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Eddy-current equations

fEddy-current equations are obtained from Maxwell T
equations by disregarding the displacement currents:

curl H = o€ +>§ (Ampére)

7! 8— +curl€ =0 (Faraday).

Here

# £ and H are the electric and magnetic fields,
respectively

#® o Is the electric conductivity
# 1 IS the magnetic permeabillity
L ® ¢ is the electric permittivity. J
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Time-harmonic eddy-current equations

-

fWhen Interested In time-periodic phenomena, it is assumed
that

E(t,x) = RelE(x)exp(iwt)]
H(t,x) = Re[H(x)exp(iwt)],

where w # 0 Is the assigned frequency, and one obtains

(1)

curlH - ocE =0 in $)
curlE+iwuH =0 in().

o |
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Time-harmonic eddy-current equations

-

fWhen Interested In time-periodic phenomena, it is assumed
that

E(t,x) = RelE(x)exp(iwt)]
H(t,x) = Re[H(x)exp(iwt)],

where w # 0 Is the assigned frequency, and one obtains

(1)

curlH - ocE =0 in $)
curlE+iwuH =0 in().

Here Q is a bounded domain in R?, composed by two parts:
()¢, a conductor, and €27, its complementary part, an
iInsulator, where the conductivity o is vanishing.
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"Gauge" conditions

fProbIem: T

# In an insulator one has o = 0, therefore E is not
uniquely determined in that region (E + Vv Is still a
solution).

o |
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"Gauge" conditions

fProbIem: T

# In an insulator one has o = 0, therefore E is not
uniquely determined in that region (E + Vv Is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): since Iin €2; we have no
charges, we impose

div(eE) =0  in Q.

o |
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"Gauge" conditions

fProbIem: T

# In an insulator one has o = 0, therefore E is not
uniquely determined in that region (E + Vv Is still a
solution).

Some additional conditions are thus necessary (they are
often called "gauge" conditions): since Iin €2; we have no
charges, we impose

div(eE) =0  in Q.

[Depending on the geometrical properties of (2; as well as
on the boundary conditions on 02, other "gauge" conditions
for E in 2; can be necessary: here we will not enter this

Laspect.] J
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A coupled problem

- Since the conductivity o is vanishing in Q; and div(eE) =0 |
IS only imposed in €7, the eddy-current problem is a
coupled problem between equations of different (though
similar) type, the coupling taking place through the interface
[" between Q- and Q;:

1E 4+ iwpuH =0 in ()

curlE +iwpH =0 in Q¢ curt k- wop %n !

'’ E—o . curlH=20 in (27
curlH — ocE = in

¢ div(eE) =0 in Q7 ,

plus E x npr and H x np continuous on I' (nr unit normal
vector on I).

o |
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A coupled problem

- Since the conductivity o is vanishing in Q; and div(eE) =0 |
IS only imposed in €7, the eddy-current problem is a
coupled problem between equations of different (though
similar) type, the coupling taking place through the interface

[ between Q- and Qy:

, curlE +iwpuH =0 in )}
1E H=0 in ()
{ Curtt = twp ek curlH=20 in (27

IH-cE=0 in €
o 7 e div(eE) =0 in Q7 ,

plus E x npr and H x np continuous on I' (nr unit normal
vector on I).

Another kind of coupling will arise from the choice of the
excitation term (up to now all the considered equations
~ have vanishing right-hand side). o
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Geometry

-

We will distinguish among two different geometrical
situations.

-

o |
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Geometry

fWe will distinguish among two different geometrical T
situations.

#® First geometrical case: electric ports. The conductor Q¢
IS not strictly contained in €. For simplicity, Q¢ Is simply
connected with 90Q-NoQY =Tr Ul ;, whereI'g and I';
are connected and disjoint surfaces on 92 (“electric
ports"). Notation: I' = Q- NQ;, 00 =T ULy UTp,

e =Tpul';ul',0;=TpuUl.
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Geometry

o N

We will distinguish among two different geometrical
situations.

#® First geometrical case: electric ports. The conductor Q¢
IS not strictly contained in €. For simplicity, Q¢ Is simply
connected with 90Q-NoQY =Tr Ul ;, whereI'g and I';
are connected and disjoint surfaces on 92 (“electric
ports"). Notation: I' = Q- NQ;, 00 =T ULy UTp,

e =Tpul';ul',0;=TpuUl.

