E, F, for the
solution of the eddy-current problem (1) the magnetic field
H in €2 and the electric field E- in Q¢ are uniquely
determined. [Adding the "gauge" conditions, also the
electric field E; in 7 is uniguely determined.]

o |
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Poynting Theorem (energy balance)

fln fact one has: T

Uniqueness theorem. In the cases A, B, D, E, F, for the
solution of the eddy-current problem (1) the magnetic field
H in €2 and the electric field E- in Q¢ are uniquely
determined. [Adding the "gauge" conditions, also the
electric field E; in 7 is uniguely determined.]

Proof. Multiply the Faraday equation by H, integrate in {2
and integrate by parts: it holds

0 = [qcurlE-H+ [ iwpH- - H
:fQE-curlﬁ+finuH-ﬁ+faQn><E-ﬁ-

o |
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Poynting Theorem (energy balance)

fln fact one has: T

Uniqueness theorem. In the cases A, B, D, E, F, for the
solution of the eddy-current problem (1) the magnetic field
H in €2 and the electric field E- in Q¢ are uniquely
determined. [Adding the "gauge" conditions, also the
electric field E; in 7 is uniguely determined.]

Proof. Multiply the Faraday equation by H, integrate in {2
and integrate by parts: it holds

0 = [qcurlE-H+ [ iwpH- - H
:fQE-curlﬁ+finuH-ﬁ+faQn><E-ﬁ-

Replacing E¢ with o~ (curl He — J. ), and remembering
that curlH; = J. 7 In 7, one has the Poynting Theorem

L(energy balance)

|
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Poynting Theorem (energy balance) (cont’d)

ffQC a_lJe,C-curlH—C—fQI Er-Jer T

:fQCO'_lcurlHC-curlH—CJeriwuH-ﬁJrfaQn>< E-H.

o |
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Poynting Theorem (energy balance) (cont’d)

ffQC a_lJe,C-curlH—C—fQI Er-Jer T

:fQCO'_lcurlHC-curlH—CJeriwuH-ﬁJrf@Qn>< E-H.

If J. = 0, we have only to take into account the term on 0.
This is clearly vanishing in the cases A, B, D ed E.

o |
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Poynting Theorem (energy balance) (cont’d)

ffQC a_lJe,c-curlH—C—fQI Er-Jer T

:fQCO'_lcurlHC-curlH—C+finuH-ﬁ+faQn>< E-H.

If J. = 0, we have only to take into account the term on 0.
This Is clearly vanishing in the cases A, B, D ed E. In the
case F, since div;(E x n) = —iwpH - n = 0 on 02, one has

E xn=grad W X non 0f}
and therefore

[ronxE-H :f({mﬁxnfradW:—faﬁdiv(ﬁxn)W
= — [yocurlH-nW =0,

Las curl H; = 0 I1n ;7 and, for the case F, 02 C 0Q2;. O J
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Poynting Theorem for the case C

-

In the case C, instead, we can repeat the computation here
above and find

-

Ja., o lcurlHq - cuiH—C + [qiwpH - H
=Wy, Jp, curlHg -n,

where W Is the (constant) value of the potential 1V on the
electric port I'; (whereas W, = 0).

o |
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Poynting Theorem for the case C

-

In the case C, instead, we can repeat the computation here
above and find

-

Ja., o lcurlHq - cuiH—C + [qiwpH - H
=Wy, Jp, curlHg -n,

where W Is the (constant) value of the potential 1V on the
electric port I'; (whereas W, = 0).

# In this case a degree of freedom is indeed still free
(either the voltage W, or else the current intensity

fFJ curl Ho - n in Q).

o |
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The case C: variational formulation

f ® Thus we start from the case C: how can we formulate T
the problem when the source J. and the voltage or the
current intensity are assigned?

[Alonso Rodriguez, Valli and Vazgquez Hernandez,
2008; Bermudez, Rodriguez and Salgado, 2005]

o |
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The case C: variational formulation

f ® Thus we start from the case C: how can we formulate T
the problem when the source J. and the voltage or the
current intensity are assigned?

