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The aim

Beyond a doubt, among the “stars” of vector calculus we have the
operators

grad

curl

div

Aim of this talk is to show how to determine in a constructive way
the finite element solutions of gradψ = H, curl A = B, div v = G .
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First results

Determining the necessary and sufficient conditions for assuring
that a function defined in a bounded domain Ω ⊂ R3 is the
gradient of a scalar potential, the curl of a vector potential or the
divergence of a vector field is one of the most classical problem of
vector analysis.

The answer is well-known, and shows an interesting interplay of
differential calculus and topology (see, e.g., Cantarella et al.
(2002)).
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First results (cont’d)

a vector field is the gradient of a scalar potential if and only if
it is curl free and its line integral is vanishing on all the closed
curves that give a basis of the first homology group of Ω;

a vector field is the curl of a vector potential if and only if it is
divergence free and its flux is vanishing across all the closed
surfaces that give a basis of the second homology group of Ω,
or, equivalently, across (all but one) the connected
components of ∂Ω;

each scalar function is the divergence of a vector field [just
take the gradient of the inverse of the Laplace operator...].
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First results (cont’d)

However, a less clarified situation takes shape when we want to
furnish an explicit and efficient procedure for constructing a finite
element solution.

[Note: at this level the divergence case comes back on the table:
in fact, the gradient of a (standard) finite element approximate
solution of ∆ϕ = G has a distributional divergence which is not a
function, and therefore this divergence cannot be equal to an
assigned finite element.]
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Tools

We suppose to have:

for topological reasons

a basis σn, n = 1, . . . , g , of the first homology group of Ω;
a basis σ̂n, n = 1, . . . , g , of the first homology group of R3 \Ω;

for the efficiency of the solver

a spanning tree Sh of the graph given by the nodes and the
edges of the mesh Th.

[Note: a suitable and easy way for constructing σn and σ̂n is
presented in Hiptmair and Ostrowski (2002); the determination of
a spanning tree is a standard procedure in graph theory.]
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The grad problem

We want to solve gradψh = Hh in the finite element context.

The “right” finite elements are: ψh a nodal element, Hh an edge
element.

More precisely, we know that:

a Nédélec element of the lowest order is a vector field in
H(curl ; Ω) that locally has the form aK + bK × x;

a curl-free Nédélec element satisfies bK = 0 for each K (in
fact, curl (aK + bK × x) = 2bK );

the gradient of a (globally continuous) piecewise-linear finite
element is a vector field in H(curl ; Ω) that locally is constant
(namely, a curl-free Nédélec element).
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The solution of the grad problem

In other words, for solving gradψh = Hh we have to match two
Nédélec edge elements of the lowest order, hence the line integral
of gradψh and Hh on each edge of the mesh Th has to be the
same.

The fundamental theorem of calculus says that

ψh(vb)− ψh(va) =

∫
e
gradψh · τ =

∫
e
Hh · τ

for an edge e = [va, vb]. Hence the linear system associated to
gradψh = Hh has exactly two non-zero values per row.
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The solution of the grad problem (cont’d)

Starting from the root v∗ of the spanning tree Sh, where, for the
sake of uniqueness, we impose ψh(v∗) = 0, we compute

ψh(v̂) = ψh(v∗) +

∫
e′
Hh · τ (1)

for an edge e ′ = [v∗, v̂ ] ∈ Sh; since Sh is a spanning tree, going on
in this way we can visit all the nodes of Th.

The spanning tree is therefore a tool for selecting the rows for
which, using the additional equation ψh(v∗) = 0, one can eliminate
the unknowns one after the other.

We have thus found a nodal element ψh such that its gradient has
line integral on all the edges of the spanning tree equal to that of
Hh.
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The solution of the grad problem (cont’d)

What about the edges not belonging to the spanning tree?

For each node vi , vi 6= v∗ let us denote by Cvi the set of edges in
Sh joining v∗ to vi . Given an edge e = [va, vb] not belonging to Sh,
we define the cycle De = Cva + e − Cvb .

Since Hh is a gradient (it is curl-free and its line integral on all the
cycles σn vanishes), its line integral on De vanishes. Therefore we
have

0 =
∮
De

Hh · ds = ψh(va) +
∫
e Hh · τ − ψh(vb)

=
∫
e Hh · τ −

∫
e gradψh · τ .
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The algorithm

The simple solution algorithm reads as follows. Let us denote by V
the set of the nodes of the mesh Th, by R the set of the nodes
where the value of ψh is already known, by P the set of edges
e ∈ Sh with exactly one vertex, v ′(e), not in R, and by E (v) the
set of edges having v as a vertex.