# Second geometrical case: internal conductor. The
conductor )¢ Is strictly contained in 2. For simplicity,
(¢ Is a torus. Notation: 9 =1, 02y = 0Q UT.

o |
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The geometrical configurations

of2

(1]
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Boundary conditions

-

The boundary conditions are as follows ([Bossavit, 2000])):

-

o |
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Boundary conditions

-

The boundary conditions are as follows ([Bossavit, 2000])):

-

# Electric ports

(Exn=0 onlpUly
¢ pH-n=0 onIy (2)
eE-n=20 onl'y.

\
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Boundary conditions

-

The boundary conditions are as follows ([Bossavit, 2000])):

-

# Electric ports

(Exn=0 onlpUly
¢ pH-n=0 onIy (2)
eE-n=20 onl'y.

\

#® Internal conductor

(3)

pH-n =20 on 0
eE-n=20 on O0f) .

o |
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Coupling with circuits: voltage or current intensity excit ation

fWe want to couple the eddy-current problem with a circuit T
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V' or a current

intensity 1°.

o |
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Coupling with circuits: voltage or current intensity excit ation

fWe want to couple the eddy-current problem with a circuit T
problem, thus we have to consider, as the only external

datum that determines the solution, a voltage V' or a current
intensity 1°.

Let us focus on the current intensity case.
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Coupling with circuits: voltage or current intensity excit ation

fWe want to couple the eddy-current problem with a circuit T
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V' or a current
intensity 1°.

Let us focus on the current intensity case.
Question:
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Coupling with circuits: voltage or current intensity excit ation

fWe want to couple the eddy-current problem with a circuit T
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V' or a current
intensity 1°.

Let us focus on the current intensity case.
Question:

# how can we formulate the eddy-current problems when
the excitation is given by a current intensity?

o |
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Coupling with circuits: voltage or current intensity excit ation

fWe want to couple the eddy-current problem with a circuit T
problem, thus we have to consider, as the only external
datum that determines the solution, a voltage V' or a current

intensity 1°.
Let us focus on the current intensity case.

Question:

# how can we formulate the eddy-current problems when
the excitation is given by a current intensity?

This can be a delicate point, as for the internal conductor
case eddy-current problems have already a unigue solution
before a current intensity is assigned!

o |
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Poynting Theorem (energy balance)

~ Infact one has:
Unigueness theorem. In the internal conductor case, for the

solution of the eddy-current problem (1), (3) the magnetic
field H in 2 and the electric field E- in Q¢ are uniquely
determined. [Adding the "gauge" conditions, also the
electric field E; in ; is uniguely determined.]

o |
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Poynting Theorem (energy balance)

~ Infact one has:
Unigueness theorem. In the internal conductor case, for the

solution of the eddy-current problem (1), (3) the magnetic
field H in 2 and the electric field E- in Q¢ are uniquely
determined. [Adding the "gauge" conditions, also the
electric field E; in ; is uniguely determined.]

Proof. Multiply the Faraday equation by H, integrate in {2
and integrate by parts: it holds

0 = [qcurlE-H+ [ iwpH- - H
:fQE-curlﬁ+finuH-ﬁ+faQn><E-ﬁ-

o |
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Poynting Theorem (energy balance)

~ Infact one has:
Unigueness theorem. In the internal conductor case, for the
solution of the eddy-current problem (1), (3) the magnetic
field H in 2 and the electric field E- in Q¢ are uniquely
determined. [Adding the "gauge" conditions, also the
electric field E; in ; is uniguely determined.]

Proof. Multiply the Faraday equation by H, integrate in {2
and integrate by parts: it holds

0 = [qcurlE-H+ [ iwpH- - H
:fQE-curlﬁ+finuH-ﬁ+faQn><E-ﬁ-

Replacing E- with 0! curl H, and remembering that
curl H; = 0 In 7, one has the Poynting Theorem (energy
balance)
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Poynting Theorem (energy balance) (cont’d)

- N

Ja., o !'curlHe - curlHe + [ iwpH - ﬁ_
+f89n><E-H:O.

o |
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Poynting Theorem (energy balance) (cont’d)

- N

Ja., o !'curlHe - curlHe + [ iwpH - ﬁ_
+f89n><E-H:O.