[Alonso Rodriguez, Valli and Vazgquez Hernandez,
2008; Bermudez, Rodriguez and Salgado, 2005]

This orthogonal decomposition result turns out to be useful:
each vector function v; can be decomposed as

v; = u;curlq; + grad ¢ + apy,

where p; Iis a harmonic field, namely, it belongs to the space

H,., (Qr) := {vr € (L*(Q))3| curlvy = 0, div(prvy) = 0,

L [J,IV[-n:OOn(?Q[}. J
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The case C: variational formulation (cont’'d)

- The harmonic field p; is known from the data of the o
problem, and satisfies [,. p;-dr = 1; moreover, from

curlv; = 0 it follows q; = 0 and therefore a = farJ v - dT.

o |
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The case C: variational formulation (cont’'d)

- The harmonic field p; is known from the data of the o
problem, and satisfies [,. p;-dr = 1; moreover, from

curlv; = 0 it follows q; = 0 and therefore a = farJ v - dT.

Let us thus assume, for semplicity, that J. ; = 0 in @7, so

that we have curlH; = 0 and H; = grad ¢; + ap;, and from
the Stokes Theorem

[0:/ curlHo - ngo = Hq - -dr = H; dr =«a,
I'; ol ; ol ;

hence
H; =grad ¢y + lpp; . (3)

o |
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The case C: variational formulation (cont’'d)

- The harmonic field p; is known from the data of the o
problem, and satisfies [,. p;-dr = 1; moreover, from

curlv; = 0 it follows q; = 0 and therefore a = farJ v - dT.

Let us thus assume, for semplicity, that J. ; = 0 in @7, so

that we have curlH; = 0 and H; = grad ¢; + ap;, and from
the Stokes Theorem

[0:/ curlHo - ngo = Hq - -dr = H; dr =«a,
I'; ol ; ol ;

hence
H; = grady; + lop; - (3)

We want to provide a "coupled" variational formulation, in
Lterms of E~ in Q- and of H; in Q. J
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The case C: variational formulation (cont’'d)

-

Inserting the Faraday equation into the Ampere equation in
Qo we find

-

ch [1,51 curl E¢ - curlwg + 1w fQC cEq- - -wg¢
—W fF W X ¢ - H[ = —Ww fQC Je,C WO .

(4)

o |
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The case C: variational formulation (cont’'d)

-

Inserting the Faraday equation into the Ampere equation in
Qo we find

-

fQ curlEC curl wg + iw fQ ocEq- - wo
—W fF W X ¢ - H[ = —Ww fQC e,C * W .

(4)
Instead, the Ampere equation in 2; gives

iw/ uIH[-gradW+/ngnc-gradﬁz() (5)
Qr r

o |
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The case C: variational formulation (cont’'d)

-

Inserting the Faraday equation into the Ampere equation in
Qo we find

-

ch ;1,51 curl E¢ - curlwgo + iw ch ocEq- - wo
—W fF W X ¢ - H[ = —Ww fQC Je,C WO .

(4)
Instead, the Ampere equation in 2; gives
iw/ uIH[-gradW+/ngnc-gradﬁz() (5)
Q; T

and
iw/Q u1H1-01+/Ec><nc-pz=V- (6)
I I

o |
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The case C: variational formulation (cont’'d)

Here we have to note that T

Jr, Erxny-pr= [, gradW xn;-p,
— fFD diVT(pI X ﬂ[)W‘l—VfaFJ P]dT:V .

o |
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The case C: variational formulation (cont’'d)

Here we have to note that T

fFDEIxn]-pI:fFDgradWxn]-p]
— fFD diVT(pI X n[)W—I—VfaFJ P]dT:V .

Using (3) In (4), (5) and (6) one has

ch p,al curl E¢ - curlwg + iw ch ocEc -w¢o
—iw [ W X ne - grad ¢y —iwly [ We xne-pr (7)
= —iw o Jec - We

—iw/EanC-grad@%—wQ/ prgradyr-gradgr =0 (8)
r Q)

1

L —iw@/r Ec xn¢ - pr+w’h@ [ prpr-pr=—iwVQ (9)J

Qr
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The case C: existence and unigueness

» If V is given, one solves (7), (8), (9) and determines E¢,
»rand Iy (hence Hy and Hjy).

|

Coupling between circuit problems and eddy-current problems — p.18/46



The case C: existence and unigueness

» If V is given, one solves (7), (8), (9) and determines E¢,
»rand Iy (hence Hy and Hjy).

