POTENTIAL FORMULATIONS FOR TIME-HARMONIC EDDY-CURRENT PROBLEMS

ALBERTO VALLI

Department of Mathematics, University of Trento

Eddy-current equations are obtained from Maxwell equations by disregarding the displacement currents:

$$\begin{cases} \operatorname{curl} \mathcal{H} = \boldsymbol{\sigma} \mathcal{E} + \overbrace{\boldsymbol{\epsilon}}^{\partial \mathcal{E}} & \text{(Ampère)} \\ \mu \frac{\partial \mathcal{H}}{\partial t} + \operatorname{curl} \mathcal{E} = \mathbf{0} & \text{(Faraday).} \end{cases}$$

Here

- \mathcal{E} and \mathcal{H} are the electric and magnetic fields, respectively
- σ is the electric conductivity
- μ is the magnetic permeability
- ϵ is the electric permittivity.

Time-harmonic eddy-current equations

When interested in time-periodic phenomena, it is assumed that

$$\begin{aligned} \mathcal{E}(t, \mathbf{x}) &= & \operatorname{Re}[\mathbf{E}(\mathbf{x}) \exp(i\omega t)] \\ \mathcal{H}(t, \mathbf{x}) &= & \operatorname{Re}[\mathbf{H}(\mathbf{x}) \exp(i\omega t)] , \end{aligned}$$

where $\omega \neq 0$ is the assigned frequency, and one obtains

$$\begin{cases} \mathbf{curl} \mathbf{H} - \boldsymbol{\sigma} \mathbf{E} = \mathbf{0} & \text{in } \Omega \\ \mathbf{curl} \mathbf{E} + i\omega \boldsymbol{\mu} \mathbf{H} = \mathbf{0} & \text{in } \Omega . \end{cases}$$
(1)

Time-harmonic eddy-current equations

When interested in time-periodic phenomena, it is assumed that

$$\mathcal{E}(t, \mathbf{x}) = \operatorname{Re}[\mathbf{E}(\mathbf{x}) \exp(i\omega t)]$$

$$\mathcal{H}(t, \mathbf{x}) = \operatorname{Re}[\mathbf{H}(\mathbf{x}) \exp(i\omega t)] ,$$

where $\omega \neq 0$ is the assigned frequency, and one obtains

$$\begin{cases} \mathbf{curl} \mathbf{H} - \boldsymbol{\sigma} \mathbf{E} = \mathbf{0} & \text{in } \Omega \\ \mathbf{curl} \mathbf{E} + i\omega \boldsymbol{\mu} \mathbf{H} = \mathbf{0} & \text{in } \Omega . \end{cases}$$
(1)

Here Ω is a bounded domain in \mathbb{R}^3 , composed by two parts: Ω_C , a conductor, and Ω_I , its complementary part, an insulator, where the conductivity σ is vanishing.

"Gauge" conditions

Problem:

• in an insulator one has $\sigma = 0$, therefore E is not uniquely determined in that region (E + ∇v is still a solution).

"Gauge" conditions

Problem:

• in an insulator one has $\sigma = 0$, therefore E is not uniquely determined in that region (E + ∇v is still a solution).

Some additional conditions are thus necessary (they are often called "gauge" conditions): since in Ω_I we have no charges, we impose

$$\operatorname{div}(\boldsymbol{\epsilon}\mathbf{E}) = 0$$
 in Ω_I .

"Gauge" conditions

Problem:

• in an insulator one has $\sigma = 0$, therefore E is not uniquely determined in that region (E + ∇v is still a solution).

Some additional conditions are thus necessary (they are often called "gauge" conditions): since in Ω_I we have no charges, we impose

$$\operatorname{div}(\boldsymbol{\epsilon}\mathbf{E}) = 0$$
 in Ω_I .

[Depending on the geometrical properties of Ω_I as well as on the boundary conditions on $\partial\Omega$, other "gauge" conditions for E in Ω_I can be necessary: here we will not enter this aspect.]

A coupled problem

Since the conductivity σ is vanishing in Ω_I and $\operatorname{div}(\epsilon \mathbf{E}) = 0$ is only imposed in Ω_I , the eddy-current problem is a coupled problem between equations of different (though similar) type, the coupling taking place through the interface Γ between Ω_C and Ω_I :

$$\begin{cases} \mathbf{curl}\,\mathbf{E} + i\omega\boldsymbol{\mu}\mathbf{H} = \mathbf{0} & \text{in } \Omega_C \\ \mathbf{curl}\,\mathbf{H} - \boldsymbol{\sigma}\mathbf{E} = \mathbf{0} & \text{in } \Omega_C \end{cases} \begin{cases} \mathbf{curl}\,\mathbf{E} + i\omega\boldsymbol{\mu}\mathbf{H} = \mathbf{0} & \text{in } \Omega_I \\ \mathbf{curl}\,\mathbf{H} = \mathbf{0} & \text{in } \Omega_I \\ \mathrm{div}(\boldsymbol{\epsilon}\mathbf{E}) = \mathbf{0} & \text{in } \Omega_I , \end{cases}$$

plus $\mathbf{E} \times \mathbf{n}_{\Gamma}$ and $\mathbf{H} \times \mathbf{n}_{\Gamma}$ continuous on Γ (\mathbf{n}_{Γ} unit normal vector on Γ).