Since div.(E x n) = —iwpH - n = 0 on 9€2, one has
E xn=grad W X non 0f},

and therefore

[ronxE-H :f({mﬁxnfradW:—faﬁdiv(ﬁxn)W
= — [yocurlH-nW =0,

ascurl Hy = 01in Q; and 02 C 0Q;. [

o |
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Poynting Theorem (energy balance) (cont’d)

-

fIn the electric port case, instead, we can repeat the
computation here above and find

Ja., o lcurl Hq - cuiH—C + [qivpH-H
=Wy, Jp, curlHg -n,

where W, Is the (constant) value of the potential 1V on the
electric port Iy (whereas W, = 0).

o |
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Poynting Theorem (energy balance) (cont’d)

-

fIn the electric port case, instead, we can repeat the
computation here above and find

Ja., o lcurl Hq - cuiH—C + [qivpH-H
=Wy, Jp, curlHg -n,

where W, Is the (constant) value of the potential 1V on the
electric port Iy (whereas W, = 0).

# In this case a degree of freedom is indeed still free
(either the voltage W, or else the current intensity

fFJ curl Ho - n in Qp).

o |
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A potential formulation

f # A well-known formulation of the eddy-current problem isT
that in terms of a vector current potential T and a
scalar magnetic potential 1.

o |
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A potential formulation

f # A well-known formulation of the eddy-current problem isj
that in terms of a vector current potential T and a
scalar magnetic potential 1.

Introduce the space of harmonic fields

H(Qp) == {vr € (L*(Q7))? | curl v; = 0,div(pvy) = 0,
pvi-n=0on 00},

whose dimension is equal to 1, as in both geometrical
configurations there is exactly one non-bounding cycle ~
around Q)~. We denote the basis function of H(2;) by p;,
chosen in such away that [ p; - dr = 1.

We also introduce in Q2 a function R that satisfies

Lchnp:p[xnponF. J
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A potential formulation (cont’d)

- This orthogonal decomposition result turns out to be useful: |
each vector function v; with curl v; = 0 can be written as

VI = grad ¢I T apr,

where a = [y vy -dT.

o |
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A potential formulation (cont’d)

- This orthogonal decomposition result turns out to be useful: |
each vector function v; with curl v; = 0 can be written as

VI = grad ¢I T apr,

where a = [y vy -dT.
From the Stokes Theorem

10:/ curlHy - ng = Hy - dr = H; - dr,
Iy ol 5 ol 5

hence
H; = grady; +I'p;.

o |
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A potential formulation (cont’d)

-

Then the magnetic field H can be written as

H — grad ¢ + 1Y p; in ()7 (4)
T0+grad¢0—|—]ORC in Q¢ |
requiring on the interface I
Toxnpr =0, Yo=19r. (5)

[Instead, no conditions on T, v¥¢ and v are explicitly
Imposed on 02.]

o |
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A potential formulation (cont’d)

-

Then the magnetic field H can be written as

H — grad ¢ + I p; in ()7
B T0+grad¢0—|—]ORc in Q¢ |

requiring on the interface I

Toxnr=0, Yog=1r. (5)

[Instead, no conditions on T, v¥¢ and v are explicitly
Imposed on 02.]

Setting E¢ := o~ ! curl H¢, the Ampére equation is satisfied
In the whole €.

o |
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A potential formulation (cont’d)

-

Imposing the Faraday equation in - and the Gauss
magnetic equation div(gH) = 0 In © we find the following
variational formulation [here o, > 0]:

-

Jo. 0 eurl T - curlwe + o, ' [, divTe divwe

+ ch iwpe(To + grad wgi- (We + grad ¢¢)

+ fQ iwul grad Yy - grad ¢y (6)
= —JY Ja. @ LeurlRe - curlwg

—JY Ja,, iwncRe - (Wo + grad oc)

(for the reason of uniqgueness, a penalization term for the
divergence has been added; moreover, in the electric port
case the condition To-n=00onT'y UI'; has been

Limposed). J
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Interpretation of the result

-

fFor both the electric port case and the internal conductor
case it can be shown that this variational problem is
well-posed, as the sesquilinear form at the left-hand side is
coercive [Lax—Milgram lemmal].

o |
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Interpretation of the result

fFor both the electric port case and the internal conductor T

case it can be shown that this variational problem is
well-posed, as the sesquilinear form at the left-hand side is

coercive [Lax—Milgram lemmal].
However, an interpretation problem arises:

# for the electric port case a degree of freedom was
avallable, therefore it has been possible to impose the

current intensity IV: this case is OK;

o |
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Interpretation of the result

-

fFor both the electric port case and the internal conductor
case it can be shown that this variational problem is
well-posed, as the sesquilinear form at the left-hand side is
coercive [Lax—Milgram lemmal].

