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Stokes problem

fAs it is well-known, the Stokes problem reads: T
—uAv+gradp=f InQ
divv =10 in ¢ (1)
v=0 on o€},
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Stokes problem

fAs it is well-known, the Stokes problem reads: T
—uAv+gradp=f InQ
divv =10 in ¢ (1)
v=0 on o€},

where v and p are the velocity and the pressure of the fluid,
respectively, i > 0 Is the viscosity, and f is the applied force

field. [Clearly, the pressure is defined up to an additive
constant.]
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Stokes problem

fAs it is well-known, the Stokes problem reads: T
—uAv+gradp=f InQ
divv =10 in ¢ (1)
v=0 on o€},

where v and p are the velocity and the pressure of the fluid,
respectively, i > 0 Is the viscosity, and f is the applied force

field. [Clearly, the pressure is defined up to an additive
constant.]

In a weak form, in a constrained space, it can be written as

Find v with divv=0 iInQ, v=0 onof) :
1logVv-Vw = [f -w (2)
L v w with divw =0 inQ, w=0 on Q. o

SADDLE POINT PROBLEMS:STOKES AND EDDY CURRENTS - p.2/19



Stokes problem (cont’d)

- Problem (2) is well-posed, as the bilinear form at the o
left-hand side is coercive. But numerical approximation is
not easy In a space with differential constraints...
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Stokes problem (cont’d)

- Problem (2) is well-posed, as the bilinear form at the o
left-hand side is coercive. But numerical approximation is
not easy In a space with differential constraints...

Using a Lagrange multiplier we can write

 Find v,p with v=0 on o :
iloVv-Vw — [opdivw = [f-w
deivvq:O

|V w,qwithw =0 on 0.

(3)
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Stokes problem (cont’d)

- Problem (2) is well-posed, as the bilinear form at the o
left-hand side is coercive. But numerical approximation is
not easy In a space with differential constraints...

Using a Lagrange multiplier we can write

 Find v,p with v=0 on o :
iloVv-Vw — [opdivw = [f-w
deivvq:O

|V w,qwithw =0 on 0.

(3)

It has the structure of a saddle-point problem:

N (50 )()-(6) v
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Stokes problem (cont’d)

fwhich IS well-posed, for instance, if A Is coercive in ker B T
and the following (necessary) inf—sup condition

B
36>0 : sup pr
v vl

S > 8|pl ¥ (5)

IS satisfied (in suitable functional spaces).
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Stokes problem (cont’d)

fwhich IS well-posed, for instance, if A Is coercive in ker B T
and the following (necessary) inf—sup condition

B
36>0 : sup pr
v vl

S > 8|pl ¥ (5)

IS satisfied (in suitable functional spaces).

# In other words, the incomprimibility constraint is
somehow associated to the inf-sup condition (5).
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Stokes problem (cont’d)

fwhich IS well-posed, for instance, if A Is coercive in ker B T
and the following (necessary) inf—sup condition

B
36>0 : sup pr
v vl

S > 8|pl ¥ (5)

IS satisfied (in suitable functional spaces).

# In other words, the incomprimibility constraint is
somehow associated to the inf-sup condition (5).

For Stokes problem, condition (5) is satisfied as for each
p € L3(Q) [the closed subspace of L?(92) constituted by the
functions with vanishing mean value] one can choose a
velocity v € Hj(2) such that divv = p and ||v]] < 37Y|p]|.
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Stokes problem (cont’d)

fwhich IS well-posed, for instance, if A Is coercive in ker B T
and the following (necessary) inf—sup condition

p Bv
250 sup 2228V S 11 vy (5)

v vl
IS satisfied (in suitable functional spaces).

# In other words, the incomprimibility constraint is
somehow associated to the inf-sup condition (5).

For Stokes problem, condition (5) is satisfied as for each
p € L3(Q) [the closed subspace of L?(92) constituted by the
functions with vanishing mean value] one can choose a
velocity v € Hj(2) such that divv = p and ||v]] < 37Y|p]|.

LNote that condition (5) is also saying that ker B’ = 0. J
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Stokes problem (cont’d)

- Atthe finite dimensional level, we know that the o
convergence of the finite element approximation is driven by
the coerciveness constant of A and the inf—sup constant (.
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Stokes problem (cont’d)

- Atthe finite dimensional level, we know that the o
convergence of the finite element approximation is driven by
the coerciveness constant of A and the inf—sup constant (.

We also know that the verification of condition (5), uniformly
with respect to the mesh size, can be a delicate point: In
other words, the finite elements for the velocity and for the
pressure cannot be chosen in an independent way!
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Stokes problem (cont’d)

- Atthe finite dimensional level, we know that the o
convergence of the finite element approximation is driven by
the coerciveness constant of A and the inf—sup constant (.

