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Eddy-current equations

Eddy-current equations are obtained from Maxwell
equations by disregarding the displacement currents:











curlH = σE +
�

�
�@

@
@

ǫ
∂E

∂t
(Ampère)

µ
∂H

∂t
+ curl E = 0 (Faraday).

Here

E and H are the electric and magnetic fields,
respectively

σ is the electric conductivity

µ is the magnetic permeability

ǫ is the electric permittivity.
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Time-harmonic eddy-current equations

When interested in time-periodic phenomena, it is assumed
that

E(t,x) = Re[E(x) exp(iωt)]

H(t,x) = Re[H(x) exp(iωt)] ,

where ω 6= 0 is the assigned frequency, and one obtains
{

curlH− σE = 0 in Ω

curlE + iωµH = 0 in Ω .
(1)
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Time-harmonic eddy-current equations

When interested in time-periodic phenomena, it is assumed
that

E(t,x) = Re[E(x) exp(iωt)]

H(t,x) = Re[H(x) exp(iωt)] ,

where ω 6= 0 is the assigned frequency, and one obtains
{

curlH− σE = 0 in Ω

curlE + iωµH = 0 in Ω .
(1)

Here Ω is a bounded domain in R3, composed by two parts:
ΩC , a conductor, and ΩI , its complementary part, an
insulator, where the conductivity σ is vanishing.
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"Gauge" conditions

Problem:

in an insulator one has σ = 0, therefore E is not
uniquely determined in that region (E + ∇v is still a
solution).
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"Gauge" conditions

Problem:

in an insulator one has σ = 0, therefore E is not
uniquely determined in that region (E + ∇v is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): since in ΩI we have no
charges, we impose

div(ǫE) = 0 in ΩI .
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"Gauge" conditions

Problem:

in an insulator one has σ = 0, therefore E is not
uniquely determined in that region (E + ∇v is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): since in ΩI we have no
charges, we impose

div(ǫE) = 0 in ΩI .

[Depending on the geometrical properties of ΩI as well as
on the boundary conditions on ∂Ω, other "gauge" conditions
for E in ΩI can be necessary: here we will not enter this
aspect.]
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A coupled problem

Since the conductivity σ is vanishing in ΩI and div(ǫE) = 0
is only imposed in ΩI , the eddy-current problem is a
coupled problem between equations of different (though
similar) type, the coupling taking place through the interface
Γ between ΩC and ΩI :

{

curlE + iωµH = 0 in ΩC

curlH − σE = 0 in ΩC











curlE + iωµH = 0 in ΩI

curlH = 0 in ΩI

div(ǫE) = 0 in ΩI ,

plus E × nΓ and H× nΓ continuous on Γ (nΓ unit normal
vector on Γ).
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A coupled problem

Since the conductivity σ is vanishing in ΩI and div(ǫE) = 0
is only imposed in ΩI , the eddy-current problem is a
coupled problem between equations of different (though
similar) type, the coupling taking place through the interface
Γ between ΩC and ΩI :

{

curlE + iωµH = 0 in ΩC

curlH − σE = 0 in ΩC











curlE + iωµH = 0 in ΩI

curlH = 0 in ΩI

div(ǫE) = 0 in ΩI ,

plus E × nΓ and H× nΓ continuous on Γ (nΓ unit normal
vector on Γ).

Another kind of coupling will arise from the choice of the
excitation term (up to now all the considered equations
have vanishing right-hand side).
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Geometry

We will distinguish among two different geometrical
situations.
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Geometry

We will distinguish among two different geometrical
situations.

First geometrical case: electric ports. The conductor ΩC

is not strictly contained in Ω. For simplicity, ΩC is simply
connected with ∂ΩC ∩ ∂Ω = ΓE ∪ ΓJ , where ΓE and ΓJ

are connected and disjoint surfaces on ∂Ω (“electric
ports"). Notation: Γ = ΩC ∩ ΩI , ∂Ω = ΓE ∪ ΓJ ∪ ΓD,
∂ΩC = ΓE ∪ ΓJ ∪ Γ, ∂ΩI = ΓD ∪ Γ.
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Geometry

We will distinguish among two different geometrical
situations.

