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Maxwell equations

Maxwell equations can be written as:





ǫ
∂E

∂t
− curlH = −σE − Je (Maxwell–Ampère)

µ
∂H

∂t
+ curl E = 0 (Faraday),

where

E and H are the electric and magnetic fields,
respectively

ǫ is the electric permittivity

µ is the magnetic permeability

σ is the conductivity

Je is the applied current density.
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Time-harmonic Maxwell equations

When interested in time-periodic phenomena, it is assumed
that

Je(t,x) = Re[Je(x) exp(iωt)]

E(t,x) = Re[E(x) exp(iωt)]

H(t,x) = Re[H(x) exp(iωt)] ,

where ω 6= 0 is the assigned frequency, and one obtains
{

curlH − iωǫE − σE = Je

curlE + iωµH = 0 .
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Time-harmonic eddy-current equations

If the frequency is small the displacement currents ǫ
∂E

∂t
can

be disregarded. Thus one finds the so-called eddy-current
(or quasi-static) problem

{
curlH − σE = Je in Ω

curlE + iωµH = 0 in Ω .
(1)
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Time-harmonic eddy-current equations

If the frequency is small the displacement currents ǫ
∂E

∂t
can

be disregarded. Thus one finds the so-called eddy-current
(or quasi-static) problem

{
curlH − σE = Je in Ω

curlE + iωµH = 0 in Ω .
(1)

Here Ω is a bounded domain in R3, composed by two parts:
ΩC , a conductor, and ΩI , its complementary part, an
insulator, where the conductivity σ is vanishing.
We consider the case in which the geometry of Ω is simple
(a “box"), while that of ΩC can be of two different types: a
cylinder that touches the boundary or an internal torus.
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"Gauge" conditions

Problem: in an insulator one has σ = 0, therefore E is
not uniquely determined in that region (E + ∇ψ is still a
solution).
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"Gauge" conditions

Problem: in an insulator one has σ = 0, therefore E is
not uniquely determined in that region (E + ∇ψ is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): as in ΩI we have no
charges, we impose

div(ǫE) = 0 in ΩI . (2)
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"Gauge" conditions

Problem: in an insulator one has σ = 0, therefore E is
not uniquely determined in that region (E + ∇ψ is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): as in ΩI we have no
charges, we impose

div(ǫE) = 0 in ΩI . (2)

[Depending on the geometrical properties of ΩI as well as
on the boundary conditions on ∂Ω, other "gauge" conditions
for E in ΩI can be necessary: here we will not enter this
aspect.]
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Geometry and boundary conditions

We will distinguish among two different geometrical
situations, and three types of boundary conditions.

Coupling between circuit problems and eddy-current problems – p.6/46



Geometry and boundary conditions

We will distinguish among two different geometrical
situations, and three types of boundary conditions.

First geometrical case: electric ports. The conductor ΩC

is not strictly contained in Ω. For simplicity, ΩC is simply
connected with ∂ΩC ∩ ∂Ω = ΓE ∪ ΓJ , where ΓE and ΓJ

are connected and disjoint surfaces on ∂Ω (“electric
ports"). Notation: Γ = ΩC ∩ ΩI , ∂Ω = ΓE ∪ ΓJ ∪ ΓD,
∂ΩC = ΓE ∪ ΓJ ∪ Γ, ∂ΩI = ΓD ∪ Γ.
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Geometry and boundary conditions

We will distinguish among two different geometrical
situations, and three types of boundary conditions.

First geometrical case: electric ports. The conductor ΩC

is not strictly contained in Ω. For simplicity, ΩC is simply
connected with ∂ΩC ∩ ∂Ω = ΓE ∪ ΓJ , where ΓE and ΓJ

are connected and disjoint surfaces on ∂Ω (“electric
ports"). Notation: Γ = ΩC ∩ ΩI , ∂Ω = ΓE ∪ ΓJ ∪ ΓD,
∂ΩC = ΓE ∪ ΓJ ∪ Γ, ∂ΩI = ΓD ∪ Γ.

Second geometrical case: internal conductor. The
conductor ΩC is strictly contained in Ω. For simplicity,
ΩC is a torus. Notation: ∂ΩC = Γ, ∂ΩI = ∂Ω ∪ Γ.
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The geometrical configurations

ΓJ

ΓE

Γ

Ξ

ΓD
∂Ω

Σ

Γ

Λ
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Geometry and boundary conditions (cont’d)

The boundary conditions are of three different types:
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Geometry and boundary conditions (cont’d)

The boundary conditions are of three different types:

Electric. One imposes E × n = 0 on ∂Ω for both the
geometrical cases.
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Geometry and boundary conditions (cont’d)

The boundary conditions are of three different types:

Electric. One imposes E × n = 0 on ∂Ω for both the
geometrical cases.

Magnetic. One imposes E × n = 0 on ΓE ∪ ΓJ ,
H × n = 0 and ǫE · n = 0 on ΓD for the electric port
case, while one requires H× n = 0 and ǫE · n = 0 on ∂Ω
for the internal conductor case.
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Geometry and boundary conditions (cont’d)

The boundary conditions are of three different types:

Electric. One imposes E × n = 0 on ∂Ω for both the
geometrical cases.