We also know that the verification of condition (5), uniformly
with respect to the mesh size, can be a delicate point: In
other words, the finite elements for the velocity and for the
pressure cannot be chosen in an independent way!

In this respect, the most known choices are

® Pr-Fp
Crouzeix—Raviart (P, + bubble)-P;
for discontinuous pressure

o Taylor—Hood P-P;
Arnold—-Brezzi—Fortin (P; + bubble)-P;
L for continuous pressure. J

SADDLE POINT PROBLEMS:STOKES AND EDDY CURRENTS - p.5/19



Eddy current problems

fEddy current equations are obtained from Maxwell T
equations by disregarding the displacement currents:

curl H =o€ + Je +>E§ (Ampere)

%—H +curl€ =0 (Faraday).
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Eddy current problems

fEddy current equations are obtained from Maxwell T
equations by disregarding the displacement currents:

curl H = o€ + Jo —I—% (Ampere)

7! %—7: +curl£ =0 (Faraday).

Here

# £ and H are the electric and magnetic fields,
respectively, and 7. is the applied current density

#® o Is the electric conductivity
# 1 IS the magnetic permeabillity
L ® ¢ is the electric permittivity. J
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Time-harmonic eddy current equations

fWhen Interested in time-periodic phenomena [alternating T

current], it is assumed that

Te(t,x) =
E(t,x) =
H(t,x) =

Re|

Re
Re

Je(x) exp(iwt)]
E(x) exp(iwt)]

H(x) exp(iwt)] ,

where w # 0 Is the assigned frequency, and one obtains

curlH-ocE=J. InQ
curlE +iwpH =0 1In (.

|

SADDLE POINT PROBLEMS:STOKES AND EDDY CURRENTS - p.7/19



Time-harmonic eddy current equations

fWhen Interested in time-periodic phenomena [alternating T

current], it is assumed that

Te(t,x) =
E(t,x) =
H(t,x) =

Re|

Re
Re

Je(x) exp(iwt)]
E(x) exp(iwt)]
H(x) exp(iwt)] ,

where w # 0 Is the assigned frequency, and one obtains

curlH-ocE=J. InQ
curlE +iwpH =0 1In (.

Here Q is a bounded domain in R?, composed by two parts:
(2, an internal conductor, and €27, its complementary part,
an insulator, where the conductivity o Is vanishing.
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Time-harmonic eddy current equations (cont’d)

fPossible boundary conditions are T

Hxn=0o0n90{) or Exn=0 onos).
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Time-harmonic eddy current equations (cont’d)

fPossible boundary conditions are T
Hxn=0o0n9d2 or Exn=0 onof).

In the following we focus on the first one.
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Time-harmonic eddy current equations (cont’d)

fPossible boundary conditions are T
Hxn=0o0n9d2 or Exn=0 onof).

In the following we focus on the first one.

Rewriting the problem in terms of H only, in a weak form, in
a constrained space we have [H; := H|p, and so on...]:

( Find H with curl H; = Je,] N 7, Hxn=0 on o
fQo o !lcurlHe - curlwe +iw [, uH - W (6

= ch a'_lJe,C-cuer—C
| Vwwithcurlw; =0 InQ;, wxn=0 ono.
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Time-harmonic eddy current equations (cont’d)

-

The problem is well-posed, as the sesquilinear form at the
left-hand side Is coercive. But again we want to avoid
spaces with differential constraints...

-
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-

The problem is well-posed, as the sesquilinear form at the

Time-harmonic eddy current equations (cont’d)

-

left-hand side Is coercive. But again we want to avoid
spaces with differential constraints...

Inserting a Lagrange multiplier we write

/"

( Find H,E;with H xn =0 on 99 :

ch o lcurl He - cuer_CJriwaMH w
+fQ Er- Cuer[—fQ 1JeC curlwg (7)
Jq, curlHy - NI—fQ e.7 " N7

\ Vw,N;ywithw xn=0 onof2.

|
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Time-harmonic eddy current equations (cont’d)

T
fThis problem has the saddle-point structure ( ;1 f ) T

with A coercive in ker B, but the inf—sup condition cannot be
satisfied, as

kerBT — {E[‘ curlE; =0 N (7, (E[ X n)‘(fmc — O}

Is different from 0 [indeed, is quite large...].
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Time-harmonic eddy current equations (cont’d)

T
fThis problem has the saddle-point structure ( ;1 f ) T

with A coercive in ker B, but the inf—sup condition cannot be
satisfied, as

kerBT — {E[‘ curlE; =0 N (7, (E[ X n)‘(fmc — O}
Is different from 0 [indeed, is quite large...].