A coupled problem

Since the conductivity σ is vanishing in Ω_I and $\operatorname{div}(\epsilon \mathbf{E}) = 0$ is only imposed in Ω_I , the eddy-current problem is a coupled problem between equations of different (though similar) type, the coupling taking place through the interface Γ between Ω_C and Ω_I :

$$\begin{cases} \mathbf{curl}\,\mathbf{E} + i\omega\boldsymbol{\mu}\mathbf{H} = \mathbf{0} & \text{in } \Omega_C \\ \mathbf{curl}\,\mathbf{H} - \boldsymbol{\sigma}\mathbf{E} = \mathbf{0} & \text{in } \Omega_C \end{cases} \begin{cases} \mathbf{curl}\,\mathbf{E} + i\omega\boldsymbol{\mu}\mathbf{H} = \mathbf{0} & \text{in } \Omega_I \\ \mathbf{curl}\,\mathbf{H} = \mathbf{0} & \text{in } \Omega_I \\ \mathrm{div}(\boldsymbol{\epsilon}\mathbf{E}) = \mathbf{0} & \text{in } \Omega_I , \end{cases}$$

plus $\mathbf{E} \times \mathbf{n}_{\Gamma}$ and $\mathbf{H} \times \mathbf{n}_{\Gamma}$ continuous on Γ (\mathbf{n}_{Γ} unit normal vector on Γ).

Another kind of coupling will arise from the choice of the excitation term (up to now all the considered equations have vanishing right-hand side).

Geometry

We will distinguish among two different geometrical situations.

Geometry

We will distinguish among two different geometrical situations.

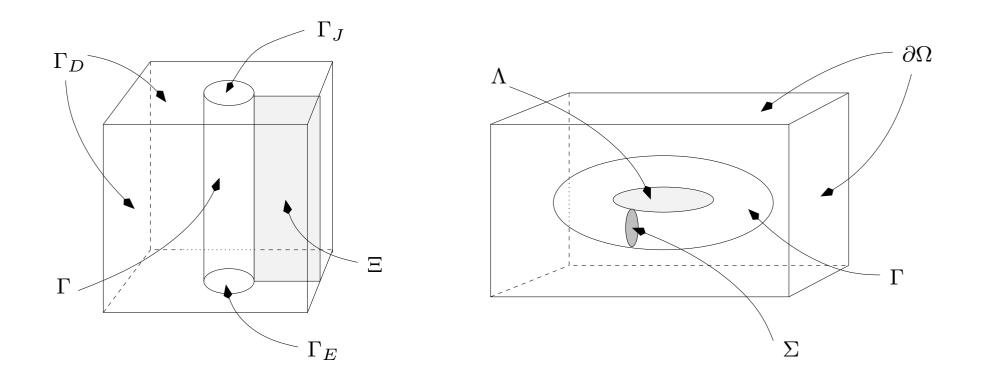
• First geometrical case: electric ports. The conductor Ω_C is not strictly contained in Ω . For simplicity, Ω_C is simply connected with $\partial \Omega_C \cap \partial \Omega = \Gamma_E \cup \Gamma_J$, where Γ_E and Γ_J are connected and disjoint surfaces on $\partial \Omega$ ("electric ports"). Notation: $\Gamma = \overline{\Omega_C} \cap \overline{\Omega_I}, \ \partial \Omega = \Gamma_E \cup \Gamma_J \cup \Gamma_D, \ \partial \Omega_C = \Gamma_E \cup \Gamma_J \cup \Gamma, \ \partial \Omega_I = \Gamma_D \cup \Gamma$.

Geometry

We will distinguish among two different geometrical situations.

- First geometrical case: electric ports. The conductor Ω_C is not strictly contained in Ω . For simplicity, Ω_C is simply connected with $\partial \Omega_C \cap \partial \Omega = \Gamma_E \cup \Gamma_J$, where Γ_E and Γ_J are connected and disjoint surfaces on $\partial \Omega$ ("electric ports"). Notation: $\Gamma = \overline{\Omega_C} \cap \overline{\Omega_I}, \ \partial \Omega = \Gamma_E \cup \Gamma_J \cup \Gamma_D, \ \partial \Omega_C = \Gamma_E \cup \Gamma_J \cup \Gamma, \ \partial \Omega_I = \Gamma_D \cup \Gamma$.
- Second geometrical case: internal conductor. The conductor Ω_C is strictly contained in Ω . For simplicity, Ω_C is a torus. Notation: $\partial \Omega_C = \Gamma$, $\partial \Omega_I = \partial \Omega \cup \Gamma$.