Magnetic. One imposes E × n = 0 on ΓE ∪ ΓJ ,
H × n = 0 and ǫE · n = 0 on ΓD for the electric port
case, while one requires H× n = 0 and ǫE · n = 0 on ∂Ω
for the internal conductor case.

Mixed [Bossavit, 2000]. One imposes E × n = 0 on
ΓE ∪ ΓJ , µH · n = 0 and ǫE · n = 0 on ΓD for the electric
port case, while one requires µH · n = 0 and ǫE · n = 0
on ∂Ω for the internal conductor case.
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Geometry and boundary conditions (cont’d)

Thus we have six alternative situations: three different
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:
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Geometry and boundary conditions (cont’d)

Thus we have six alternative situations: three different
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

Case A. Electric ports, E × n = 0 on ∂Ω
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Geometry and boundary conditions (cont’d)

Thus we have six alternative situations: three different
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

Case A. Electric ports, E × n = 0 on ∂Ω

Case B. Electric ports, E × n = 0 on ΓE ∪ ΓJ , H× n = 0

and ǫE · n = 0 on ΓD
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Geometry and boundary conditions (cont’d)

Thus we have six alternative situations: three different
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

Case A. Electric ports, E × n = 0 on ∂Ω

Case B. Electric ports, E × n = 0 on ΓE ∪ ΓJ , H× n = 0

and ǫE · n = 0 on ΓD

Case C. Electric ports, E× n = 0 on ΓE ∪ ΓJ , µH · n = 0
and ǫE · n = 0 on ΓD
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Geometry and boundary conditions (cont’d)

Thus we have six alternative situations: three different
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

Case A. Electric ports, E × n = 0 on ∂Ω

Case B. Electric ports, E × n = 0 on ΓE ∪ ΓJ , H× n = 0

and ǫE · n = 0 on ΓD

Case C. Electric ports, E× n = 0 on ΓE ∪ ΓJ , µH · n = 0
and ǫE · n = 0 on ΓD

Case D. Internal conductor, E × n = 0 on ∂Ω
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Geometry and boundary conditions (cont’d)

Thus we have six alternative situations: three different
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

Case A. Electric ports, E × n = 0 on ∂Ω

Case B. Electric ports, E × n = 0 on ΓE ∪ ΓJ , H× n = 0

and ǫE · n = 0 on ΓD

Case C. Electric ports, E× n = 0 on ΓE ∪ ΓJ , µH · n = 0
and ǫE · n = 0 on ΓD

Case D. Internal conductor, E × n = 0 on ∂Ω

Case E. Internal conductor, H × n = 0 and ǫE · n = 0 on
∂Ω
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Geometry and boundary conditions (cont’d)

Thus we have six alternative situations: three different
boundary conditions for the electric ports, and the same for
the internal conductor. Summing up:

Case A. Electric ports, E × n = 0 on ∂Ω

Case B. Electric ports, E × n = 0 on ΓE ∪ ΓJ , H× n = 0

and ǫE · n = 0 on ΓD

Case C. Electric ports, E× n = 0 on ΓE ∪ ΓJ , µH · n = 0
and ǫE · n = 0 on ΓD

Case D. Internal conductor, E × n = 0 on ∂Ω

Case E. Internal conductor, H × n = 0 and ǫE · n = 0 on
∂Ω

Case F. Internal conductor, µH · n = 0 and ǫE · n = 0 on
∂Ω.
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Voltage and current intensity

When one wants to couple the eddy-current problem with a
circuit problem, one has to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.
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Voltage and current intensity

When one wants to couple the eddy-current problem with a
circuit problem, one has to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.

Question:
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Voltage and current intensity

When one wants to couple the eddy-current problem with a
circuit problem, one has to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.

Question:

how can we formulate the eddy-current problems when
the excitation is given by a voltage or by a current
intensity?
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Voltage and current intensity

When one wants to couple the eddy-current problem with a
circuit problem, one has to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.

Question:

how can we formulate the eddy-current problems when
the excitation is given by a voltage or by a current
intensity?

This is a delicate point, as eddy-current problems, for the
five cases A, B, D, E, F, have a unique solution already
before a voltage or a current intensity is assigned!
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Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the cases A, B, D, E, F, for the
solution of the eddy-current problem (1) the magnetic field
H in Ω and the electric field EC in ΩC are uniquely
determined. [Adding the "gauge" conditions, also the
electric field EI in ΩI is uniquely determined.]
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Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the cases A, B, D, E, F, for the
solution of the eddy-current problem (1) the magnetic field
H in Ω and the electric field EC in ΩC are uniquely
determined. [Adding the "gauge" conditions, also the
electric field EI in ΩI is uniquely determined.]

Proof. Multiply the Faraday equation by H, integrate in Ω
and integrate by parts: it holds

0 =
∫
Ω

curlE · H +
∫
Ω
iωµH · H

=
∫
Ω

E · curlH +
∫
Ω
iωµH · H +

∫
∂Ω

n × E · H .
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Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the cases A, B, D, E, F, for the
solution of the eddy-current problem (1) the magnetic field
H in Ω and the electric field EC in ΩC are uniquely
determined. [Adding the "gauge" conditions, also the
electric field EI in ΩI is uniquely determined.]

Proof. Multiply the Faraday equation by H, integrate in Ω
and integrate by parts: it holds

0 =
∫
Ω

curlE · H +
∫
Ω
iωµH · H

=
∫
Ω

E · curlH +
∫
Ω
iωµH · H +

∫
∂Ω

n × E · H .