# |If Iy Is given, one solves (7), (8) and determines E~ and
Y (hence He and Hy); then from (9) one can also
compute V.

|
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The case C: existence and unigueness

» If V is given, one solves (7), (8), (9) and determines E¢,
»rand Iy (hence Hy and Hjy).

# |If Iy Is given, one solves (7), (8) and determines E~ and
Y (hence He and Hy); then from (9) one can also
compute V.

Both problems are well-posed, namely, they have a unique
solution, since the associated sesquilinear form Is coercive
(thus one can apply the Lax—Milgram Lemma).

o |
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The case C: existence and unigueness

» If V is given, one solves (7), (8), (9) and determines E¢,
»rand Iy (hence Hy and Hjy).

# |If Iy Is given, one solves (7), (8) and determines E~ and
Y (hence He and Hy); then from (9) one can also
compute V.

Both problems are well-posed, namely, they have a unique
solution, since the associated sesquilinear form Is coercive
(thus one can apply the Lax—Milgram Lemma).

Moreover, it is simple to propose an approximation method

based on finite elements, of "edge" type for E- in Q- and of
(scalar) nodal type for ¢y in ;. Convergence is assured by
the Céa Lemma.

o |
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The case C: existence and unigueness

» If V is given, one solves (7), (8), (9) and determines E¢,
»rand Iy (hence Hy and Hjy).

# |If Iy Is given, one solves (7), (8) and determines E~ and
Y (hence He and Hy); then from (9) one can also
compute V.

Both problems are well-posed, namely, they have a unique
solution, since the associated sesquilinear form Is coercive
(thus one can apply the Lax—Milgram Lemma).

Moreover, it is simple to propose an approximation method
based on finite elements, of "edge" type for E- in Q- and of
(scalar) nodal type for ¢y in ;. Convergence is assured by
the Céa Lemma. [However, an efficient implementation
demands to replace the harmonic field p; with an easily

~ computable function.] o
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Thecases A, B, D, E, F

fHow can we proceed in the cases A, B, D, E, F if we insist T
to assigne the voltage V' or the current intensity y?

o |
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Thecases A, B, D, E, F

fHow can we proceed in the cases A, B, D, E, F if we insist T
to assigne the voltage V' or the current intensity y?
Here are some possible answers.

o |
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Thecases A, B, D, E, F

fHow can we proceed in the cases A, B, D, E, F if we insist T
to assigne the voltage V' or the current intensity y?
Here are some possible answers.

#® Since the solution is already uniquely determined by the
assigned current density J., it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!

o |
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Thecases A, B, D, E, F

fHow can we proceed in the cases A, B, D, E, F if we insist T
to assigne the voltage V' or the current intensity y?
Here are some possible answers.

#® Since the solution is already uniquely determined by the
assigned current density J., it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!

# If one obstinately wants to solve it, what happens is that
the Maxwell equations are violated [maybe without
realizing it...].

o |
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Thecases A, B, D, E, F

fHow can we proceed in the cases A, B, D, E, F if we insist T
to assigne the voltage V' or the current intensity y?
Here are some possible answers.

#® Since the solution is already uniquely determined by the
assigned current density J., it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!

# If one obstinately wants to solve it, what happens is that
the Maxwell equations are violated [maybe without
realizing it...].

# A last alternative: to find a suitable interpretation
[Alonso Rodriguez and Valli, 2008].
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Thecases A, B, D, E, F

fHow can we proceed in the cases A, B, D, E, F if we insist T
to assigne the voltage V' or the current intensity y?
Here are some possible answers.

#® Since the solution is already uniquely determined by the
assigned current density J., it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!

# If one obstinately wants to solve it, what happens is that
the Maxwell equations are violated [maybe without
realizing it...].