First geometrical case: electric ports. The conductor ΩC

is not strictly contained in Ω. For simplicity, ΩC is simply
connected with ∂ΩC ∩ ∂Ω = ΓE ∪ ΓJ , where ΓE and ΓJ

are connected and disjoint surfaces on ∂Ω (“electric
ports"). Notation: Γ = ΩC ∩ ΩI , ∂Ω = ΓE ∪ ΓJ ∪ ΓD,
∂ΩC = ΓE ∪ ΓJ ∪ Γ, ∂ΩI = ΓD ∪ Γ.

Second geometrical case: internal conductor. The
conductor ΩC is strictly contained in Ω. For simplicity,
ΩC is a torus. Notation: ∂ΩC = Γ, ∂ΩI = ∂Ω ∪ Γ.

POTENTIAL FORMULATIONS FOR TIME-HARMONIC EDDY-CURRENT PROBLEMS – p.6/28



The geometrical configurations

ΓJ

ΓE

Γ

Ξ

ΓD
∂Ω

Σ

Γ

Λ
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Boundary conditions

The boundary conditions are as follows ([Bossavit, 2000]):
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Boundary conditions

The boundary conditions are as follows ([Bossavit, 2000]):

Electric ports










E × n = 0 on ΓE ∪ ΓJ

µH · n = 0 on ΓI

ǫE · n = 0 on ΓI .

(2)
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Boundary conditions

The boundary conditions are as follows ([Bossavit, 2000]):

Electric ports










E × n = 0 on ΓE ∪ ΓJ

µH · n = 0 on ΓI

ǫE · n = 0 on ΓI .

(2)

Internal conductor
{

µH · n = 0 on ∂Ω

ǫE · n = 0 on ∂Ω .
(3)
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Coupling with circuits: voltage or current intensity excit ation

We want to couple the eddy-current problem with a circuit
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.
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Coupling with circuits: voltage or current intensity excit ation

We want to couple the eddy-current problem with a circuit
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.

Let us focus on the current intensity case.
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Coupling with circuits: voltage or current intensity excit ation

We want to couple the eddy-current problem with a circuit
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.

Let us focus on the current intensity case.

Question:
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Coupling with circuits: voltage or current intensity excit ation

We want to couple the eddy-current problem with a circuit
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.

Let us focus on the current intensity case.

Question:

how can we formulate the eddy-current problems when
the excitation is given by a current intensity?
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Coupling with circuits: voltage or current intensity excit ation

We want to couple the eddy-current problem with a circuit
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V or a current
intensity I0.

Let us focus on the current intensity case.

Question:

how can we formulate the eddy-current problems when
the excitation is given by a current intensity?

This can be a delicate point, as for the internal conductor
case eddy-current problems have already a unique solution
before a current intensity is assigned!
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Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the internal conductor case, for the
solution of the eddy-current problem (1), (3) the magnetic
field H in Ω and the electric field EC in ΩC are uniquely
determined. [Adding the "gauge" conditions, also the
electric field EI in ΩI is uniquely determined.]
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Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the internal conductor case, for the
solution of the eddy-current problem (1), (3) the magnetic
field H in Ω and the electric field EC in ΩC are uniquely
determined. [Adding the "gauge" conditions, also the
electric field EI in ΩI is uniquely determined.]

Proof. Multiply the Faraday equation by H, integrate in Ω
and integrate by parts: it holds

0 =
∫

Ω
curlE · H +

∫

Ω
iωµH · H

=
∫

Ω
E · curlH +

∫

Ω
iωµH · H +

∫

∂Ω
n × E · H .
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Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the internal conductor case, for the
solution of the eddy-current problem (1), (3) the magnetic
field H in Ω and the electric field EC in ΩC are uniquely
determined. [Adding the "gauge" conditions, also the
electric field EI in ΩI is uniquely determined.]