Replacing EC with σ−1(curlHC − Je,C), and remembering
that curlHI = Je,I in ΩI , one has the Poynting Theorem
(energy balance)
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Poynting Theorem (energy balance) (cont’d)

∫
ΩC

σ−1Je,C · curlHC −
∫
ΩI

EI · Je,I

=
∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H +

∫
∂Ω

n × E · H .
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Poynting Theorem (energy balance) (cont’d)

∫
ΩC

σ−1Je,C · curlHC −
∫
ΩI

EI · Je,I

=
∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H +

∫
∂Ω

n × E · H .

If Je = 0, we have only to take into account the term on ∂Ω.
This is clearly vanishing in the cases A, B, D ed E.
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Poynting Theorem (energy balance) (cont’d)

∫
ΩC

σ−1Je,C · curlHC −
∫
ΩI

EI · Je,I

=
∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H +

∫
∂Ω

n × E · H .

If Je = 0, we have only to take into account the term on ∂Ω.
This is clearly vanishing in the cases A, B, D ed E. In the
case F, since divτ (E × n) = −iωµH · n = 0 on ∂Ω, one has

E × n = gradW × n on ∂Ω ,

and therefore
∫
∂Ω

n × E · H =
∫
∂Ω

H × n · gradW = −
∫
∂Ω

div(H× n)W

= −
∫
∂Ω

curlH · nW = 0 ,

as curlHI = 0 in ΩI and, for the case F, ∂Ω ⊂ ∂ΩI . �
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Poynting Theorem for the case C

In the case C, instead, we can repeat the computation here
above and find

∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H

= W|ΓJ

∫
ΓJ

curlHC · n ,

where W|ΓJ
is the (constant) value of the potential W on the

electric port ΓJ (whereas W|ΓE
= 0).
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Poynting Theorem for the case C

In the case C, instead, we can repeat the computation here
above and find

∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H

= W|ΓJ

∫
ΓJ

curlHC · n ,

where W|ΓJ
is the (constant) value of the potential W on the

electric port ΓJ (whereas W|ΓE
= 0).

In this case a degree of freedom is indeed still free
(either the voltage W|ΓJ

, or else the current intensity∫
ΓJ

curlHC · n in ΩC).
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The case C: variational formulation

Thus we start from the case C: how can we formulate
the problem when the source Je and the voltage or the
current intensity are assigned?
[Alonso Rodríguez, Valli and Vázquez Hernández,
2008; Bermúdez, Rodríguez and Salgado, 2005]
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The case C: variational formulation

Thus we start from the case C: how can we formulate
the problem when the source Je and the voltage or the
current intensity are assigned?
[Alonso Rodríguez, Valli and Vázquez Hernández,
2008; Bermúdez, Rodríguez and Salgado, 2005]

This orthogonal decomposition result turns out to be useful:
each vector function vI can be decomposed as

vI = µ−1

I curl qI + gradψI + αρI ,

where ρI is a harmonic field, namely, it belongs to the space

HµI
(ΩI) := {vI ∈ (L2(ΩI))

3| curl vI = 0, div(µIvI) = 0,

µIvI · n = 0 on ∂ΩI} .
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The case C: variational formulation (cont’d)

The harmonic field ρI is known from the data of the
problem, and satisfies

∫
∂ΓJ

ρI · dτ = 1; moreover, from
curl vI = 0 it follows qI = 0 and therefore α =

∫
∂ΓJ

vI · dτ .
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The case C: variational formulation (cont’d)

The harmonic field ρI is known from the data of the
problem, and satisfies

∫
∂ΓJ

ρI · dτ = 1; moreover, from
curl vI = 0 it follows qI = 0 and therefore α =

∫
∂ΓJ

vI · dτ .
Let us thus assume, for semplicity, that Je,I = 0 in ΩI , so
that we have curlHI = 0 and HI = gradψI + αρI , and from
the Stokes Theorem

I0 =

∫

ΓJ

curlHC · nC =

∫

∂ΓJ

HC · dτ =

∫

∂ΓJ

HI · dτ = α ,

hence
HI = gradψI + I0ρI . (3)
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The case C: variational formulation (cont’d)

The harmonic field ρI is known from the data of the
problem, and satisfies

∫
∂ΓJ

ρI · dτ = 1; moreover, from
curl vI = 0 it follows qI = 0 and therefore α =

∫
∂ΓJ

vI · dτ .
Let us thus assume, for semplicity, that Je,I = 0 in ΩI , so
that we have curlHI = 0 and HI = gradψI + αρI , and from
the Stokes Theorem

I0 =

∫

ΓJ

curlHC · nC =

∫

∂ΓJ

HC · dτ =

∫

∂ΓJ

HI · dτ = α ,

hence
HI = gradψI + I0ρI . (3)

We want to provide a "coupled" variational formulation, in
terms of EC in ΩC and of HI in ΩI .
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The case C: variational formulation (cont’d)

Inserting the Faraday equation into the Ampère equation in
ΩC we find

∫
ΩC

µ−1

C curlEC · curlwC + iω
∫
ΩC

σEC · wC

−iω
∫
Γ
wC × nC · HI = −iω

∫
ΩC

Je,C · wC .
(4)
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The case C: variational formulation (cont’d)