# A last alternative: to find a suitable interpretation
[Alonso Rodriguez and Valli, 2008].

LThe case C comes back to help us. J
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The cases A, B, D, E, F (cont'd)

~ Infact, let ¢ be the solution to o
[ div(oegrad¢c) =0 in Q¢
< oc =1 on 'y
¢C’ =0 on FE

ocgradoo -n=0 onl.

\

o |
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The cases A, B, D, E, F (cont'd)

~ Infact, let ¢ be the solution to o
[ div(oegrad¢c) =0 in Q¢
< oc =1 on 'y
¢C’ =0 on FE

ocgradoo -n=0 onl.

\

One easily verifies that Ec = V grad ¢ and H = 0 Is the
solution to the problem C with J. - = —V o grad ¢ and

assigned voltage V.

o |
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The cases A, B, D, E, F (cont'd)

~ Infact, let ¢ be the solution to o
[ div(oegrad¢c) =0 in Q¢
< oc =1 on 'y
¢C’ =0 on FE

ocgradoo -n=0 onl.

\

One easily verifies that Ec = V grad ¢ and H = 0 Is the
solution to the problem C with J. - = —V o grad ¢ and

assigned voltage V. Indeed, one has

ch o 1J.c curlHp = ch(_V grad ¢¢) - curl Hp

= -V fPuPEuFJ dccurl He - ne
==V I curlHq- - n |

o |
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The cases A, B, D, E, F (cont'd)

-

and from the Poynting Theorem

ch o lcurl Ho -ﬂrlH_(; + [qiwpH-H o
= VfFJ curlHo - n + ch o 1J.c-curlHg =0,

so that H = 0, and, moreover, from the Ampere equation
Eq = —a_lJe,C = V grad ¢¢.

o |
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The cases A, B, D, E, F (cont'd)

-

and from the Poynting Theorem

ch o lcurl Ho -ﬂrlH_(; + [qiwpH-H o
= VfFJ curlHo - n + ch o 1J.c-curlHg =0,

so that H = 0, and, moreover, from the Ampere equation
Eq = —a_lJe,C = V grad ¢¢.

Thus, by linearity, the magnetic field H solution to problem
(7), (8), (9) with data J.c =0 and W, =V Is the same
than the one with data J..c = Vo grad ¢¢ and W, = 0.

o |
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The cases A, B, D, E, F (cont'd)

-

and from the Poynting Theorem

ch o lcurl Ho -ﬂrlH_(; + [qiwpH-H o
= VfFJ curlHo - n + ch o 1J.c-curlHg =0,

so that H = 0, and, moreover, from the Ampere equation
Eq = —a_lJe,C = V grad ¢¢.

Thus, by linearity, the magnetic field H solution to problem
(7), (8), (9) with data J.c =0 and W, =V Is the same
than the one with data J..c = Vo grad ¢¢ and W, = 0.

[Instead, for the electric field one has that the difference In
Q¢ Is given by V grad ¢¢.]

o |
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The cases A, B, D, E, F (cont'd)

fFor the cases A, B (electric ports), for which the "electric" T
voltage cannot be assigned, one is thus led to consider a
"source" voltage V/, that is the factor appearing in the
current density J. = Vo grad ¢¢, and to solve
eddy-current problems with this source.

o |
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The cases A, B, D, E, F (cont'd)

- For the cases A, B (electric ports), for which the "electric” |
voltage cannot be assigned, one is thus led to consider a
"source" voltage V/, that is the factor appearing in the
current density J. = Vo grad ¢¢, and to solve
eddy-current problems with this source.