Proof. Multiply the Faraday equation by H, integrate in Ω
and integrate by parts: it holds

0 =
∫

Ω
curlE · H +

∫

Ω
iωµH · H

=
∫

Ω
E · curlH +

∫

Ω
iωµH · H +

∫

∂Ω
n × E · H .

Replacing EC with σ
−1 curlHC , and remembering that

curlHI = 0 in ΩI , one has the Poynting Theorem (energy
balance)
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Poynting Theorem (energy balance) (cont’d)

∫

ΩC
σ
−1 curlHC · curlHC +

∫

Ω
iωµH · H

+
∫

∂Ω
n × E · H = 0 .
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Poynting Theorem (energy balance) (cont’d)

∫

ΩC
σ
−1 curlHC · curlHC +

∫

Ω
iωµH · H

+
∫

∂Ω
n × E · H = 0 .

Since divτ (E × n) = −iωµH · n = 0 on ∂Ω, one has

E × n = gradW × n on ∂Ω ,

and therefore
∫

∂Ω
n × E · H =

∫

∂Ω
H × n · gradW = −

∫

∂Ω
div(H× n)W

= −
∫

∂Ω
curlH · nW = 0 ,

as curlHI = 0 in ΩI and ∂Ω ⊂ ∂ΩI . �
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Poynting Theorem (energy balance) (cont’d)

In the electric port case, instead, we can repeat the
computation here above and find

∫

ΩC
σ
−1 curlHC · curlHC +

∫

Ω
iωµH · H

= W|ΓJ

∫

ΓJ
curlHC · n ,

where W|ΓJ
is the (constant) value of the potential W on the

electric port ΓJ (whereas W|ΓE
= 0).
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Poynting Theorem (energy balance) (cont’d)

In the electric port case, instead, we can repeat the
computation here above and find

∫

ΩC
σ
−1 curlHC · curlHC +

∫

Ω
iωµH · H

= W|ΓJ

∫

ΓJ
curlHC · n ,

where W|ΓJ
is the (constant) value of the potential W on the

electric port ΓJ (whereas W|ΓE
= 0).

In this case a degree of freedom is indeed still free
(either the voltage W|ΓJ

, or else the current intensity
∫

ΓJ
curlHC · n in ΩC).
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A potential formulation

A well-known formulation of the eddy-current problem is
that in terms of a vector current potential TC and a
scalar magnetic potential ψ.
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A potential formulation

A well-known formulation of the eddy-current problem is
that in terms of a vector current potential TC and a
scalar magnetic potential ψ.

Introduce the space of harmonic fields

H(ΩI) := {vI ∈ (L2(ΩI))
3 | curl vI = 0, div(µvI) = 0,

µvI · n = 0 on ∂ΩI} ,

whose dimension is equal to 1, as in both geometrical
configurations there is exactly one non-bounding cycle γ

around ΩC . We denote the basis function of H(ΩI) by ρI ,
chosen in such a way that

∫

γ
ρI · dτ = 1.

We also introduce in ΩC a function RC that satisfies
RC × nΓ = ρI × nΓ on Γ.
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A potential formulation (cont’d)

This orthogonal decomposition result turns out to be useful:
each vector function vI with curl vI = 0 can be written as

vI = gradφI + αρI ,

where α =
∫

∂ΓJ
vI · dτ .
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A potential formulation (cont’d)

This orthogonal decomposition result turns out to be useful:
each vector function vI with curl vI = 0 can be written as

vI = gradφI + αρI ,

where α =
∫

∂ΓJ
vI · dτ .