Algorithm
1 R = {v∗}, P = E (v∗) ∩ Sh
2 while R 6= V

1 pick e ∈ P
2 compute ψh(v ′(e)) from (1)
3 update P: P = [P ∪ (E (v ′(e)) ∩ Sh)] \ {e}
4 update R: R = R ∪ {v ′(e)}.
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The curl problem

We want to solve curl Ah = Bh in the finite element context.

The “right” finite elements are: Ah an edge element, Bh a face
element (namely, a Raviart–Thomas element).

More precisely, we know that:

a Raviart–Thomas element of the lowest order is a vector field
in H(div; Ω) that locally has the form aK + bKx;

a divergence-free Raviart–Thomas element satisfies bK = 0 for
each K (in fact, div (aK + bKx) = 3 bK );

the curl of a (lowest order) Nédélec element is a vector field in
H(div; Ω) that locally is constant (namely, a divergence-free
Raviart–Thomas element).
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The solution of the curl problem

In other words, for solving curl Ah = Bh we have to match two
Raviart–Thomas face elements of the lowest order, hence the flux
of curl Ah and Bh on each face of the mesh Th has to be the same.

Since the Stokes theorem assures that∫
e1

Ah ·τ +

∫
e2

Ah ·τ +

∫
e2

Ah ·τ =

∫
f
curl Ah ·νf =

∫
f
Bh ·νf , (2)

where ∂f = e1 ∪ e2 ∪ e3 and νf is the unit normal vector on f (with
consistent orientation), we deduce that the linear system associated
to curl Ah = Bh has exactly three non-zero values for each row.

With respect to the preceding case:

need to work on the edges instead of on the nodes

more important: three unknowns per row instead of two.
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The solution of the curl problem (cont’d)

Having three unknows per row, in order to devise an efficient
elimination algorithm it is useful to fix the value of other unknowns.

The best situation should occur when number of the new equations
agrees with the dimension of the kernel of the curl operator.

Since this kernel is given by the gradients of nodal elements plus
the basis of the first de Rham cohomology group of Ω, we see that
its dimension is equal to nv − 1 + g (having denoted by nv the
number of the nodes in the mesh Th).
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The solution of the curl problem (cont’d)

Having this in mind, we are led to the problem

curl Ah = Bh in Ω∮
σn

Ah · ds = ρn ∀ n = 1, . . . , g∫
e′ Ah · τ = 0 ∀ e ′ ∈ Sh ,

(3)

for suitable given constants ρn (made precise in the sequel).

[Note that the number of edges e ′ in Sh is nv − 1; therefore (3)3

can be seen as a “filter” for gradients. On the other hand,
homology and cohomology are in duality, hence (3)2 can be seen
as a “filter” for cohomology fields.]

It is not difficult to prove that there exists a unique solution to (3).
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Webb–Forghani algorithm

Webb and Forghani (1989) proposed this solution algorithm:

Algorithm

1 set value 0 to the unknowns corresponding to an edge
belonging to the spanning tree

2 take a face f for which at least one edge unknown has not yet
been assigned

1 if exactly one edge unknown is not determined, compute its
value from the Stokes relation (2)

2 if two or three edge unknowns are not determined, pass to
another face

3 if the iterations stop, use
∮
σn

Ah · ds = ρn to restart

[In their case, step 3 was missing, as they considered the case of
simple topology (namely, g = 0).]
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Webb–Forghani algorithm (cont’d)

The Webb–Forghani algorithm is a simple elimination procedure
for solving the linear system at hand, and it is quite efficient, as
the computational costs is linearly dependent on the number of
unknowns.

The weak point is that:

it strongly depends on the choice of the spanning tree and it
can stop without having determined all the edge unknowns
(even in simple topological situations!)

(see D lotko and Specogna (2010)).
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An explicit formula for the vector potential

Cure: devise an explicit formula for the solution to (3).

(We are able to do that if Bh · ν = 0 on ∂Ω, a quite natural
condition in the most interesting physical situations.)