Note that grad ¢ Is the basis function of the space of
harmonic fields

H(Q0) = {fo € (L2(Q0))? | curljy = 0, div(e7j) = 0,
onc-ng=0on'"n-xn=0onT'gUl;},

normalized by the condition fﬁ Nc - dT =1, where 7 is (any)
path connecting I', to I';.

o |
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The cases A, B, D, E, F (cont'd)

-

Then, for the cases D, E, F (internal conductor) we define
pc the basis function of the space of harmonic fields

-

H(Qc) = {nc € (L*(20))’ | curlne = 0,div(one) =0,
onc-nc=0onT},

normalized by the condition [ p - dr = 1, where the closed
cycle ~ runs internally along the whole torus €.

o |
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The cases A, B, D, E, F (cont'd)

o N

Then, for the cases D, E, F (internal conductor) we define
pc the basis function of the space of harmonic fields

H(Qc) = {nc € (L*(20))’ | curlne = 0,div(one) =0,
onc-nc=0onT},

normalized by the condition [ p - dr = 1, where the closed
cycle ~ runs internally along the whole torus €.

Similarly to the cases A,B (electric ports), for the cases D,
E, F (internal conductor) one can thus consider a "source"
voltage V/, associated with the current density J. ¢ = Vo pc.

o |

Coupling between circuit problems and eddy-current problems — p.23/46



The voltage rule

- N

#» The voltage rule.
Having to impose a voltage V', modify Ohm law in Q¢
adding to the current density o E~ the "applied” current
density J. ¢ = Vo Qc¢, where Q¢ = grad ¢¢ for the
electric port case, and Q¢ = p for the internal
conductor case. Thus Ampere law becomes

curl HC — O'EC — VO'QC .

In the former case, we intend that the voltage passes
fromOonI'gtoV onI'y;in the latter case, the voltage
passes from 0 to V along the internal cycle ~.

o |
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The current intensity rule

f # The current intensity rule. T
Having to impose a current intensity I, modify Ohm law
In Q- adding to the current density o E the "applied"
current density J. ¢ = Vo Qc, where Q¢ Is as in the

“voltage rule" and V' has to be determined. Thus the
Ampere law reads

curl HC — O‘EC — VO'QC =0 .

Then determine the field quantities H and E and the
voltage V in such a way that also the additional
constraint

/curlHC-n = Iy
S

L IS satisfied. J
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The current intensity rule (cont’d)

- N

In this constraint one has S = I'; for the electric port case,
and S = X, a section of Q2¢, for the internal conductor case.
In the former case, the unit vector n is the outward normal
on I's; In the latter case, the unit vector n on X has the
same orientation of the internal cycle ~.

o |

Coupling between circuit problems and eddy-current problems — p.26/46



Caso F: variational formulation

. -

As an example, let us give the variational formulation for the
case F: given a voltage V # 0, the problem to solve is
ch o 'curlHe - curl we + [iwpH W (10)
=V Jq. Pc - curlwg

for all w € X, where
X :={w e H(curl; Q)| curlw; =0in Q;} .

Then one computes [j = ch pc - curl Ho # 0 [note that
Iy = V_l(fQC o 'curlH¢ - curlHe + [, iwpH - H)...] and
defines Ec = ot curlHp — V.

o |
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Caso F: variational formulation (cont’d)

fInstead, given the current intensity Iy # 0, the problem is T
( ch o tcurlHe - curlwe + [qiwpH - W

X ~V fq. Pc - curlwg = 0

_ Jo, pc - curlHe = I

for all w € X, and the voltage V' # 0 [note that

V = I_o_l(fQC o lcurlHe - curl Hp + Jq twpH - H)...] turns
out to be a Lagrange multiplier associated with the
constraint requiring that the intensity current is equal to 1.
Then, as usual, one defines Ec = o ! curl He — V..

o |
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Don’t forget the Faraday law!

f # Other authors have proposed similar formulations, but T
they have not introduced any source term: namely, they

have defined E~ = o~ ! curl H.

o |
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Don’t forget the Faraday law!

f # Other authors have proposed similar formulations, but T
they have not introduced any source term: namely, they

have defined E~ = o~ ! curl H.

Since

V/ pC-curlw_C:V/prnC-w_C,
Qc r

and this term is vanishing for a test function wo with a
compact support in Q2~, one verifies that the Faraday
equation in Q) Is satisfied, and, having set

Ec = o~ ! curl Hp, the same clearly holds for the Ampére
equation (without sources) in the whole (.

o |
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Don’t forget the Faraday law!

f # Other authors have proposed similar formulations, but T
they have not introduced any source term: namely, they

have defined E~ = o~ ! curl H.