However, an interpretation problem arises:

# for the electric port case a degree of freedom was
avallable, therefore it has been possible to impose the

current intensity IV: this case is OK;

o for the internal conductor case we have proved an
uniqueness result: thus what are we really solving when

we also impose the current intensity 7°? What is the
real effect of putting I into the problem?

o |
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Don’t forget the Faraday equation!

. .

Since we have imposed the Faraday equation in €2~ and the
electric field E; is determined by solving the Faraday
equation in Q; (with H; already known), it really seems that
everything is all right...

o |
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Don’t forget the Faraday equation!

. .

Since we have imposed the Faraday equation in €2~ and the
electric field E; is determined by solving the Faraday
equation in Q; (with H; already known), it really seems that
everything is all right...

But let us see: the Faraday equation relates the flux of the
magnetic induction through a surface with the line integral
of the electric field on the boundary of that surface.

o |
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Don’t forget the Faraday equation!

. .

Since we have imposed the Faraday equation in €2~ and the
electric field E; is determined by solving the Faraday
equation in Q; (with H; already known), it really seems that
everything is all right...

But let us see: the Faraday equation relates the flux of the
magnetic induction through a surface with the line integral
of the electric field on the boundary of that surface.

Since we know the magnetic field in the whole €, surfaces
can stay everywhere in (2; but at the moment we know the
electric field only in Q¢, therefore the boundary of the

surface must stay in Q.

o |
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Don’t forget the Faraday equation! (cont’d)

-

But the Faraday equation (in differential form) is satisfied in
()¢, therefore for a surface contained in ¢ everything is all
right.

-

o |
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Don’t forget the Faraday equation! (cont’d)

-

fBut the Faraday equation (in differential form) is satisfied in
()¢, therefore for a surface contained in 2~ everything is all
right.

Thus we must verify if there are surfaces in ); with
boundary on I,

o |
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Don’t forget the Faraday equation! (cont’d)

- N

But the Faraday equation (in differential form) is satisfied in
()¢, therefore for a surface contained in 2~ everything is all
right.

Thus we must verify if there are surfaces in ); with
boundary on I', and moreover such that this boundary is not
the boundary of a surface in Q¢ [if this iIs not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in ()...].

o |
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Don’t forget the Faraday equation! (cont’d)

- N

# Claim: the Faraday equation is violated on the "cutting"
surface A! A o0

o |
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Don’t forget the Faraday equation! (cont’d)

- N

# Claim: the Faraday equation is violated on the "cutting"
surface A! A o0

[Note. In the electric port case the cutting surface > has not
the same properties: its boundary is not contained in I'.]

o |

POTENTIAL FORMULATIONS FOR TIME-HARMONIC EDDY-CURRENT PROBLEMS — p.20/28



Don’t forget the Faraday equation! (cont’d)

-

/Q inIHI'PI+/P(ECXﬂC)'PIZOa (7)
I

L

et us see: the Faraday equation on A can be written as

and this is not included in the variational formulation (6).

o |
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Don’t forget the Faraday equation! (cont’d)

-

/Q inIHI'PI+/P(ECXﬂC)'PIZOa (7)
I

L

et us see: the Faraday equation on A can be written as

and this is not included in the variational formulation (6).
More precisely, we have

/ wpHy - pr = ]O/ WHIPr - P]
Q[ QI

and

o |
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Don’t forget the Faraday equation! (cont’d)

f JrEc xng-pr = [ Ec xn¢g - Re T
= — Jq.curlEc-Reo + [ Ec - curlRg
— ch wpcHe - Ro + ch o~ 1curl H- - curlR¢

= Jo.. iwpc(Te + grad ¢o) - Re
+ 7Y ch iwpcReo - Re + 1Y ch o lcurlR¢ - curl Re
+ fQo o lcurl To - curl R .

o |

POTENTIAL FORMULATIONS FOR TIME-HARMONIC EDDY-CURRENT PROBLEMS — p.22/28



Don’t forget the Faraday equation! (cont’d)

f fFEanC-pI:fFEanC-RC —‘
= — Jq.curlEc-Reo + [ Ec - curlRg
= ch wpoHe - Ro + ch o lcurlH¢ - curl Rp
= Ja. iwpc(To +gradc) - Re
+ 7Y ch iwpcReo - Re + 1Y ch o lcurlR¢ - curl Re
+ ch o lcurl To - curl R .