Inserting the Faraday equation into the Ampère equation in
ΩC we find

∫
ΩC

µ−1

C curlEC · curlwC + iω
∫
ΩC

σEC · wC

−iω
∫
Γ
wC × nC · HI = −iω

∫
ΩC

Je,C · wC .
(4)

Instead, the Ampère equation in ΩI gives

iω

∫

ΩI

µIHI · gradϕI +

∫

Γ

EC × nC · gradϕI = 0 (5)

Coupling between circuit problems and eddy-current problems – p.16/46



The case C: variational formulation (cont’d)

Inserting the Faraday equation into the Ampère equation in
ΩC we find

∫
ΩC

µ−1

C curlEC · curlwC + iω
∫
ΩC

σEC · wC

−iω
∫
Γ
wC × nC · HI = −iω

∫
ΩC

Je,C · wC .
(4)

Instead, the Ampère equation in ΩI gives

iω

∫

ΩI

µIHI · gradϕI +

∫

Γ

EC × nC · gradϕI = 0 (5)

and

iω

∫

ΩI

µIHI · ρI +

∫

Γ

EC × nC · ρI = V . (6)
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The case C: variational formulation (cont’d)

Here we have to note that
∫
ΓD

EI × nI · ρI =
∫
ΓD

gradW × nI · ρI

=
∫
ΓD

divτ (ρI × nI)W + V
∫
∂ΓJ

ρI · dτ = V .
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The case C: variational formulation (cont’d)

Here we have to note that
∫
ΓD

EI × nI · ρI =
∫
ΓD

gradW × nI · ρI

=
∫
ΓD

divτ (ρI × nI)W + V
∫
∂ΓJ

ρI · dτ = V .

Using (3) in (4), (5) and (6) one has

∫
ΩC

µ−1

C curlEC · curlwC + iω
∫
ΩC

σEC · wC

−iω
∫
Γ
wC × nC · gradψI − iωI0

∫
Γ
wC × nC · ρI

= −iω
∫
ΩC

Je,C · wC

(7)

−iω

∫

Γ

EC×nC ·gradϕI +ω2

∫

ΩI

µI gradψI ·gradϕI = 0 (8)

−iωQ

∫

Γ

EC × nC · ρI + ω2I0Q

∫

ΩI

µIρI · ρI = −iωV Q . (9)
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The case C: existence and uniqueness

If V is given, one solves (7), (8), (9) and determines EC ,
ψI and I0 (hence HC and HI).
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The case C: existence and uniqueness

If V is given, one solves (7), (8), (9) and determines EC ,
ψI and I0 (hence HC and HI).

If I0 is given, one solves (7), (8) and determines EC and
ψI (hence HC and HI); then from (9) one can also
compute V .
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The case C: existence and uniqueness

If V is given, one solves (7), (8), (9) and determines EC ,
ψI and I0 (hence HC and HI).

If I0 is given, one solves (7), (8) and determines EC and
ψI (hence HC and HI); then from (9) one can also
compute V .

Both problems are well-posed, namely, they have a unique
solution, since the associated sesquilinear form is coercive
(thus one can apply the Lax–Milgram Lemma).
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The case C: existence and uniqueness

If V is given, one solves (7), (8), (9) and determines EC ,
ψI and I0 (hence HC and HI).

If I0 is given, one solves (7), (8) and determines EC and
ψI (hence HC and HI); then from (9) one can also
compute V .

Both problems are well-posed, namely, they have a unique
solution, since the associated sesquilinear form is coercive
(thus one can apply the Lax–Milgram Lemma).

Moreover, it is simple to propose an approximation method
based on finite elements, of "edge" type for EC in ΩC and of
(scalar) nodal type for ψI in ΩI . Convergence is assured by
the Céa Lemma.
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The case C: existence and uniqueness

If V is given, one solves (7), (8), (9) and determines EC ,
ψI and I0 (hence HC and HI).

If I0 is given, one solves (7), (8) and determines EC and
ψI (hence HC and HI); then from (9) one can also
compute V .

Both problems are well-posed, namely, they have a unique
solution, since the associated sesquilinear form is coercive
(thus one can apply the Lax–Milgram Lemma).

Moreover, it is simple to propose an approximation method
based on finite elements, of "edge" type for EC in ΩC and of
(scalar) nodal type for ψI in ΩI . Convergence is assured by
the Céa Lemma. [However, an efficient implementation
demands to replace the harmonic field ρI with an easily
computable function.]
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The cases A, B, D, E, F

How can we proceed in the cases A, B, D, E, F if we insist
to assigne the voltage V or the current intensity I0?
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The cases A, B, D, E, F

How can we proceed in the cases A, B, D, E, F if we insist
to assigne the voltage V or the current intensity I0?
Here are some possible answers.
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The cases A, B, D, E, F

How can we proceed in the cases A, B, D, E, F if we insist
to assigne the voltage V or the current intensity I0?
Here are some possible answers.

Since the solution is already uniquely determined by the
assigned current density Je, it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!
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The cases A, B, D, E, F

How can we proceed in the cases A, B, D, E, F if we insist
to assigne the voltage V or the current intensity I0?
Here are some possible answers.

Since the solution is already uniquely determined by the
assigned current density Je, it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!