Since

V/ pC-curlw_C:V/prnC-w_C,
Qc r

and this term is vanishing for a test function wo with a

compact support in -, one verifies that the Faraday

equation in € Is satisfied, and, having set

Ec = o~ ! curl Hp, the same clearly holds for the Ampére

equation (without sources) in the whole (.

[Note: since the electric field E; is determined by solving

the Faraday equation in 2; (with H; already known), one is
Lled to believe that everything is all right...] J
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Don’t forget the Faraday law! (cont’d)

- .

# But we had already realized that it is not possible to ad
other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?

o |
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Don’t forget the Faraday law! (cont’d)

.

f # But we had already realized that it is not possible to ad
other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?

# Since the Ampere law is satisfied in the whole (, the
effect must be that of giving up the Faraday law: where?

o |
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Don’t forget the Faraday law! (cont’d)

.

f # But we had already realized that it is not possible to ad
other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?

# Since the Ampere law is satisfied in the whole (, the
effect must be that of giving up the Faraday law: where?

Let us see: the Faraday law relates the flux of the magnetic
Induction through a surface with the line integral of the
electric field on the boundary of that surface.

o |
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Don’t forget the Faraday law! (cont’d)

f # But we had already realized that it is not possible to ad

.

other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?

# Since the Ampere law is satisfied in the whole (, the
effect must be that of giving up the Faraday law: where?

Let us see: the Faraday law relates the flux of the magnetic

Induction through a surface with t
ne boundary of that surface.

electric field on t
Since we know t

ne line integral of the

ne magnetic field

can stay everyw

In the whole (2, surfaces

nere: but at the moment we know the

electric field only in Q., therefore the boundary of the
surface must stay in Q.

o

|
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Don’t forget the Faraday law! (cont’d)

- But the Faraday law (in differential form) is satisfied in Q¢. |

o |
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Don’t forget the Faraday law! (cont’d)

- But the Faraday law (in differential form) is satisfied in Q¢. |
Thus we must verify if there are surfaces in €); with
boundary on T,

o |
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Don’t forget the Faraday law! (cont’d)

fBut the Faraday law (in differential form) is satisfied in €. T
Thus we must verify if there are surfaces in €); with
boundary on I', and moreover such that this boundary is not
the boundary of a surface in Q¢ [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in ()...].

o |
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Don’t forget the Faraday law! (cont’d)

fBut the Faraday law (in differential form) is satisfied in €. T
Thus we must verify if there are surfaces in €); with
boundary on I', and moreover such that this boundary is not
the boundary of a surface in Q¢ [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in ()...].

# Claim: the Faraday law is violated on the "cutting”
surface A! A o0

|
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Don’t forget the Faraday law! (cont’d)

-

In fact, the Faraday law on A can be written as

/ inIHI'PIJF/(ECXHC)'P[:O,
Q; r

and from (10) we have

fQI wpHyp - pr = — ch wpcHe - Reo
+V fQC pc - curl Rg — ch o lcurlHq - curl R |

where R Is any (real) extension of p; in Q¢ giving a global
function that belongs to the space X.

o |
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Don’t forget the Faraday law! (cont’d)

fSetting E- = o~ ! curl Hy and integrating by parts one has T

V Jo. Pc-curlRg — [ Eg-curlRg =V [.(pc x ng) - p;
_|_ng iwl’l'CHC | RC _ fF(EC X HC) "Pr

o |
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Don’t forget the Faraday law! (cont’d)

fSetting E- = o~ ! curl Hy and integrating by parts one has T

V Jo. Pc-curlRg — [ Eg-curlRg =V [.(pc x ng) - p;
_|_ng iwl’l'CHC | RC _ fF(EC X HC) "Pr

so that .