The idea is the following. Define the Biot–Savart field

HBS(x) =
1

4π

∫
Ω
Bh(y)× x− y

|x− y|3
dy ,

and set ρn =
∮
σn

HBS · ds in (3).

One has curlHBS = Bh in Ω (here the condition Bh · ν = 0 on ∂Ω
has played a role). Hence the Nédélec interpolant ΠNhHBS satisfies
(3)1 and (3)2.
To find the solution to (3), we can correct ΠNhHBS by a gradient,
namely, construct the nodal element whose gradient has the same
line integral of HBS on the edges of the spanning tree Sh.
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An explicit formula for the vector potential (cont’d)

Being v∗ the root of the spanning tree, in the nodes of the mesh
define the finite element φh as φh(v∗) = 0 and

φh(vb) = φh(va) +

∫
e′
HBS · τ ∀e ′ = [va, vb] ∈ Sh .

The Nédélec finite element Ah = ΠNhHBS − gradφh is the solution
to (3).

To express its degrees of freedom, we proceed as follows. For each
edge e 6∈ Sh, we define the cycle De as before (the edges from the
root of the spanning tree to the first vertex of e, the edge e, the
edges from the second vertex of e to the root of the spanning tree).
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An explicit formula for the vector potential (cont’d)

The cycle De is constituted by edges all belonging to the spanning
tree (except e): hence we have∫

e Ah · τ =
∫
e(ΠNhHBS − gradφh) · τ

=
∫
e H

BS · τ − [φh(vb)− φh(va)]

=
∫
e H

BS · τ −
[∫

Cvb
HBS · τ −

∫
Cva

HBS · τ
]

=
∮
De

HBS · ds

= 1
4π

∮
De

(∫
Ω Bh(y)× x−y

|x−y|3 dy
)
· ds(x) .

(4)

Using (4), we can always restart the Webb–Forghani algorithm.
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A basis of the first de Rham cohomology group

This algorithm permits to solve also the problem

curl Ah = 0 in Ω∮
σn

Ah · ds = κn ∀ n = 1, . . . , g∫
e′ Ah · τ = 0 ∀ e ′ ∈ Sh ,

(5)

for any choice of the constants κn. In particular, taking κn equal
to the entries Qn,j of a non-singular g × g square matrix Q, we
find a basis T(j) of the first de Rham cohomology group.
In fact, an explicit formula is available also in this case: the choice
of Qn,j = κ̀(σn, σ̂j) gives∫

e
T(j) · τ = κ̀(De , σ̂j) ,

where κ̀ is the linking number (and σ̂j has been chosen inside
R3 \ Ω, namely, not intersecting ∂Ω).
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The linking number

The linking number between σ̂j and another disjoint cycle σ is
given by:

κ̀(σ, σ̂j) =
1

4π

∮
σ

(∮
σ̂j

y − x

|y − x|3
× dsy

)
· dsx .

The linking number (introduced by Gauss...) is an integer
that represents the number of times that each cycle winds
around the other.

A. Valli Finite element potentials



Introduction
The gradient

The curl
The divergence

Stability

The divergence problem

We want to solve div vh = Gh in the finite element context.

The “right” finite elements are: vh a face element, Gh a nodal
element.

More precisely, we know that:

a nodal element of the lowest order is a function in L2(Ω) that
is locally constant;

the divergence of a (lowest order) Raviart–Thomas finite
element is a function in L2(Ω) that is locally constant.
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The solution of the divergence problem

In other words, for solving div vh = Gh we have to match two
piecewise-constant elements, hence the integral of div vh and Gh

on each element of the mesh Th has to be the same.

The Gauss theorem says that∫
f1
vh · νK +

∫
f2
vh · νK +

∫
f3
vh · νK +

∫
f4
vh · νK

=
∫
K div vh =

∫
K Gh ,

(6)

where ∂K = f1 ∪ f2 ∪ f3 ∪ f4 and νK is the unit outward normal
vector on ∂K .

Hence the linear system associated to div vh = Gh has exactly four
unknowns per row.
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The solution of the divergence problem (cont’d)

In order to reduce the dimension of the system, we want to fix the
value of some unknowns. Similarly to what done before we start by
analyzing the dimension of the kernel of the divergence operator.

This kernel is given by the curl of the Nédélec elements plus the
basis of the second de Rham cohomology group of Ω.