If one obstinately wants to solve it, what happens is that
the Maxwell equations are violated [maybe without
realizing it...].
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The cases A, B, D, E, F

How can we proceed in the cases A, B, D, E, F if we insist
to assigne the voltage V or the current intensity I0?
Here are some possible answers.

Since the solution is already uniquely determined by the
assigned current density Je, it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!

If one obstinately wants to solve it, what happens is that
the Maxwell equations are violated [maybe without
realizing it...].

A last alternative: to find a suitable interpretation
[Alonso Rodríguez and Valli, 2008].
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The cases A, B, D, E, F

How can we proceed in the cases A, B, D, E, F if we insist
to assigne the voltage V or the current intensity I0?
Here are some possible answers.

Since the solution is already uniquely determined by the
assigned current density Je, it is not possible to assigne
the voltage or the current intensity: stop hoping to solve
the problem!

If one obstinately wants to solve it, what happens is that
the Maxwell equations are violated [maybe without
realizing it...].

A last alternative: to find a suitable interpretation
[Alonso Rodríguez and Valli, 2008].

The case C comes back to help us.
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The cases A, B, D, E, F (cont’d)

In fact, let φC be the solution to





div(σ gradφC) = 0 in ΩC

φC = 1 on ΓJ

φC = 0 on ΓE

σ gradφC · n = 0 on Γ .
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The cases A, B, D, E, F (cont’d)

In fact, let φC be the solution to





div(σ gradφC) = 0 in ΩC

φC = 1 on ΓJ

φC = 0 on ΓE

σ gradφC · n = 0 on Γ .

One easily verifies that EC = V gradφC and H = 0 is the
solution to the problem C with Je,C = −V σ gradφC and
assigned voltage V .
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The cases A, B, D, E, F (cont’d)

In fact, let φC be the solution to





div(σ gradφC) = 0 in ΩC

φC = 1 on ΓJ

φC = 0 on ΓE

σ gradφC · n = 0 on Γ .

One easily verifies that EC = V gradφC and H = 0 is the
solution to the problem C with Je,C = −V σ gradφC and
assigned voltage V . Indeed, one has

∫
ΩC

σ−1Je,C · curlHC =
∫
ΩC

(−V gradφC) · curlHC

= −V
∫
Γ∪ΓE∪ΓJ

φC curlHC · nC

= −V
∫
ΓJ

curlHC · n ,
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The cases A, B, D, E, F (cont’d)

and from the Poynting Theorem

∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H

= V
∫
ΓJ

curlHC · n +
∫
ΩC

σ−1Je,C · curlHC = 0 ,

so that H = 0, and, moreover, from the Ampère equation
EC = −σ−1Je,C = V gradφC .
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The cases A, B, D, E, F (cont’d)

and from the Poynting Theorem

∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H

= V
∫
ΓJ

curlHC · n +
∫
ΩC

σ−1Je,C · curlHC = 0 ,

so that H = 0, and, moreover, from the Ampère equation
EC = −σ−1Je,C = V gradφC .

Thus, by linearity, the magnetic field H solution to problem
(7), (8), (9) with data Je,C = 0 and W|ΓJ

= V is the same
than the one with data Je,C = V σ gradφC and W|ΓJ

= 0.
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The cases A, B, D, E, F (cont’d)

and from the Poynting Theorem

∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H

= V
∫
ΓJ

curlHC · n +
∫
ΩC

σ−1Je,C · curlHC = 0 ,

so that H = 0, and, moreover, from the Ampère equation
EC = −σ−1Je,C = V gradφC .

Thus, by linearity, the magnetic field H solution to problem
(7), (8), (9) with data Je,C = 0 and W|ΓJ

= V is the same
than the one with data Je,C = V σ gradφC and W|ΓJ

= 0.

[Instead, for the electric field one has that the difference in
ΩC is given by V gradφC .]
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The cases A, B, D, E, F (cont’d)

For the cases A, B (electric ports), for which the "electric"
voltage cannot be assigned, one is thus led to consider a
"source" voltage V , that is the factor appearing in the
current density Je,C = V σ gradφC , and to solve
eddy-current problems with this source.
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The cases A, B, D, E, F (cont’d)

For the cases A, B (electric ports), for which the "electric"
voltage cannot be assigned, one is thus led to consider a
"source" voltage V , that is the factor appearing in the
current density Je,C = V σ gradφC , and to solve
eddy-current problems with this source.

Note that gradφC is the basis function of the space of
harmonic fields

Ĥ(ΩC) := {η̂C ∈ (L2(ΩC))3 | curl η̂C = 0, div(ση̂C) = 0,

ση̂C · nC = 0 on Γ, η̂C × n = 0 on ΓE ∪ ΓJ} ,

normalized by the condition
∫

bγ η̂C · dτ = 1, where γ̂ is (any)
path connecting ΓE to ΓJ .
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The cases A, B, D, E, F (cont’d)

Then, for the cases D, E, F (internal conductor) we define
ρC the basis function of the space of harmonic fields

H(ΩC) := {ηC ∈ (L2(ΩC))3 | curlηC = 0, div(σηC) = 0,

σηC · nC = 0 on Γ} ,

normalized by the condition
∫
γ ρC · dτ = 1, where the closed

cycle γ runs internally along the whole torus ΩC .
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The cases A, B, D, E, F (cont’d)

Then, for the cases D, E, F (internal conductor) we define
ρC the basis function of the space of harmonic fields

H(ΩC) := {ηC ∈ (L2(ΩC))3 | curlηC = 0, div(σηC) = 0,

σηC · nC = 0 on Γ} ,

normalized by the condition
∫
γ ρC · dτ = 1, where the closed

cycle γ runs internally along the whole torus ΩC .