The geometrical configurations



Boundary conditions

The boundary conditions are as follows ([Bossavit, 2000]):

Boundary conditions

The boundary conditions are as follows ([Bossavit, 2000]):

Electric ports

$$\begin{cases} \mathbf{E} \times \mathbf{n} = \mathbf{0} & \text{on } \Gamma_E \cup \Gamma_J \\ \boldsymbol{\mu} \mathbf{H} \cdot \mathbf{n} = 0 & \text{on } \Gamma_I \\ \boldsymbol{\epsilon} \mathbf{E} \cdot \mathbf{n} = 0 & \text{on } \Gamma_I . \end{cases}$$
(2)

Boundary conditions

The boundary conditions are as follows ([Bossavit, 2000]):

Electric ports

$$\begin{cases} \mathbf{E} \times \mathbf{n} = \mathbf{0} & \text{on } \Gamma_E \cup \Gamma_J \\ \boldsymbol{\mu} \mathbf{H} \cdot \mathbf{n} = 0 & \text{on } \Gamma_I \\ \boldsymbol{\epsilon} \mathbf{E} \cdot \mathbf{n} = 0 & \text{on } \Gamma_I . \end{cases}$$
(2)

Internal conductor

$$\begin{cases} \boldsymbol{\mu} \mathbf{H} \cdot \mathbf{n} = 0 & \text{on } \partial \Omega \\ \boldsymbol{\epsilon} \mathbf{E} \cdot \mathbf{n} = 0 & \text{on } \partial \Omega . \end{cases}$$
(3)

We want to couple the eddy-current problem with a circuit problem, thus we have to consider, as the only external datum that determines the solution, a voltage V or a current intensity I^0 .

We want to couple the eddy-current problem with a circuit problem, thus we have to consider, as the only external datum that determines the solution, a voltage V or a current intensity I^0 .

Let us focus on the current intensity case.

We want to couple the eddy-current problem with a circuit problem, thus we have to consider, as the only external datum that determines the solution, a voltage V or a current intensity I^0 .

Let us focus on the current intensity case.

Question:

We want to couple the eddy-current problem with a circuit problem, thus we have to consider, as the only external datum that determines the solution, a voltage V or a current intensity I^0 .

Let us focus on the current intensity case.

Question:

how can we formulate the eddy-current problems when the excitation is given by a current intensity?

We want to couple the eddy-current problem with a circuit problem, thus we have to consider, as the only external datum that determines the solution, a voltage V or a current intensity I^0 .

Let us focus on the current intensity case.

Question:

how can we formulate the eddy-current problems when the excitation is given by a current intensity?

This can be a delicate point, as for the internal conductor case eddy-current problems have already a unique solution before a current intensity is assigned!

Poynting Theorem (energy balance)

In fact one has:

Uniqueness theorem. In the internal conductor case, for the solution of the eddy-current problem (1), (3) the magnetic field H in Ω and the electric field E_C in Ω_C are uniquely determined. [Adding the "gauge" conditions, also the electric field E_I in Ω_I is uniquely determined.]

Poynting Theorem (energy balance)

In fact one has:

Uniqueness theorem. In the internal conductor case, for the solution of the eddy-current problem (1), (3) the magnetic field H in Ω and the electric field E_C in Ω_C are uniquely determined. [Adding the "gauge" conditions, also the electric field E_I in Ω_I is uniquely determined.]

Proof. Multiply the Faraday equation by $\overline{\mathbf{H}}$, integrate in Ω and integrate by parts: it holds

$$0 = \int_{\Omega} \operatorname{\mathbf{curl}} \mathbf{E} \cdot \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} = \int_{\Omega} \mathbf{E} \cdot \operatorname{\mathbf{curl}} \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} + \int_{\partial\Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} .$$

Poynting Theorem (energy balance)

In fact one has:

Uniqueness theorem. In the internal conductor case, for the solution of the eddy-current problem (1), (3) the magnetic field H in Ω and the electric field E_C in Ω_C are uniquely determined. [Adding the "gauge" conditions, also the electric field E_I in Ω_I is uniquely determined.]

Proof. Multiply the Faraday equation by $\overline{\mathbf{H}}$, integrate in Ω and integrate by parts: it holds

$$0 = \int_{\Omega} \operatorname{\mathbf{curl}} \mathbf{E} \cdot \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} = \int_{\Omega} \mathbf{E} \cdot \operatorname{\mathbf{curl}} \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} + \int_{\partial\Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} .$$

Replacing E_C with $\sigma^{-1} \operatorname{curl} H_C$, and remembering that $\operatorname{curl} H_I = 0$ in Ω_I , one has the Poynting Theorem (energy balance)

Poynting Theorem (energy balance) (cont'd)

$$\int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{H}_C \cdot \operatorname{curl} \overline{\mathbf{H}_C} + \int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} + \int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} = \mathbf{0}.$$

Poynting Theorem (energy balance) (cont'd)

$$\begin{split} \int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{H}_C \cdot \operatorname{curl} \overline{\mathbf{H}_C} + \int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} \\ &+ \int_{\partial\Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} = \mathbf{0} \,. \end{split}$$
Since $\operatorname{div}_{\tau}(\mathbf{E} \times \mathbf{n}) = -i \omega \boldsymbol{\mu} \mathbf{H} \cdot \mathbf{n} = 0$ on $\partial\Omega$, one has
$$\mathbf{E} \times \mathbf{n} = \operatorname{\mathbf{grad}} W \times \mathbf{n} \text{ on } \partial\Omega \,, \end{split}$$

and therefore

$$\int_{\partial\Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} = \int_{\partial\Omega} \overline{\mathbf{H}} \times \mathbf{n} \cdot \operatorname{\mathbf{grad}} W = -\int_{\partial\Omega} \operatorname{div}(\overline{\mathbf{H}} \times \mathbf{n}) W$$
$$= -\int_{\partial\Omega} \operatorname{\mathbf{curl}} \overline{\mathbf{H}} \cdot \mathbf{n} W = 0 ,$$

as curl $\mathbf{H}_I = \mathbf{0}$ in Ω_I and $\partial \Omega \subset \partial \Omega_I$. \Box