Jo, iwnHr - pr+ Jr(Ec xne) - p;

=V Jp(pc xnc) - pp =V #0.

o |
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Don’t forget the Faraday law! (cont’d)

fSetting E- = o~ ! curl Hy and integrating by parts one has T

V Jo. Pc-curlRg — [ Eg-curlRg =V [.(pc x ng) - p;
_|_ng iwl’l'CHC | RC _ fF(EC X HC) "Pr

so that .

fQI iwpHr - pr+ [1(Ec xne) - py

=V Jp(pc xnc) - pp =V #0.

Instead, everything works well if we define
Ec =0 lcurlHpo — Vpe.

o |
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Don’t forget the Faraday law! (cont’d)

fSetting E- = o~ ! curl Hy and integrating by parts one has T

V Jo. Pc-curlRg — [ Eg-curlRg =V [.(pc x ng) - p;
_|_ng iwl’l'CHC | RC _ fF(EC X HC) "Pr

so that .

fQI iwpHr - pr+ [1(Ec xne) - py

=V Jp(pc xnc) - pp =V #0.

Instead, everything works well if we define

Ec =0 lcurlHpo — Vpe.

[Note: what is wrong in the previous argument? We cannot

find the electric field E; such that curl E; = —iwpHy In Qg

and E; x n; = —E¢ x ng on I': a necessary compatibility
Lcondition on the data is not satisfied!] J
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Cases A, B, D, E, F: existence and unigueness

-

Summing up:

-

o |
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Cases A, B, D, E, F: existence and unigueness

-

Summing up:

-

# The problem with a given voltage is therefore a standard
eddy-current problem, but with a particular assigned
current density J. -, hence it has a unique solution.

o |
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Cases A, B, D, E, F: existence and unigueness

-

Summing up: T
# The problem with a given voltage is therefore a standard
eddy-current problem, but with a particular assigned

current density J. -, hence it has a unique solution.

# The problem with a given current intensity is instead a
saddle-point problem, and it needs a deeper analysis.
In conclusion, however, it turns out to have a unique
solution, too.

o |
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Cases A, B, D, E, F: numerical approximation

f # For the voltage problem one can use any numerical T
approximation method that is suitable for eddy-current
problems. [For a more efficient implementation, it is
better to replace the functions grad ¢ or p~ with a term
that can be easily computed.]

o |
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Cases A, B, D, E, F: numerical approximation

- N

# For the voltage problem one can use any numerical
approximation method that is suitable for eddy-current
problems. [For a more efficient implementation, it is
better to replace the functions grad ¢ or p~ with a term
that can be easily computed.]

o For the current intensity problem, one has to use those
numerical approximation methods that are suitable for
saddle-point problems. [However, note that the current
Intensity contraint is associated with only one degree of
freedom, therefore one is facing a rather simple
extension of usual eddy-current problems.]

o |
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Numerical results for the Case C

o |

Coming back to the case C and to its variational formulation
(7), (8), (9), we use edge finite elements of the lowest
degree (a + b x x In each element) for approximating E.,
and scalar piecewise linear elements for approximating ;.

o |
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Numerical results for the Case C

. .

oming back to the case C and to its variational formulatio
(7), (8), (9), we use edge finite elements of the lowest
degree (a + b x x In each element) for approximating E.,
and scalar piecewise linear elements for approximating ;.

The problem description is the following: the conductor ¢
and the whole domains? are two coaxial cylinders of radius
Rc and Rp, respectively, and height L. Assuming that o
and p are scalar constants, the exact solution for an
assigned current intensity I, is known (through suitable
Bessel functions), and also the basis function p; is known,
thus from (9) one easily computes the voltage V/, too.

o |
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Numerical results for the Case C (cont’d)

fWe have the following data: T
R = 025m
Rp = 0.5m
L = 0.25m
c = 151565.8 Q' 'm™!
o= 4w X 107" Hm ™!
w = 50 X 27 radls

and

Io=10*A or V =0.08979 + 0.14680;

L[the voltage corresponds to the current intensity I, = 10* A].

|
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Numerical results for the Case C (cont’d)

fThe relative errors (for E¢ in H(curl; Q¢) and for H; in T

L*(Qy)) with respect to the number of degrees of freedom
are given by:

o |

Coupling between circuit problems and eddy-current problems — p.38/46



Numerical results for the Case C (cont’d)

fThe relative errors (for E¢ in H(curl; Q¢) and for H; in
L*(Qy)) with respect to the number of degrees of freedom