Similarly to the cases A,B (electric ports), for the cases D,
E, F (internal conductor) one can thus consider a "source"
voltage V , associated with the current density Je,C = V σρC .

Coupling between circuit problems and eddy-current problems – p.23/46



The voltage rule

The voltage rule.
Having to impose a voltage V , modify Ohm law in ΩC

adding to the current density σEC the "applied" current
density Je,C = V σQC , where QC = gradφC for the
electric port case, and QC = ρC for the internal
conductor case. Thus Ampère law becomes

curlHC − σEC = V σQC .

In the former case, we intend that the voltage passes
from 0 on ΓE to V on ΓJ ; in the latter case, the voltage
passes from 0 to V along the internal cycle γ.
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The current intensity rule

The current intensity rule.
Having to impose a current intensity I0, modify Ohm law
in ΩC adding to the current density σEC the "applied"
current density Je,C = V σQC , where QC is as in the
“voltage rule" and V has to be determined. Thus the
Ampère law reads

curlHC − σEC − V σQC = 0 .

Then determine the field quantities H and EC and the
voltage V in such a way that also the additional
constraint ∫

S

curlHC · n = I0

is satisfied.
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The current intensity rule (cont’d)

In this constraint one has S = ΓJ for the electric port case,
and S = Σ, a section of ΩC , for the internal conductor case.
In the former case, the unit vector n is the outward normal
on ΓJ ; in the latter case, the unit vector n on Σ has the
same orientation of the internal cycle γ.
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Caso F: variational formulation

As an example, let us give the variational formulation for the
case F: given a voltage V 6= 0, the problem to solve is

∫
ΩC

σ−1 curlHC · curlwC +
∫
Ω
iωµH · w

= V
∫
ΩC

ρC · curlwC

(10)

for all w ∈ X, where

X := {w ∈ H(curl; Ω) | curlwI = 0 in ΩI} .

Then one computes I0 =
∫
ΩC

ρC · curlHC 6= 0 [note that

I0 = V −1(
∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H)...] and

defines EC = σ−1 curlHC − V ρC .
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Caso F: variational formulation (cont’d)

Instead, given the current intensity I0 6= 0, the problem is





∫
ΩC

σ−1 curlHC · curlwC +
∫
Ω
iωµH · w

−V
∫
ΩC

ρC · curlwC = 0∫
ΩC

ρC · curlHC = I0

for all w ∈ X, and the voltage V 6= 0 [note that

V = I0
−1

(
∫
ΩC

σ−1 curlHC · curlHC +
∫
Ω
iωµH · H)...] turns

out to be a Lagrange multiplier associated with the
constraint requiring that the intensity current is equal to I0.
Then, as usual, one defines EC = σ−1 curlHC − V ρC .
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Don’t forget the Faraday law!

Other authors have proposed similar formulations, but
they have not introduced any source term: namely, they
have defined EC = σ−1 curlHC .
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Don’t forget the Faraday law!

Other authors have proposed similar formulations, but
they have not introduced any source term: namely, they
have defined EC = σ−1 curlHC .

Since

V

∫

ΩC

ρC · curlwC = V

∫

Γ

ρC × nC · wC ,

and this term is vanishing for a test function wC with a
compact support in ΩC , one verifies that the Faraday
equation in ΩC is satisfied, and, having set
EC = σ−1 curlHC , the same clearly holds for the Ampère
equation (without sources) in the whole Ω.
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Don’t forget the Faraday law!

Other authors have proposed similar formulations, but
they have not introduced any source term: namely, they
have defined EC = σ−1 curlHC .

Since

V

∫

ΩC

ρC · curlwC = V

∫

Γ

ρC × nC · wC ,

and this term is vanishing for a test function wC with a
compact support in ΩC , one verifies that the Faraday
equation in ΩC is satisfied, and, having set
EC = σ−1 curlHC , the same clearly holds for the Ampère
equation (without sources) in the whole Ω.
[Note: since the electric field EI is determined by solving
the Faraday equation in ΩI (with HI already known), one is
led to believe that everything is all right...]
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Don’t forget the Faraday law! (cont’d)

But we had already realized that it is not possible to add
other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?
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Don’t forget the Faraday law! (cont’d)

But we had already realized that it is not possible to add
other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?

Since the Ampère law is satisfied in the whole Ω, the
effect must be that of giving up the Faraday law: where?
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Don’t forget the Faraday law! (cont’d)

But we had already realized that it is not possible to add
other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?

Since the Ampère law is satisfied in the whole Ω, the
effect must be that of giving up the Faraday law: where?

Let us see: the Faraday law relates the flux of the magnetic
induction through a surface with the line integral of the
electric field on the boundary of that surface.
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Don’t forget the Faraday law! (cont’d)

But we had already realized that it is not possible to add
other conditions... What is therefore the effect of the
voltage V that we are putting into the problem?

Since the Ampère law is satisfied in the whole Ω, the
effect must be that of giving up the Faraday law: where?