From the Stokes Theorem

I0 =

∫

ΓJ

curlHC · nC =

∫

∂ΓJ

HC · dτ =

∫

∂ΓJ

HI · dτ ,

hence
HI = gradψI + I0

ρI .
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A potential formulation (cont’d)

Then the magnetic field H can be written as

H =

{

gradψI + I0
ρI in ΩI

TC + gradψC + I0 RC in ΩC ,
(4)

requiring on the interface Γ

TC × nΓ = 0 , ψC = ψI . (5)

[Instead, no conditions on TC , ψC and ψI are explicitly
imposed on ∂Ω.]
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A potential formulation (cont’d)

Then the magnetic field H can be written as

H =

{

gradψI + I0
ρI in ΩI

TC + gradψC + I0 RC in ΩC ,
(4)

requiring on the interface Γ

TC × nΓ = 0 , ψC = ψI . (5)

[Instead, no conditions on TC , ψC and ψI are explicitly
imposed on ∂Ω.]

Setting EC := σ
−1 curlHC , the Ampère equation is satisfied

in the whole Ω.
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A potential formulation (cont’d)

Imposing the Faraday equation in ΩC and the Gauss
magnetic equation div(µH) = 0 in Ω we find the following
variational formulation [here σ∗ > 0]:

∫

ΩC
σ
−1 curlTC · curlwC +σ−1

∗

∫

ΩC
div TC div wC

+
∫

ΩC
iωµC(TC + gradψC) · (wC + gradφC)

+
∫

ΩI
iωµI gradψI · gradφI

= −I0
∫

ΩC
σ
−1 curlRC · curlwC

−I0
∫

ΩC
iωµCRC · (wC + gradφC)

(6)

(for the reason of uniqueness, a penalization term for the
divergence has been added; moreover, in the electric port
case the condition TC · n = 0 on ΓE ∪ ΓJ has been
imposed).
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Interpretation of the result

For both the electric port case and the internal conductor
case it can be shown that this variational problem is
well-posed, as the sesquilinear form at the left-hand side is
coercive [Lax–Milgram lemma].
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Interpretation of the result

For both the electric port case and the internal conductor
case it can be shown that this variational problem is
well-posed, as the sesquilinear form at the left-hand side is
coercive [Lax–Milgram lemma].

However, an interpretation problem arises:

for the electric port case a degree of freedom was
available, therefore it has been possible to impose the
current intensity I0: this case is OK;
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Interpretation of the result

For both the electric port case and the internal conductor
case it can be shown that this variational problem is
well-posed, as the sesquilinear form at the left-hand side is
coercive [Lax–Milgram lemma].

However, an interpretation problem arises:

for the electric port case a degree of freedom was
available, therefore it has been possible to impose the
current intensity I0: this case is OK;

for the internal conductor case we have proved an
uniqueness result: thus what are we really solving when
we also impose the current intensity I0? What is the
real effect of putting I0 into the problem?
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Don’t forget the Faraday equation!

Since we have imposed the Faraday equation in ΩC and the
electric field EI is determined by solving the Faraday
equation in ΩI (with HI already known), it really seems that
everything is all right...
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Don’t forget the Faraday equation!

Since we have imposed the Faraday equation in ΩC and the
electric field EI is determined by solving the Faraday
equation in ΩI (with HI already known), it really seems that
everything is all right...

But let us see: the Faraday equation relates the flux of the
magnetic induction through a surface with the line integral
of the electric field on the boundary of that surface.
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Don’t forget the Faraday equation!

Since we have imposed the Faraday equation in ΩC and the
electric field EI is determined by solving the Faraday
equation in ΩI (with HI already known), it really seems that
everything is all right...

But let us see: the Faraday equation relates the flux of the
magnetic induction through a surface with the line integral
of the electric field on the boundary of that surface.