Poynting Theorem (energy balance) (cont'd)

In the electric port case, instead, we can repeat the computation here above and find

$$\int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{H}_C \cdot \operatorname{curl} \overline{\mathbf{H}_C} + \int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} \\ = W_{|\Gamma_J} \int_{\Gamma_J} \operatorname{curl} \overline{\mathbf{H}_C} \cdot \mathbf{n} ,$$

where $W_{|\Gamma_J}$ is the (constant) value of the potential W on the electric port Γ_J (whereas $W_{|\Gamma_E} = 0$).

In the electric port case, instead, we can repeat the computation here above and find

$$\int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{H}_C \cdot \operatorname{curl} \overline{\mathbf{H}_C} + \int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} = W_{|\Gamma_J} \int_{\Gamma_J} \operatorname{curl} \overline{\mathbf{H}_C} \cdot \mathbf{n} ,$$

where $W_{|\Gamma_J}$ is the (constant) value of the potential W on the electric port Γ_J (whereas $W_{|\Gamma_E} = 0$).

■ In this case a degree of freedom is indeed still free (either the voltage $W_{|\Gamma_J}$, or else the current intensity $\int_{\Gamma_J} \operatorname{curl} \mathbf{H}_C \cdot \mathbf{n}$ in Ω_C).

A potential formulation

• A well-known formulation of the eddy-current problem is that in terms of a vector current potential T_C and a scalar magnetic potential ψ .

A potential formulation

• A well-known formulation of the eddy-current problem is that in terms of a vector current potential T_C and a scalar magnetic potential ψ .

Introduce the space of harmonic fields

$$\mathcal{H}(\Omega_I) := \left\{ \mathbf{v}_I \in (L^2(\Omega_I))^3 \mid \operatorname{\mathbf{curl}} \mathbf{v}_I = \mathbf{0}, \operatorname{div}(\boldsymbol{\mu} \mathbf{v}_I) = 0, \\ \boldsymbol{\mu} \mathbf{v}_I \cdot \mathbf{n} = 0 \text{ on } \partial \Omega_I \right\},$$

whose dimension is equal to 1, as in both geometrical configurations there is exactly one non-bounding cycle γ around Ω_C . We denote the basis function of $\mathcal{H}(\Omega_I)$ by ρ_I , chosen in such a way that $\int_{\gamma} \rho_I \cdot d\tau = 1$. We also introduce in Ω_C a function \mathbf{R}_C that satisfies $\mathbf{R}_C \times \mathbf{n}_{\Gamma} = \rho_I \times \mathbf{n}_{\Gamma}$ on Γ .

This orthogonal decomposition result turns out to be useful: each vector function v_I with curl $v_I = 0$ can be written as

$$\mathbf{v}_I = \mathbf{grad}\,\phi_I + lphaoldsymbol{
ho}_I\,,$$

where $\alpha = \int_{\partial \Gamma_J} \mathbf{v}_I \cdot d\boldsymbol{\tau}$.

This orthogonal decomposition result turns out to be useful: each vector function v_I with curl $v_I = 0$ can be written as

$$\mathbf{v}_I = \operatorname{\mathbf{grad}} \phi_I + lpha oldsymbol{
ho}_I \,,$$

where $\alpha = \int_{\partial \Gamma_J} \mathbf{v}_I \cdot d\boldsymbol{\tau}$. From the Stokes Theorem

$$I^{0} = \int_{\Gamma_{J}} \operatorname{\mathbf{curl}} \mathbf{H}_{C} \cdot \mathbf{n}_{C} = \int_{\partial \Gamma_{J}} \mathbf{H}_{C} \cdot d\boldsymbol{\tau} = \int_{\partial \Gamma_{J}} \mathbf{H}_{I} \cdot d\boldsymbol{\tau} \,,$$

hence

$$\mathbf{H}_I = \operatorname{\mathbf{grad}} \psi_I + I^0 \boldsymbol{\rho}_I \,.$$

Then the magnetic field H can be written as

$$\mathbf{H} = \begin{cases} \mathbf{grad} \,\psi_I + I^0 \,\boldsymbol{\rho}_I & \text{in } \Omega_I \\ \mathbf{T}_C + \mathbf{grad} \,\psi_C + I^0 \,\mathbf{R}_C & \text{in } \Omega_C , \end{cases}$$

requiring on the interface Γ

$$\mathbf{T}_C \times \mathbf{n}_{\Gamma} = \mathbf{0} \quad , \quad \psi_C = \psi_I \; . \tag{5}$$

[Instead, no conditions on \mathbf{T}_C , ψ_C and ψ_I are explicitly imposed on $\partial \Omega$.]