If we denote by (∂Ω)0, . . . , (∂Ω)p the connected components of
∂Ω, we know that the dimension of the second de Rham
cohomology group of Ω is equal to p.
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The solution of the divergence problem (cont’d)

On the other hand, it is easy to check that the dimension of the
space of the curl of the Nédélec elements is equal to the number of
the edges minus the dimension of the kernel of the curl operator.
Hence, it is equal to ne − nv + 1− g .

By the Euler–Poincaré formula we have

nv − ne + nf − nt = 1− g + p ,

hence the dimension of the space of the curl can be rewritten as
nf − nt − p.

In conclusion, besides the topological conditions∫
(∂Ω)r

vh · ν = cr , r = 1, . . . , p ,

that are a filter for the cohomology fields, we could add
nf − nt − p equations.
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A dual graph

To do that, let us note that an internal face connects two
tetrahedra, while a boundary face connects a tetrahedron and a
connected component of ∂Ω.

We can therefore consider the following (connected) dual graph
Gh: the dual vertices are W = T ∪Σ, where the elements of T are
the tetrahedra of the mesh and the elements of Σ are the p + 1
connected components of ∂Ω; the set of dual arcs is F , the set of
the faces of the mesh.
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A dual graph (cont’d)

The number of dual vertices is equal to nt + p + 1, hence a
spanning tree Mh of Gh has nt + p dual arcs (and consequently its
cotree has nf − nt − p dual arcs).

Therefore the linear system

div vh = Gh in Ω∫
(∂Ω)r

vh · ν = cr ∀ r = 1, . . . , p∫
f vh · νf = 0 ∀ f 6∈ Mh

(7)

is a square linear system of nf equations and unknowns.

A. Valli Finite element potentials



Introduction
The gradient

The curl
The divergence

Stability

Well-posedness of (7)

Now we show that it has a unique solution.

The procedure is constructive, similar in some sense to the
elimination procedure used for the grad problem but now going
along the dual spanning tree, starting from the leaves. (Let us
recall that the leaves of a spanning tree Mh are the vertices of W
that have only one arc of Mh incident to them.)

Remembering that we have imposed
∫
f vh · νf = 0 if f 6∈ Mh, we

can reduce the problem to the faces f ∈Mh.
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Well-posedness of (7) (cont’d)

Given w ∈W (a tetrahedron or a connected component of ∂Ω),
let us set F(w) = {f ∈ F : f ⊂ w}; the elements of this set are
faces of the primal mesh, therefore dual arcs in the dual mesh.

The leaves of the spanning tree Mh are the vertices w ∈W such
that F(w) ∩Mh reduces to exactly one dual arc (namely, to a
face).
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Well-posedness of (7) (cont’d)

If w is a leave of Mh and f (w) is the unique dual arc in Mh

incident to w , we can easily compute the degree of freedom
corresponding to f (w), as we know that

∫
f vh · νf = 0 for all

f 6∈ Mh.

In fact we have

∫
f (w)

vh·νf =


∫
∂w vh · νf =

∫
w Gh if w ∈ T∫

(∂Ω)r
vh · ν = cr if w = (∂Ω)r ,

r = 1, . . . , p∫
(∂Ω)0

vh · ν =
∫

Ω Gh −
∑p

r=1 cr if w = (∂Ω)0 ,

having used the Gauss theorem in the first and the third line.
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Well-posedness of (7) (cont’d)

Hence it is clear that, if vh is a Raviart–Thomas element with
div vh = 0,

∫
(∂Ω)r

vh · ν = 0 for all r = 1, . . . , p, and
∫
f vh · νf = 0

for all f 6∈ Mh, then
∫
f (w) vh · νf = 0 for the faces f (w)

associated to all the leaves w ∈Mh.

We can iterate this argument: if we remove from the spanning tree
Mh a leave and its corresponding incident arc, the remaining
graph is still a tree.

Repeating the previous procedure, we can easily compute the
degrees of freedom corresponding to the faces incident to the
leaves of this new tree, finding that they are vanishing.

After a finite number of steps the remaining tree reduces to just on
vertex, and the result is that

∫
f vh · νf = 0 for all f ∈ F . This

proves that (7) has a unique solution.
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The solution algorithm

We can also furnish an explicit way for computing the values of the
degrees of freedom.