Since we know the magnetic field in the whole Ω, surfaces
can stay everywhere in Ω; but at the moment we know the
electric field only in ΩC , therefore the boundary of the
surface must stay in ΩC .
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Don’t forget the Faraday equation! (cont’d)

But the Faraday equation (in differential form) is satisfied in
ΩC , therefore for a surface contained in ΩC everything is all
right.
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Don’t forget the Faraday equation! (cont’d)

But the Faraday equation (in differential form) is satisfied in
ΩC , therefore for a surface contained in ΩC everything is all
right.

Thus we must verify if there are surfaces in ΩI with
boundary on Γ,
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Don’t forget the Faraday equation! (cont’d)

But the Faraday equation (in differential form) is satisfied in
ΩC , therefore for a surface contained in ΩC everything is all
right.

Thus we must verify if there are surfaces in ΩI with
boundary on Γ, and moreover such that this boundary is not
the boundary of a surface in ΩC [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in Ω...].
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Don’t forget the Faraday equation! (cont’d)

Claim: the Faraday equation is violated on the "cutting"
surface Λ! ∂Ω

Σ

Γ

Λ
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Don’t forget the Faraday equation! (cont’d)

Claim: the Faraday equation is violated on the "cutting"
surface Λ! ∂Ω

Σ

Γ

Λ

[Note. In the electric port case the cutting surface Σ has not
the same properties: its boundary is not contained in Γ.]
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Don’t forget the Faraday equation! (cont’d)

Let us see: the Faraday equation on Λ can be written as
∫

ΩI

iωµIHI · ρI +

∫

Γ

(EC × nC) · ρI = 0 , (7)

and this is not included in the variational formulation (6).
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Don’t forget the Faraday equation! (cont’d)

Let us see: the Faraday equation on Λ can be written as
∫

ΩI

iωµIHI · ρI +

∫

Γ

(EC × nC) · ρI = 0 , (7)

and this is not included in the variational formulation (6).
More precisely, we have

∫

ΩI

iωµIHI · ρI = I0

∫

ΩI

iωµIρI · ρI

and
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Don’t forget the Faraday equation! (cont’d)

∫

Γ
EC × nC · ρI =

∫

Γ
EC × nC · RC

= −
∫

ΩC
curlEC · RC +

∫

ΩC
EC · curlRC

=
∫

ΩC
iωµCHC · RC +

∫

ΩC
σ
−1 curlHC · curlRC

=
∫

ΩC
iωµC(TC + gradψC) · RC

+I0
∫

ΩC
iωµCRC · RC + I0

∫

ΩC
σ
−1 curlRC · curlRC

+
∫

ΩC
σ
−1 curlTC · curlRC .
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Don’t forget the Faraday equation! (cont’d)

∫

Γ
EC × nC · ρI =

∫

Γ
EC × nC · RC

= −
∫

ΩC
curlEC · RC +

∫

ΩC
EC · curlRC

=
∫

ΩC
iωµCHC · RC +

∫

ΩC
σ
−1 curlHC · curlRC

=
∫

ΩC
iωµC(TC + gradψC) · RC

+I0
∫

ΩC
iωµCRC · RC + I0

∫

ΩC
σ
−1 curlRC · curlRC

+
∫

ΩC
σ
−1 curlTC · curlRC .

Thus (7) is an additional equation for I0 [and TC , ψC , ...]: I0

cannot be a given quantity if we want to satisfy the Faraday
equation on Λ.
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Don’t forget the Faraday equation! (cont’d)

∫

Γ
EC × nC · ρI =

∫

Γ
EC × nC · RC

= −
∫

ΩC
curlEC · RC +

∫

ΩC
EC · curlRC

=
∫

ΩC
iωµCHC · RC +

∫

ΩC
σ
−1 curlHC · curlRC

=
∫

ΩC
iωµC(TC + gradψC) · RC

+I0
∫

ΩC
iωµCRC · RC + I0

∫

ΩC
σ
−1 curlRC · curlRC

+
∫

ΩC
σ
−1 curlTC · curlRC .