Let us see: the Faraday law relates the flux of the magnetic
induction through a surface with the line integral of the
electric field on the boundary of that surface.
Since we know the magnetic field in the whole Ω, surfaces
can stay everywhere; but at the moment we know the
electric field only in ΩC , therefore the boundary of the
surface must stay in ΩC .
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Don’t forget the Faraday law! (cont’d)

But the Faraday law (in differential form) is satisfied in ΩC .
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Don’t forget the Faraday law! (cont’d)

But the Faraday law (in differential form) is satisfied in ΩC .
Thus we must verify if there are surfaces in ΩI with
boundary on Γ,
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Don’t forget the Faraday law! (cont’d)

But the Faraday law (in differential form) is satisfied in ΩC .
Thus we must verify if there are surfaces in ΩI with
boundary on Γ, and moreover such that this boundary is not
the boundary of a surface in ΩC [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in Ω...].
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Don’t forget the Faraday law! (cont’d)

But the Faraday law (in differential form) is satisfied in ΩC .
Thus we must verify if there are surfaces in ΩI with
boundary on Γ, and moreover such that this boundary is not
the boundary of a surface in ΩC [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in Ω...].

Claim: the Faraday law is violated on the "cutting"
surface Λ! ∂Ω

Σ

Γ

Λ
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Don’t forget the Faraday law! (cont’d)

In fact, the Faraday law on Λ can be written as
∫

ΩI

iωµIHI · ρI +

∫

Γ

(EC × nC) · ρI = 0 ,

and from (10) we have

∫
ΩI
iωµIHI · ρI = −

∫
ΩC

iωµCHC · RC

+V
∫
ΩC

ρC · curlRC −
∫
ΩC

σ−1 curlHC · curlRC ,

where RC is any (real) extension of ρI in ΩC giving a global
function that belongs to the space X.
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Don’t forget the Faraday law! (cont’d)

Setting EC = σ−1 curlHC and integrating by parts one has

V
∫
ΩC

ρC · curlRC −
∫
ΩC

EC · curlRC = V
∫
Γ
(ρC × nC) · ρI

+
∫
ΩC

iωµCHC · RC −
∫
Γ
(EC × nC) · ρI ,
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Don’t forget the Faraday law! (cont’d)

Setting EC = σ−1 curlHC and integrating by parts one has

V
∫
ΩC

ρC · curlRC −
∫
ΩC

EC · curlRC = V
∫
Γ
(ρC × nC) · ρI

+
∫
ΩC

iωµCHC · RC −
∫
Γ
(EC × nC) · ρI ,

so that ∫
ΩI
iωµIHI · ρI +

∫
Γ
(EC × nC) · ρI

= V
∫
Γ
(ρC × nC) · ρI = V 6= 0 .
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Don’t forget the Faraday law! (cont’d)

Setting EC = σ−1 curlHC and integrating by parts one has

V
∫
ΩC

ρC · curlRC −
∫
ΩC

EC · curlRC = V
∫
Γ
(ρC × nC) · ρI

+
∫
ΩC

iωµCHC · RC −
∫
Γ
(EC × nC) · ρI ,

so that ∫
ΩI
iωµIHI · ρI +

∫
Γ
(EC × nC) · ρI

= V
∫
Γ
(ρC × nC) · ρI = V 6= 0 .

Instead, everything works well if we define
EC = σ−1 curlHC − V ρC .
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Don’t forget the Faraday law! (cont’d)

Setting EC = σ−1 curlHC and integrating by parts one has

V
∫
ΩC

ρC · curlRC −
∫
ΩC

EC · curlRC = V
∫
Γ
(ρC × nC) · ρI

+
∫
ΩC

iωµCHC · RC −
∫
Γ
(EC × nC) · ρI ,

so that ∫
ΩI
iωµIHI · ρI +

∫
Γ
(EC × nC) · ρI

= V
∫
Γ
(ρC × nC) · ρI = V 6= 0 .

Instead, everything works well if we define
EC = σ−1 curlHC − V ρC .

[Note: what is wrong in the previous argument? We cannot
find the electric field EI such that curlEI = −iωµIHI in ΩI

and EI × nI = −EC × nC on Γ: a necessary compatibility
condition on the data is not satisfied!]
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Cases A, B, D, E, F: existence and uniqueness

Summing up:
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Cases A, B, D, E, F: existence and uniqueness

Summing up:

The problem with a given voltage is therefore a standard
eddy-current problem, but with a particular assigned
current density Je,C , hence it has a unique solution.
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Cases A, B, D, E, F: existence and uniqueness

Summing up:

The problem with a given voltage is therefore a standard
eddy-current problem, but with a particular assigned
current density Je,C , hence it has a unique solution.

The problem with a given current intensity is instead a
saddle-point problem, and it needs a deeper analysis.
In conclusion, however, it turns out to have a unique
solution, too.
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Cases A, B, D, E, F: numerical approximation

For the voltage problem one can use any numerical
approximation method that is suitable for eddy-current
problems. [For a more efficient implementation, it is
better to replace the functions gradφC or ρC with a term
that can be easily computed.]
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Cases A, B, D, E, F: numerical approximation

For the voltage problem one can use any numerical
approximation method that is suitable for eddy-current
problems. [For a more efficient implementation, it is
better to replace the functions gradφC or ρC with a term
that can be easily computed.]