4

Then the magnetic field H can be written as

$$\mathbf{H} = \begin{cases} \mathbf{grad} \,\psi_I + I^0 \,\boldsymbol{\rho}_I & \text{in } \Omega_I \\ \mathbf{T}_C + \mathbf{grad} \,\psi_C + I^0 \,\mathbf{R}_C & \text{in } \Omega_C , \end{cases}$$

requiring on the interface Γ

$$\mathbf{T}_C \times \mathbf{n}_{\Gamma} = \mathbf{0} \quad , \quad \psi_C = \psi_I \; . \tag{5}$$

[Instead, no conditions on \mathbf{T}_C , ψ_C and ψ_I are explicitly imposed on $\partial \Omega$.]

Setting $E_C := \sigma^{-1} \operatorname{curl} H_C$, the Ampère equation is satisfied in the whole Ω .

4

Imposing the Faraday equation in Ω_C and the Gauss magnetic equation $\operatorname{div}(\boldsymbol{\mu}\mathbf{H}) = 0$ in Ω we find the following variational formulation [here $\sigma_* > 0$]:

$$\int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{T}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} + \boldsymbol{\sigma}_*^{-1} \int_{\Omega_C} \operatorname{div} \mathbf{T}_C \operatorname{div} \overline{\mathbf{w}_C} \\
+ \int_{\Omega_C} i \omega \boldsymbol{\mu}_C (\mathbf{T}_C + \operatorname{grad} \psi_C) \cdot (\overline{\mathbf{w}_C} + \operatorname{grad} \overline{\phi_C}) \\
+ \int_{\Omega_I} i \omega \boldsymbol{\mu}_I \operatorname{grad} \psi_I \cdot \operatorname{grad} \overline{\phi_I} \\
= -I^0 \int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{R}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} \\
- I^0 \int_{\Omega_C} i \omega \boldsymbol{\mu}_C \mathbf{R}_C \cdot (\overline{\mathbf{w}_C} + \operatorname{grad} \overline{\phi_C})$$
(6)

(for the reason of uniqueness, a penalization term for the divergence has been added; moreover, in the electric port case the condition $\mathbf{T}_C \cdot \mathbf{n} = 0$ on $\Gamma_E \cup \Gamma_J$ has been imposed).

Interpretation of the result

For both the electric port case and the internal conductor case it can be shown that this variational problem is well-posed, as the sesquilinear form at the left-hand side is coercive [Lax–Milgram lemma].

Interpretation of the result

For both the electric port case and the internal conductor case it can be shown that this variational problem is well-posed, as the sesquilinear form at the left-hand side is coercive [Lax–Milgram lemma].

However, an interpretation problem arises:

for the electric port case a degree of freedom was available, therefore it has been possible to impose the current intensity I⁰: this case is OK;

Interpretation of the result

For both the electric port case and the internal conductor case it can be shown that this variational problem is well-posed, as the sesquilinear form at the left-hand side is coercive [Lax–Milgram lemma].

However, an interpretation problem arises:

- for the electric port case a degree of freedom was available, therefore it has been possible to impose the current intensity I⁰: this case is OK;
- for the internal conductor case we have proved an uniqueness result: thus what are we really solving when we also impose the current intensity I⁰? What is the real effect of putting I⁰ into the problem?

Don't forget the Faraday equation!

Since we have imposed the Faraday equation in Ω_C and the electric field \mathbf{E}_I is determined by solving the Faraday equation in Ω_I (with \mathbf{H}_I already known), it really seems that everything is all right...

Don't forget the Faraday equation!

Since we have imposed the Faraday equation in Ω_C and the electric field \mathbf{E}_I is determined by solving the Faraday equation in Ω_I (with \mathbf{H}_I already known), it really seems that everything is all right...

But let us see: the Faraday equation relates the flux of the magnetic induction through a surface with the line integral of the electric field on the boundary of that surface.

Don't forget the Faraday equation!

Since we have imposed the Faraday equation in Ω_C and the electric field \mathbf{E}_I is determined by solving the Faraday equation in Ω_I (with \mathbf{H}_I already known), it really seems that everything is all right...

But let us see: the Faraday equation relates the flux of the magnetic induction through a surface with the line integral of the electric field on the boundary of that surface.

Since we know the magnetic field in the whole Ω , surfaces can stay everywhere in Ω ; but at the moment we know the electric field only in Ω_C , therefore the boundary of the surface must stay in $\overline{\Omega_C}$.

But the Faraday equation (in differential form) is satisfied in Ω_C , therefore for a surface contained in Ω_C everything is all right.

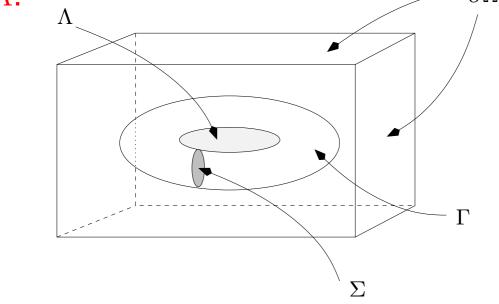
But the Faraday equation (in differential form) is satisfied in Ω_C , therefore for a surface contained in Ω_C everything is all right.