Thus (7) is an additional equation for I0 [and TC , ψC , ...]: I0

cannot be a given quantity if we want to satisfy the Faraday
equation on Λ.
[Note. From another point of view: if (7) does not hold, a
necessary compatibility condition on the data is not
satisfied and we cannot find the electric field EI such that
curlEI = −iωµIHI in ΩI and EI × nI = −EC × nC on Γ.]
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Assigning the current densityJe

Let us now consider a different situation: for the internal
conductor case it is possible to solve the problem with an
excitation given by an assigned current density Je (for
simplicity, supported in ΩC). The problem reads:
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Assigning the current densityJe

Let us now consider a different situation: for the internal
conductor case it is possible to solve the problem with an
excitation given by an assigned current density Je (for
simplicity, supported in ΩC). The problem reads:
∫

ΩC
σ
−1 curlTC · curlwC + σ−1

∗

∫

ΩC
div TC div wC

+
∫

ΩC
iωµ(TC + gradψC) · (wC + gradφC)

+
∫

ΩI
iωµgradψI · gradφI + I0

∫

ΩC
σ
−1 curlRC · curlwC

+I0
∫

ΩC
iωµRC · (wC + gradφC) =

∫

ΩC
σ
−1Je,C · curlwC

I0
∫

ΩI
iωµIρI · ρI +

∫

ΩC
iωµC(TC + gradψC) · RC

+I0
∫

ΩC
iωµCRC · RC + I0

∫

ΩC
σ
−1 curlRC · curlRC

+
∫

ΩC
σ
−1 curlTC · curlRC =

∫

ΩC
σ
−1Je,C · curlRC ,

and also I0 has to be determined.
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Conclusion about solvability

Summing up:
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Conclusion about solvability

Summing up:

Electric port case. The problem with a given current
intensity is uniquely solvable. [The same is true for the
problem with a given voltage.]
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Conclusion about solvability

Summing up:

Electric port case. The problem with a given current
intensity is uniquely solvable. [The same is true for the
problem with a given voltage.]

Internal conductor case. The problem with a given
current intensity is not solvable. [The same is true for
the problem with a given voltage.] [The same is true for
other boundary conditions, such as E × n = 0 on ∂Ω, or
H × n = 0 and ǫE · n = 0 on ∂Ω.]
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Conclusion about solvability

Summing up:

Electric port case. The problem with a given current
intensity is uniquely solvable. [The same is true for the
problem with a given voltage.]

Internal conductor case. The problem with a given
current intensity is not solvable. [The same is true for
the problem with a given voltage.] [The same is true for
other boundary conditions, such as E × n = 0 on ∂Ω, or
H × n = 0 and ǫE · n = 0 on ∂Ω.]

Internal conductor case. Instead, the problem with a
given current density Je is uniquely solvable. [The same
is true for other boundary conditions, such as E × n = 0

on ∂Ω, or H × n = 0 and ǫE · n = 0 on ∂Ω.]
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Numerical approximation

Numerical approximation is quite standard.
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Numerical approximation

Numerical approximation is quite standard.

For the approximation of TC use vector nodal elements
in ΩC .
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Numerical approximation

Numerical approximation is quite standard.

For the approximation of TC use vector nodal elements
in ΩC .

For the approximation of ψ use scalar nodal elements in
Ω.
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Numerical approximation

Numerical approximation is quite standard.

For the approximation of TC use vector nodal elements
in ΩC .

For the approximation of ψ use scalar nodal elements in
Ω.

[For a more efficient implementation, it is possible to
replace the functions ρI and RC with two other functions
that can be easily computed.]
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Numerical approximation (cont’d)

However, when using vector nodal elements it is well-known
that the convergence of the approximation scheme is not
assured in non-convex domains. (This happens very often
in real-life problems with electric ports.)
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Numerical approximation (cont’d)

However, when using vector nodal elements it is well-known
that the convergence of the approximation scheme is not
assured in non-convex domains. (This happens very often
in real-life problems with electric ports.)