Thus (7) is an additional equation for I° [and T¢, ¥¢, ...]: 1”
cannot be a given quantity if we want to satisfy the Faraday
equation on A.

o |
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Don’t forget the Faraday equation! (cont’d)

f fFEanC-p[:fFEanC-RC —‘
= — Jq.curlEc-Reo + [ Ec - curlRg
= Jo. iwpcHe - Reo + g, o lcurlH¢ - curl Rp
= Jo.. iwpc(Te + grad ¢o) - Re
+ 7Y fﬂo iwpcReo - Re + 1Y ch o lcurlR¢ - curl Re
+ fQo o lcurl To - curl R .

Thus (7) is an additional equation for I° [and T¢, ¥¢, ...]: 1”

cannot be a given quantity if we want to satisfy the Faraday

equation on A.

[Note. From another point of view: if (7) does not hold, a

necessary compatibility condition on the data is not

satisfied and we cannot find the electric field E; such that
\—curlEI = —iwpuHyin Qrand E; xny = —E¢o xng on 1] J
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Assigning the current densityJ,

fLet us now consider a different situation: for the internal T
conductor case it is possible to solve the problem with an
excitation given by an assigned current density J. (for
simplicity, supported in €)). The problem reads:

o |
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Assigning the current densityJ,

fLet us now consider a different situation: for the internal T
conductor case it is possible to solve the problem with an
excitation given by an assigned current density J. (for
simplicity, supported in €)). The problem reads:

Ja., o lcurl Tc - curlwg + o ! Ja,, div T divwe

+ fQ iwpu(To + grad ¥o) - (Wo + grad gb_c)
+ fQ iwp grad ¢y - grad ¢ + I fQ ~LcurlR¢ - curlwg
+1" [o, iwpuRe - (We +grad éc) = [, 07 I c - curlwe

IV [, iwprpr - pr+ Jo. iwpc(Te + grad¢e) - Re
+ 7Y Ja,, iwncRe - Ro + 1Y Ja., o lcurlR¢ - curl R
+ ch o lcurl To - curl R = ch a_lJej(; -curl R¢,

Land also 7 has to be determined. J
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Conclusion about solvability

~ Summing up: o

o |
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Conclusion about solvability

~ Summing up: o

# Electric port case. The problem with a given current
Intensity is uniquely solvable. [The same is true for the
problem with a given voltage.]

o |
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Conclusion about solvabllity

~ Summing up: o

# Electric port case. The problem with a given current
Intensity is uniquely solvable. [The same is true for the
problem with a given voltage.]

# Internal conductor case. The problem with a given
current intensity is not solvable. [The same is true for
the problem with a given voltage.] [The same is true for
other boundary conditions, such as E x n = 0 on 0?2, or
Hxn=0andeE -n=0o0n of.]

o |
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Conclusion about solvabllity

~ Summing up:

-

# Electric port case. The problem with a given current
Intensity is uniquely solvable. [The same is true for the

problem with a given voltage.]

# Internal conductor case. The problem with a given
current intensity is not solvable. [The same is true for
the problem with a given voltage.] [The same is true for

other boundary conditions, such
Hxn=0andeE -n=0o0n o).

® [nternal conductor case. Insteac

as E xn =0o0n of2, or

, the problem with a

given current density J. Is uniquely solvable. [The same
IS true for other boundary conditions, suchas E xn =0
L on d),orHxn=0and eE -n =0 on 0] J
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Numerical approximation

N

umerical approximation is quite standard.

o |
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Numerical approximation

N N

#® For the approximation of T~ use vector nodal elements
In Q.

umerical approximation is quite standard.

o |
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Numerical approximation

N N

#® For the approximation of T~ use vector nodal elements
In Q.

umerical approximation is quite standard.

# For the approximation of ) use scalar nodal elements in
Q).

o |
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Numerical approximation

N N

umerical approximation is quite standard.

#® For the approximation of T~ use vector nodal elements
In Q.