Thus we must verify if there are surfaces in Ω_I with boundary on Γ ,

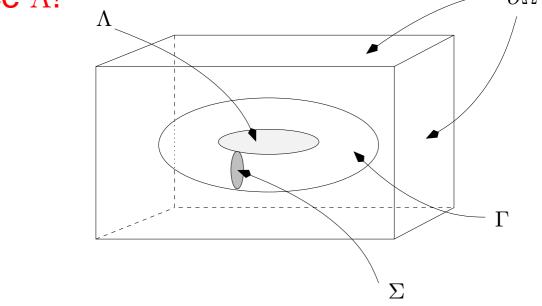
But the Faraday equation (in differential form) is satisfied in Ω_C , therefore for a surface contained in Ω_C everything is all right.

Thus we must verify if there are surfaces in Ω_I with boundary on Γ , and moreover such that this boundary is not the boundary of a surface in Ω_C [if this is not the case, the Divergence Theorem says that again everything is all right, as the magnetic induction is divergence free in Ω ...].

• Claim: the Faraday equation is violated on the "cutting" surface $\Lambda!$



• Claim: the Faraday equation is violated on the "cutting" surface $\Lambda!$



[Note. In the electric port case the cutting surface Σ has not the same properties: its boundary is not contained in Γ .]

Let us see: the Faraday equation on Λ can be written as

$$\int_{\Omega_I} i\omega \boldsymbol{\mu}_I \mathbf{H}_I \cdot \boldsymbol{\rho}_I + \int_{\Gamma} (\mathbf{E}_C \times \mathbf{n}_C) \cdot \boldsymbol{\rho}_I = 0 , \qquad (7)$$

and this is not included in the variational formulation (6).

Let us see: the Faraday equation on Λ can be written as

$$\int_{\Omega_I} i\omega \boldsymbol{\mu}_I \mathbf{H}_I \cdot \boldsymbol{\rho}_I + \int_{\Gamma} (\mathbf{E}_C \times \mathbf{n}_C) \cdot \boldsymbol{\rho}_I = 0 , \qquad (7)$$

and this is not included in the variational formulation (6). More precisely, we have

$$\int_{\Omega_I} i\omega \boldsymbol{\mu}_I \mathbf{H}_I \cdot \boldsymbol{\rho}_I = \boldsymbol{I}^{\mathbf{0}} \int_{\Omega_I} i\omega \boldsymbol{\mu}_I \boldsymbol{\rho}_I \cdot \boldsymbol{\rho}_I$$

and

$$\begin{split} \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \boldsymbol{\rho}_{I} &= \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{R}_{C} \\ &= -\int_{\Omega_{C}} \mathbf{curl} \, \mathbf{E}_{C} \cdot \mathbf{R}_{C} + \int_{\Omega_{C}} \mathbf{E}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &= \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} \mathbf{H}_{C} \cdot \mathbf{R}_{C} + \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{H}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &= \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} (\mathbf{T}_{C} + \mathbf{grad} \, \psi_{C}) \cdot \mathbf{R}_{C} \\ &+ I^{0} \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} \mathbf{R}_{C} \cdot \mathbf{R}_{C} + I^{0} \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{R}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &+ \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{T}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \, . \end{split}$$

$$\begin{split} \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \boldsymbol{\rho}_{I} &= \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{R}_{C} \\ &= -\int_{\Omega_{C}} \mathbf{curl} \, \mathbf{E}_{C} \cdot \mathbf{R}_{C} + \int_{\Omega_{C}} \mathbf{E}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &= \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} \mathbf{H}_{C} \cdot \mathbf{R}_{C} + \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{H}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &= \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} (\mathbf{T}_{C} + \mathbf{grad} \, \psi_{C}) \cdot \mathbf{R}_{C} \\ &+ I^{0} \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} \mathbf{R}_{C} \cdot \mathbf{R}_{C} + I^{0} \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{R}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &+ \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{T}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \, . \end{split}$$

Thus (7) is an additional equation for I^0 [and $\mathbf{T}_C, \psi_C, \dots$]: I^0 cannot be a given quantity if we want to satisfy the Faraday equation on Λ .

$$\begin{split} \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \boldsymbol{\rho}_{I} &= \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{R}_{C} \\ &= -\int_{\Omega_{C}} \mathbf{curl} \, \mathbf{E}_{C} \cdot \mathbf{R}_{C} + \int_{\Omega_{C}} \mathbf{E}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &= \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} \mathbf{H}_{C} \cdot \mathbf{R}_{C} + \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{H}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &= \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} (\mathbf{T}_{C} + \mathbf{grad} \, \psi_{C}) \cdot \mathbf{R}_{C} \\ &+ I^{0} \int_{\Omega_{C}} i \omega \boldsymbol{\mu}_{C} \mathbf{R}_{C} \cdot \mathbf{R}_{C} + I^{0} \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{R}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \\ &+ \int_{\Omega_{C}} \boldsymbol{\sigma}^{-1} \, \mathbf{curl} \, \mathbf{T}_{C} \cdot \mathbf{curl} \, \mathbf{R}_{C} \, . \end{split}$$

Thus (7) is an additional equation for I^0 [and \mathbf{T}_C , ψ_C , ...]: I^0 cannot be a given quantity if we want to satisfy the Faraday equation on Λ . [Note. From another point of view: if (7) does not hold, a necessary compatibility condition on the data is not satisfied and we cannot find the electric field \mathbf{E}_I such that $\operatorname{curl} \mathbf{E}_I = -i\omega\mu_I \mathbf{H}_I$ in Ω_I and $\mathbf{E}_I \times \mathbf{n}_I = -\mathbf{E}_C \times \mathbf{n}_C$ on Γ .]