Therefore the (TC , ψ)-formulation has a limited range of
application: its use is indicated for electric port
problems or for problems in which excitation comes
through an imposed current density Je, but only under
the assumption that the conductor ΩC is convex!
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Numerical approximation (cont’d)

However, when using vector nodal elements it is well-known
that the convergence of the approximation scheme is not
assured in non-convex domains. (This happens very often
in real-life problems with electric ports.)

Therefore the (TC , ψ)-formulation has a limited range of
application: its use is indicated for electric port
problems or for problems in which excitation comes
through an imposed current density Je, but only under
the assumption that the conductor ΩC is convex!

Since we do not want to end up with a somehow negative
result, let us pass to...
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A different formulation

A more efficient formulation for the electric port case is
based on a different coupling: the one between the scalar
magnetic potential ψI , so that HI = gradψI + I0

ρI , and the
electric field EC, so that HC = −(iω)−1

µ
−1

C curlEC [see
Alonso Rodríguez, Valli and Vázquez Hernández, Numer.
Math., 2009].
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A different formulation

A more efficient formulation for the electric port case is
based on a different coupling: the one between the scalar
magnetic potential ψI , so that HI = gradψI + I0

ρI , and the
electric field EC, so that HC = −(iω)−1

µ
−1

C curlEC [see
Alonso Rodríguez, Valli and Vázquez Hernández, Numer.
Math., 2009].

The potential ψI and EC satisfy the Ampère equation in ΩC

∫

ΩC
µ
−1

C curlEC · curlwC + iω
∫

ΩC
σEC · wC

−iω
∫

Γ
wC × nC · gradψI

= −iω
∫

ΩC
Je,C · wC + iωI0

∫

Γ
wC × nC · ρI ,

(8)

which also includes the no-jump condition for H× n on Γ,
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A different formulation (cont’d)

and the Gauss magnetic equation in ΩI

−iω

∫

Γ

EC×nC ·gradϕI+ω2

∫

ΩI

µI gradψI ·gradϕI = 0 , (9)

which also contains the no-jump condition for µH · n on Γ.
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A different formulation (cont’d)

and the Gauss magnetic equation in ΩI

−iω

∫

Γ

EC×nC ·gradϕI+ω2

∫

ΩI

µI gradψI ·gradϕI = 0 , (9)

which also contains the no-jump condition for µH · n on Γ.

This problem is well-posed
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A different formulation (cont’d)

and the Gauss magnetic equation in ΩI

−iω

∫

Γ

EC×nC ·gradϕI+ω2

∫

ΩI

µI gradψI ·gradϕI = 0 , (9)

which also contains the no-jump condition for µH · n on Γ.

This problem is well-posed and can be approximated by
using edge elements for EC and scalar nodal elements for
ψI , on meshes that do not need to match on the interface Γ.
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A different formulation (cont’d)

and the Gauss magnetic equation in ΩI

−iω

∫

Γ

EC×nC ·gradϕI+ω2

∫

ΩI

µI gradψI ·gradϕI = 0 , (9)

which also contains the no-jump condition for µH · n on Γ.

This problem is well-posed and can be approximated by
using edge elements for EC and scalar nodal elements for
ψI , on meshes that do not need to match on the interface Γ.
Moreover, the convexity condition on the conductor ΩC is
not required.
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A different formulation (cont’d)

and the Gauss magnetic equation in ΩI

−iω

∫

Γ

EC×nC ·gradϕI+ω2

∫

ΩI

µI gradψI ·gradϕI = 0 , (9)

which also contains the no-jump condition for µH · n on Γ.

This problem is well-posed and can be approximated by
using edge elements for EC and scalar nodal elements for
ψI , on meshes that do not need to match on the interface Γ.
Moreover, the convexity condition on the conductor ΩC is
not required.

Finally, also the voltage excitation problem can be
formulated in a similar way (in that case, the current
intensity I0 is a further unknown).
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