In fact, let us denote by U the set of vertices w and by N the set
of arcs f of the reduced dual graph obtained at a step of the
previous procedure (at the initial step, the set of arcs of the
spanning tree is denoted by M).

Then:

N is the set of faces where the degree of freedom
∫
f vh · νf is

still unknown;

if w is a leave of (U,N), there exists exactly one face f (w)
incident to it and belonging to N.
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The solution algorithm (cont’d)

Then, if w is a leave of (U,N), we have∫
f (w)

vh · νf = Aw −
∑

f ∈F(w)\f (w)

∫
f
vh · νf , (8)

where

Aw =


∫
w Gh if w ∈ T

cr if w = (∂Ω)r , r = 1, . . . , p∫
Ω Gh −

∑p
r=1 cr if w = (∂Ω)0 .
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The solution algorithm (cont’d)

This can be rephrased as an elimination algorithm for the
computation of vh.

Algorithm

1 N = M, U = W
2 while N 6= ∅

1 pick a leave w of the tree (U,N)
2 compute

∫
f (w)

vh · ν f from (8)

3 update U: U = U \ {w}
4 update N: N = N \ {f (w)}.

Notice that at any step of the algorithm (U,N) is a tree, so while
N 6= ∅ a leave w of (U,N) always exists.
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A basis of the second de Rham cohomology group

It is worth noting that the set of vector fields W(s),
s = 1, . . . , p, solutions to problem (7) with Gh = 0 and
cr = δr ,s , r = 1, . . . , p, is a basis of the second de Rham
cohomology group of Ω.
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Stability

A natural question is: how to construct stable finite element
potentials?

(This means potentials whose natural norms can be estimated in
terms of the norms of the data, uniformly with respect to the mesh
size h.)
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Stability (cont’d)

[However, let us note that, very often, the construction of finite
element potentials is a preliminary step in the procedure aiming at
solving a partial differential equation.

In this respect, the solution uh will be written as uh = Uh + Wh,
Wh being the finite element potential and Uh the solution of an
auxiliary problem in which Wh contributes at the right hand side.

In this situation, what is interesting is the stability of the solution
uh, and not that of Wh and Uh; in many cases, an unstable Wh

produces an unstable Uh but a stable uh.]
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Stability (cont’d)

Grad problem: project the scalar potential ψh on the space
orthogonal to the constants, namely, take

ψ?h = ψh −
1

meas(Ω)

∫
Ω
ψh .

This is a stable scalar potential, satisfying

‖ψ?h‖H1(Ω) ≤ KG‖Hh‖(L2(Ω))3 .
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Stability (cont’d)

Curl problem: project the vector potential Ah (solution to (3)
with ρn = 0) on the space orthogonal to the gradients of the
piecewise-linear nodal finite elements, namely, take

A?h = Ah − gradΦh ,

where Φh is the solution to∫
Ω
gradΦh · grad ηh =

∫
Ω
Ah · grad ηh ∀ ηh .

This is a stable vector potential, satisfying

‖A?h‖H(curl ;Ω) ≤ KC‖Bh‖(L2(Ω))3 .
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Stability (cont’d)

Divergence problem: project the potential vh (solution to (7)
with cr = 0) on the space orthogonal to the curls of the
lowest order Nédélec finite elements, namely, take

v?h = vh − curl qh ,

where qh is the solution to∫
Ω curl qh · curl ph =

∫
Ω vh · curl ph ∀ ph∫

Ω qh · grad ηh = 0 ∀ ηh∮
σn

qh · ds = 0 ∀ n = 1, . . . , g .

This is a stable potential, satisfying

‖v?h‖H(div;Ω) ≤ KD‖Gh‖L2(Ω) .
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Stability (cont’d)

All these stability results are based on the fact that a Poincaré-like
inequality is valid for functions orthogonal to constants, gradients
and curls, respectively:

‖ψ?h‖L2(Ω) ≤ K ?
G‖gradψ?h‖(L2(Ω))3

‖A?h‖(L2(Ω))3 ≤ K ?
C‖curl A?h‖(L2(Ω))3

‖v?h‖(L2(Ω))3 ≤ K ?
D‖div v?h‖L2(Ω) .

[To be precise, here the additional topological conditions∮
σn

A?h · ds = 0 for n = 1, . . . , g , and
∫

(∂Ω)r
v?h · ν = cr for

r = 1, . . . , p, also play a role.]
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