Assigning the current density J_e

Let us now consider a different situation: for the internal conductor case it is possible to solve the problem with an excitation given by an assigned current density J_e (for simplicity, supported in Ω_C). The problem reads:

Assigning the current density J_e

Let us now consider a different situation: for the internal conductor case it is possible to solve the problem with an excitation given by an assigned current density J_e (for simplicity, supported in Ω_C). The problem reads:

$$\begin{split} &\int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{T}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} + \boldsymbol{\sigma}_*^{-1} \int_{\Omega_C} \operatorname{div} \mathbf{T}_C \operatorname{div} \overline{\mathbf{w}_C} \\ &+ \int_{\Omega_C} i \omega \boldsymbol{\mu} (\mathbf{T}_C + \operatorname{grad} \psi_C) \cdot (\overline{\mathbf{w}_C} + \operatorname{grad} \overline{\phi_C}) \\ &+ \int_{\Omega_I} i \omega \boldsymbol{\mu} \operatorname{grad} \psi_I \cdot \operatorname{grad} \overline{\phi_I} + I^0 \int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{R}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} \\ &+ I^0 \int_{\Omega_C} i \omega \boldsymbol{\mu} \mathbf{R}_C \cdot (\overline{\mathbf{w}_C} + \operatorname{grad} \overline{\phi_C}) = \int_{\Omega_C} \boldsymbol{\sigma}^{-1} \mathbf{J}_{e,C} \cdot \operatorname{curl} \overline{\mathbf{w}_C} \\ &I^0 \int_{\Omega_I} i \omega \boldsymbol{\mu}_I \boldsymbol{\rho}_I \cdot \boldsymbol{\rho}_I + \int_{\Omega_C} i \omega \boldsymbol{\mu}_C (\mathbf{T}_C + \operatorname{grad} \psi_C) \cdot \mathbf{R}_C \\ &+ I^0 \int_{\Omega_C} i \omega \boldsymbol{\mu}_C \mathbf{R}_C \cdot \mathbf{R}_C + I^0 \int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{R}_C \cdot \operatorname{curl} \mathbf{R}_C \\ &+ \int_{\Omega_C} \boldsymbol{\sigma}^{-1} \operatorname{curl} \mathbf{T}_C \cdot \operatorname{curl} \mathbf{R}_C = \int_{\Omega_C} \boldsymbol{\sigma}^{-1} \mathbf{J}_{e,C} \cdot \operatorname{curl} \mathbf{R}_C \,, \end{split}$$

and also I^0 has to be determined.

Summing up:

Summing up:

Electric port case. The problem with a given current intensity is uniquely solvable. [The same is true for the problem with a given voltage.]

Summing up:

- Electric port case. The problem with a given current intensity is uniquely solvable. [The same is true for the problem with a given voltage.]
- Internal conductor case. The problem with a given current intensity is not solvable. [The same is true for the problem with a given voltage.] [The same is true for other boundary conditions, such as $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\partial\Omega$, or $\mathbf{H} \times \mathbf{n} = \mathbf{0}$ and $\epsilon \mathbf{E} \cdot \mathbf{n} = 0$ on $\partial\Omega$.]

Summing up:

- Electric port case. The problem with a given current intensity is uniquely solvable. [The same is true for the problem with a given voltage.]
- Internal conductor case. The problem with a given current intensity is not solvable. [The same is true for the problem with a given voltage.] [The same is true for other boundary conditions, such as $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\partial\Omega$, or $\mathbf{H} \times \mathbf{n} = \mathbf{0}$ and $\epsilon \mathbf{E} \cdot \mathbf{n} = 0$ on $\partial\Omega$.]
- Internal conductor case. Instead, the problem with a given current density J_e is uniquely solvable. [The same is true for other boundary conditions, such as $E \times n = 0$ on $\partial\Omega$, or $H \times n = 0$ and $\epsilon E \cdot n = 0$ on $\partial\Omega$.]

Numerical approximation is quite standard.

Numerical approximation is quite standard.

• For the approximation of T_C use vector nodal elements in Ω_C .

Numerical approximation is quite standard.

- For the approximation of T_C use vector nodal elements in Ω_C .
- For the approximation of ψ use scalar nodal elements in Ω .

Numerical approximation is quite standard.

- For the approximation of T_C use vector nodal elements in Ω_C .
- For the approximation of ψ use scalar nodal elements in Ω .

[For a more efficient implementation, it is possible to replace the functions ρ_I and \mathbf{R}_C with two other functions that can be easily computed.]

Numerical approximation (cont'd)

However, when using vector nodal elements it is well-known that the convergence of the approximation scheme is not assured in non-convex domains. (This happens very often in real-life problems with electric ports.)

Numerical approximation (cont'd)

However, when using vector nodal elements it is well-known that the convergence of the approximation scheme is not assured in non-convex domains. (This happens very often in real-life problems with electric ports.)

• Therefore the (\mathbf{T}_C, ψ) -formulation has a limited range of application: its use is indicated for electric port problems or for problems in which excitation comes through an imposed current density \mathbf{J}_e , but only under the assumption that the conductor Ω_C is convex!