For the current intensity problem, one has to use those
numerical approximation methods that are suitable for
saddle-point problems. [However, note that the current
intensity contraint is associated with only one degree of
freedom, therefore one is facing a rather simple
extension of usual eddy-current problems.]
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Numerical results for the Case C

Coming back to the case C and to its variational formulation
(7), (8), (9), we use edge finite elements of the lowest
degree (a + b × x in each element) for approximating EC ,
and scalar piecewise linear elements for approximating ψI .

Coupling between circuit problems and eddy-current problems – p.36/46



Numerical results for the Case C

Coming back to the case C and to its variational formulation
(7), (8), (9), we use edge finite elements of the lowest
degree (a + b × x in each element) for approximating EC ,
and scalar piecewise linear elements for approximating ψI .

The problem description is the following: the conductor ΩC

and the whole domainΩ are two coaxial cylinders of radius
RC and RD, respectively, and height L. Assuming that σ

and µ are scalar constants, the exact solution for an
assigned current intensity I0 is known (through suitable
Bessel functions), and also the basis function ρI is known,
thus from (9) one easily computes the voltage V , too.
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Numerical results for the Case C (cont’d)

We have the following data:

RC = 0.25 m

RD = 0.5 m

L = 0.25 m

σ = 151565.8 Ω−1m−1

µ = 4π × 10−7 Hm−1

ω = 50 × 2π rad/s

and

I0 = 104 A or V = 0.08979 + 0.14680i

[the voltage corresponds to the current intensity I0 = 104 A].
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Numerical results for the Case C (cont’d)

The relative errors (for EC in H(curl; ΩC) and for HI in
L2(ΩI)) with respect to the number of degrees of freedom
are given by:
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Numerical results for the Case C (cont’d)

The relative errors (for EC in H(curl; ΩC) and for HI in
L2(ΩI)) with respect to the number of degrees of freedom
are given by:

Elements DoF eE eH eV

2304 1684 0.2341 0.1693 0.0312
18432 11240 0.1132 0.0847 0.0089
62208 35580 0.0750 0.0567 0.0048
147456 81616 0.0561 0.0425 0.0018
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Numerical results for the Case C (cont’d)

The relative errors (for EC in H(curl; ΩC) and for HI in
L2(ΩI)) with respect to the number of degrees of freedom
are given by:

Elements DoF eE eH eV

2304 1684 0.2341 0.1693 0.0312
18432 11240 0.1132 0.0847 0.0089
62208 35580 0.0750 0.0567 0.0048
147456 81616 0.0561 0.0425 0.0018

Elements DoF eE eH eI

2304 1685 0.2336 0.1685 0.0274
18432 11241 0.1132 0.0847 0.0085
62208 35581 0.0750 0.0566 0.0041
147456 81617 0.0561 0.0425 0.0024
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Numerical results for the Case C (cont’d)

On a graph: for assigned current intensity
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Numerical results for the Case C (cont’d)

for assigned voltage
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Numerical results for the Case C (cont’d)

A more realistic problem, considered by Bermúdez,
Rodríguez and Salgado, 2005, is that of a cylindircal
electric furnace with three electrodes ELSA [dimensions:
furnace height 2 m.; furnace diameter 8.88 m.; electrode
height 1.25 m.; electrode diameter 1 m.; distance of the
center of the electrode from the wall 3 m.].
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Numerical results for the Case C (cont’d)

A more realistic problem, considered by Bermúdez,
Rodríguez and Salgado, 2005, is that of a cylindircal
electric furnace with three electrodes ELSA [dimensions:
furnace height 2 m.; furnace diameter 8.88 m.; electrode
height 1.25 m.; electrode diameter 1 m.; distance of the
center of the electrode from the wall 3 m.].
The three electrodes ELSA are constituted by a graphite
core of 0.4 m. of diameter, and by an outer part of
Söderberg paste. The electric current enters the electrodes
through horizontal copper bars of rectangular section (0.07
m.×0.25 m.), connecting the top of the electrode with the
external boundary.
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Numerical results for the Case C (cont’d)

A more realistic problem, considered by Bermúdez,
Rodríguez and Salgado, 2005, is that of a cylindircal
electric furnace with three electrodes ELSA [dimensions:
furnace height 2 m.; furnace diameter 8.88 m.; electrode
height 1.25 m.; electrode diameter 1 m.; distance of the
center of the electrode from the wall 3 m.].
The three electrodes ELSA are constituted by a graphite
core of 0.4 m. of diameter, and by an outer part of
Söderberg paste. The electric current enters the electrodes
through horizontal copper bars of rectangular section (0.07
m.×0.25 m.), connecting the top of the electrode with the
external boundary.
Data: σ = 106 Ω−1m−1 for graphite, σ = 104 Ω−1m−1 for
Söderberg paste, σ = 5 × 106 Ω−1m−1 for copper,
µ = 4π × 10−7 Hm−1, ω = 50 × 2π rad/s, I0 = 7 × 104 A for
each electrode.
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Numerical results for the Case C (cont’d)

The value of the magnetic "potential" in the insulator: the
magnetic field is the gradient of the represented function
(not taking into account the jump surfaces).
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Numerical results for the Case C (cont’d)

The magnitude of the current density Je,C = σEC on a
horizontal section of one electrode.
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Numerical results for the Case C (cont’d)

The magnitude of the current density Je,C = σEC on a
vertical section of one electrode.
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