-

are given by:

Elements | DoF R e ey
2304 1684 | 0.2341 | 0.1693 | 0.0312
18432 11240 | 0.1132 | 0.0847 | 0.0089
62208 35580 | 0.0750 | 0.0567 | 0.0048
147456 | 81616 | 0.0561 | 0.0425 | 0.0018
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Numerical results for the Case C (cont’d)

fThe relative errors (for E¢ in H(curl; Q¢) and for H; in
L*(Qy)) with respect to the number of degrees of freedom

are given by:

Elements | DoF R e ey
2304 1684 | 0.2341 | 0.1693 | 0.0312
18432 11240 | 0.1132 | 0.0847 | 0.0089
62208 || 35580 | 0.0750 | 0.0567 | 0.0048
147456 || 81616 | 0.0561 | 0.0425 | 0.0018
Elements | DoF R e er
2304 1685 | 0.2336 | 0.1685 | 0.0274
18432 11241 | 0.1132 | 0.0847 | 0.0085
62208 || 35581 | 0.0750 | 0.0566 | 0.0041

o 147456 | 81617 | 0.0561 | 0.0425 | 0.0024

-

|
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Numerical results for the Case C (cont’d)

-

On a graph: for assigned current intensity
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Numerical results for the Case C (cont’d)

. N

or assigned voltage
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Numerical results for the Case C (cont’d)

fA more realistic problem, considered by Bermudez, j
Rodriguez and Salgado, 2005, is that of a cylindircal

electric furnace with three electrodes ELSA [dimensions:
furnace height 2 m.; furnace diameter 8.88 m.; electrode
height 1.25 m.; electrode diameter 1 m.; distance of the

center of the electrode from the wall 3 m.].

o |
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Numerical results for the Case C (cont’d)

fA more realistic problem, considered by Bermudez, j
Rodriguez and Salgado, 2005, is that of a cylindircal
electric furnace with three electrodes ELSA [dimensions:
furnace height 2 m.; furnace diameter 8.88 m.; electrode
height 1.25 m.; electrode diameter 1 m.; distance of the
center of the electrode from the wall 3 m.].

The three electrodes ELSA are constituted by a graphite
core of 0.4 m. of diameter, and by an outer part of
Sdderberg paste. The electric current enters the electrodes
through horizontal copper bars of rectangular section (0.07
m. x 0.25 m.), connecting the top of the electrode with the
external boundary.

o |
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Numerical results for the Case C (cont’d)

fA more realistic problem, considered by Bermudez, j
Rodriguez and Salgado, 2005, is that of a cylindircal
electric furnace with three electrodes ELSA [dimensions:
furnace height 2 m.; furnace diameter 8.88 m.; electrode
height 1.25 m.; electrode diameter 1 m.; distance of the
center of the electrode from the wall 3 m.].

The three electrodes ELSA are constituted by a graphite
core of 0.4 m. of diameter, and by an outer part of
Sdderberg paste. The electric current enters the electrodes
through horizontal copper bars of rectangular section (0.07
m. x 0.25 m.), connecting the top of the electrode with the
external boundary.
Data: o = 10° Q~'m~! for graphite, o = 10* Q= 'm~! for
Soderberg paste, o = 5 x 10° Q~'m~! for copper,

=41 x 107" Hm™!, w = 50 x 27 rad/s, Iy = 7 x 10* A for

Lgach electrode. J
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Numerical results for the Case C (cont'd)

The value of the magnetic "potential” in the insulator: the
magnetic field is the gradient of the represented function
L(not taking into account the jump surfaces). J
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Numerical results for the Case C (cont'd)

Il [A/m2]
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The magnitude of the current density J. c = cE¢ on a
horizontal section of one electrode. J
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Numerical results for the Case C (cont'd)

Pl [Ame 2]

| el D00
1. 200e +000
B.000e+005

4.000e+005
0, (M D000

The magnitude of the current density J. c = cE¢ on a
Lvertical section of one electrode. J
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