Numerical approximation (cont'd)

However, when using vector nodal elements it is well-known that the convergence of the approximation scheme is not assured in non-convex domains. (This happens very often in real-life problems with electric ports.)

• Therefore the (\mathbf{T}_C, ψ) -formulation has a limited range of application: its use is indicated for electric port problems or for problems in which excitation comes through an imposed current density \mathbf{J}_e , but only under the assumption that the conductor Ω_C is convex!

Since we do not want to end up with a somehow negative result, let us pass to...

A different formulation

A more efficient formulation for the electric port case is based on a different coupling: the one between the scalar magnetic potential ψ_I , so that $\mathbf{H}_I = \operatorname{grad} \psi_I + I^0 \rho_I$, and the electric field $\mathbf{E}_{\mathbf{C}}$, so that $\mathbf{H}_C = -(i\omega)^{-1} \mu_C^{-1} \operatorname{curl} \mathbf{E}_C$ [see Alonso Rodríguez, Valli and Vázquez Hernández, Numer. Math., 2009].

A different formulation

A more efficient formulation for the electric port case is based on a different coupling: the one between the scalar magnetic potential ψ_I , so that $\mathbf{H}_I = \operatorname{grad} \psi_I + I^0 \rho_I$, and the electric field $\mathbf{E}_{\mathbf{C}}$, so that $\mathbf{H}_C = -(i\omega)^{-1} \boldsymbol{\mu}_C^{-1} \operatorname{curl} \mathbf{E}_C$ [see Alonso Rodríguez, Valli and Vázquez Hernández, Numer. Math., 2009].

The potential ψ_I and \mathbf{E}_C satisfy the Ampère equation in Ω_C

$$\int_{\Omega_C} \boldsymbol{\mu}_C^{-1} \operatorname{curl} \mathbf{E}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} + i\omega \int_{\Omega_C} \boldsymbol{\sigma} \mathbf{E}_C \cdot \overline{\mathbf{w}_C} -i\omega \int_{\Gamma} \overline{\mathbf{w}_C} \times \mathbf{n}_C \cdot \operatorname{\mathbf{grad}} \psi_I$$

$$= -i\omega \int_{\Omega_C} \mathbf{J}_{e,C} \cdot \overline{\mathbf{w}_C} + i\omega \mathbf{I}^0 \int_{\Gamma} \overline{\mathbf{w}_C} \times \mathbf{n}_C \cdot \boldsymbol{\rho}_I,$$
(8)

which also includes the no-jump condition for $\mathbf{H} \times \mathbf{n}$ on Γ ,

and the Gauss magnetic equation in Ω_I

$$-i\omega \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{grad} \,\overline{\varphi_{I}} + \omega^{2} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \,\mathbf{grad} \,\psi_{I} \cdot \mathbf{grad} \,\overline{\varphi_{I}} = 0 \,, \ (9)$$

which also contains the no-jump condition for $\mu H \cdot n$ on Γ .

and the Gauss magnetic equation in Ω_I

$$-i\omega \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{grad} \,\overline{\varphi_{I}} + \omega^{2} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \,\mathbf{grad} \,\psi_{I} \cdot \mathbf{grad} \,\overline{\varphi_{I}} = 0 \,, \ (9)$$

which also contains the no-jump condition for $\mu H \cdot n$ on Γ . This problem is well-posed

and the Gauss magnetic equation in Ω_I

$$-i\omega \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{grad} \,\overline{\varphi_{I}} + \omega^{2} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \,\mathbf{grad} \,\psi_{I} \cdot \mathbf{grad} \,\overline{\varphi_{I}} = 0 \,, \ (9)$$

which also contains the no-jump condition for $\mu H \cdot n$ on Γ .

This problem is well-posed and can be approximated by using edge elements for E_C and scalar nodal elements for ψ_I , on meshes that do not need to match on the interface Γ .

and the Gauss magnetic equation in Ω_I

$$-i\omega \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{grad} \,\overline{\varphi_{I}} + \omega^{2} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \,\mathbf{grad} \,\psi_{I} \cdot \mathbf{grad} \,\overline{\varphi_{I}} = 0 \,, \ (9)$$

which also contains the no-jump condition for $\mu H \cdot n$ on Γ .

This problem is well-posed and can be approximated by using edge elements for E_C and scalar nodal elements for ψ_I , on meshes that do not need to match on the interface Γ . Moreover, the convexity condition on the conductor Ω_C is not required.

and the Gauss magnetic equation in Ω_I

$$-i\omega \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{grad} \,\overline{\varphi_{I}} + \omega^{2} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \,\mathbf{grad} \,\psi_{I} \cdot \mathbf{grad} \,\overline{\varphi_{I}} = 0 \,, \ (9)$$

which also contains the no-jump condition for $\mu H \cdot n$ on Γ .

This problem is well-posed and can be approximated by using edge elements for E_C and scalar nodal elements for ψ_I , on meshes that do not need to match on the interface Γ . Moreover, the convexity condition on the conductor Ω_C is not required.

Finally, also the voltage excitation problem can be formulated in a similar way (in that case, the current intensity I^0 is a further unknown).