# For the approximation of ) use scalar nodal elements in
Q).

[For a more efficient implementation, it is possible to
replace the functions p; and R with two other functions

that can be easily computed.]

o |
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Numerical approximation (cont’d)

-

fHowever, when using vector nodal elements it is well-known
that the convergence of the approximation scheme is not
assured in non-convex domains. (This happens very often
In real-life problems with electric ports.)

o |
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Numerical approximation (cont’d)

-

fHowever, when using vector nodal elements it is well-known
that the convergence of the approximation scheme is not
assured in non-convex domains. (This happens very often
In real-life problems with electric ports.)

# Therefore the (T, v)-formulation has a limited range of
application: its use is indicated for electric port
problems or for problems in which excitation comes
through an imposed current density J., but only under
the assumption that the conductor 2~ Iis convex!

o |
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Numerical approximation (cont’d)

-

fHowever, when using vector nodal elements it is well-known
that the convergence of the approximation scheme is not
assured in non-convex domains. (This happens very often
In real-life problems with electric ports.)

# Therefore the (T, v)-formulation has a limited range of
application: its use is indicated for electric port
problems or for problems in which excitation comes
through an imposed current density J., but only under
the assumption that the conductor 2~ Iis convex!

Since we do not want to end up with a somehow negative
result, let us pass to...

o |
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A different formulation

-

A more efficient formulation for the electric port case is
based on a different coupling: the one between the scalar

magnetic potential ¢;, so that H; = grad¢; + Ip;, and the
electric field Ec, so that Ho = —(iw) “tus' curl E¢ [see

Alonso Rodriguez, Valli and Vazquez Hernandez, Numer.
Math., 2009].

-

o |

POTENTIAL FORMULATIONS FOR TIME-HARMONIC EDDY-CURRENT PROBLEMS — p.27/28



A different formulation

-

fA more efficient formulation for the electric port case is
based on a different coupling: the one between the scalar

magnetic potential v7, so that H; = grady; + Ip;, and the
electric field Ec, so that Ho = —(iw) “tus' curl E¢ [see
Alonso Rodriguez, Valli and Vazquez Hernandez, Numer.
Math., 2009].

The potential v; and E satisfy the Ampere equation in Q¢

ch 11»61 curl E¢ - curlwg + iw ch ocEc -w¢o
—iw [ W X ne - grad ¢y (8)
= —z'waC Je.c -We + iwl’ frw—(; X ne - pPr,

which also includes the no-jump condition for H x n on T,

|
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A different formulation (cont'd)

-

and the Gauss magnetic equation in

-

—iw/EanC-gradWerQ/ prgradyr-gradpr =0, (9)
r Q)

1

which also contains the no-jump condition for uH -n on TI'.

o |
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A different formulation (cont'd)

-

and the Gauss magnetic equation in

-

—iw/EanC-gradWerQ/ prgradyr-gradpr =0, (9)
r Q)

1

which also contains the no-jump condition for uH -n on TI'.
This problem is well-posed

o |
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A different formulation (cont'd)
fand the Gauss magnetic equation in €; T

—iw/EanC-gradWerQ/ prgradyr-gradpr =0, (9)
r Q)

1

which also contains the no-jump condition for uH -n on TI'.

This problem is well-posed and can be approximated by
using edge elements for E- and scalar nodal elements for
7, on meshes that do not need to match on the interface I'.

o |
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A different formulation (cont'd)

fand the Gauss magnetic equation in €; T

—iw/EanC-gradWerQ/ prgradyr-gradpr =0, (9)
r Q)

1

which also contains the no-jump condition for uH -n on TI'.

This problem is well-posed and can be approximated by
using edge elements for E- and scalar nodal elements for
7, on meshes that do not need to match on the interface I'.

Moreover, the convexity condition on the conductor Q¢ Is
not required.

o |
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A different formulation (cont'd)

o N

and the Gauss magnetic equation in

—iw/EanC-gradWerQ/ prgradyr-gradpr =0, (9)
r Q)

1

which also contains the no-jump condition for uH -n on TI'.

This problem is well-posed and can be approximated by
using edge elements for E- and scalar nodal elements for
7, on meshes that do not need to match on the interface I'.

Moreover, the convexity condition on the conductor Q¢ Is
not required.

Finally, also the voltage excitation problem can be
formulated in a similar way (in that case, the current

Lintensity 1% is a further unknown). J
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