#® Here we see a difference between Stokes and eddy
current problems: the duality div / grad sounds different
than the duality curl / curl.
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Time-harmonic eddy current equations (cont’d)

T
fThis problem has the saddle-point structure ( ;1 f ) T

with A coercive in ker B, but the inf—sup condition cannot be
satisfied, as

kerBT — {E[‘ curlE; =0 N (7, (E[ X n)‘(fmc — O}
Is different from 0 [indeed, is quite large...].

#® Here we see a difference between Stokes and eddy
current problems: the duality div / grad sounds different
than the duality curl / curl.

To restore well-posedness, we impose other conditions on
the Lagrange multiplier E;: tipically, that div(e;E;) = 0 in £;
Land e;E; -n = 0on 00 [in simple topology...]. J
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Time-harmonic eddy current equations (cont’d)

-

fThis IS done by using another Lagrange multiplier ¢; [which
will turn out to be 0], obtaining

( Find H,E;, ¢;
with H x n =0 on 02 and ¢; = 0 on 9€)¢ :
ch o lcurlHe - curl we + iw [ pH - W
+ Jq, Br - curlwy = ch o 1J.c - curlwg
4 Jo, curlHy - Ny (8)
+ [q, ergrad¢; - Ny = [ Jer- Ny
fQI eftEr-gradny =0
Vw, Ny, nr
with w x n =0 on 92 and n; = 0 on 0 .

o |

SADDLE POINT PROBLEMS:STOKES AND EDDY CURRENTS - p.11/19




Time-harmonic eddy current equations (cont’d)

.

he structure now IS

A BT 0
B o o |,
0 C 0

and the analysis can be done by following Chen, Du, Zou,
SIAM J. Numer. Anal., 37 (2000), pp. 1542-1570.
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Time-harmonic eddy current equations (cont’d)

.

he structure now IS

A BT 0
B o cCct |,
0 C 0

and the analysis can be done by following Chen, Du, Zou,
SIAM J. Numer. Anal., 37 (2000), pp. 1542-1570.

One needs:
# the inf—sup condition for C
# the inf-sup condition for B, but on the subspace ker C

# the coerciveness of A, but on a space larger than ker B
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Chen-Du-Zou

fThe problem being set in the Hilbert spaces X, ¢ and M,
define

QO = {N[EQ‘C(N[,U}) :OVU[EM}:keI‘C

XV ={weX|b(w,N;)=0YN; €@’} DkerB.
The assumptions are

39 >0 : sup N7, ) >l VnreM
N, |IN7]]
b(w,N
3550 sup PNDL S gy NG € Q0
w W]

\_ FJa>0 : |a(w,w)|>a|w|]* VweXY. J
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Time-harmonic eddy current equations (cont’d)

-

The finite element approximation needs some attention, as
we want to satisfy the coerciveness and the inf—sup
conditions uniformly with respect to the mesh size.

-
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Time-harmonic eddy current equations (cont’d)

o N

The finite element approximation needs some attention, as
we want to satisfy the coerciveness and the inf—sup
conditions uniformly with respect to the mesh size.

We use
» Nédélec lower order finite elements X} for H in O

® piecewise-constant finite elements @y, for E; in

# Crouzeix—Raviart piecewise-linear discontinuous finite
elements M, for ¢; in Qp
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Time-harmonic eddy current equations (cont’d)

o N

The finite element approximation needs some attention, as
we want to satisfy the coerciveness and the inf—sup
conditions uniformly with respect to the mesh size.

We use
» Nédélec lower order finite elements X} for H in O

® piecewise-constant finite elements @y, for E; in

# Crouzeix—Raviart piecewise-linear discontinuous finite
elements M, for ¢; in Qp

where the Crouzeix—Raviart finite elements are

My =A{nrn € L*(Q) |nppx € PV K € Tryp,
nr., 1S continuous at the centroid
L of each common face} . J
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Time-harmonic eddy current equations (cont’d)

-

Two are the crucial points in the proof:

o |
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Time-harmonic eddy current equations (cont’d)

-

Two are the crucial points in the proof:
# the orthogonal decomposition

(), = curl X})h P grad M,

[see Monk, SIAM J. Numer. Anal., 28 (1991), pp.
1610-1634]
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Time-harmonic eddy current equations (cont’d)

o N

Two are the crucial points in the proof:
# the orthogonal decomposition

(), = curl X})h P grad M,

[see Monk, SIAM J. Numer. Anal., 28 (1991), pp.
1610-1634]

® the uniform Poincaré-like estimate
IP11llzzr) < Collcurlpypllrz o))

for each p;;, € (V7,)+, where

L V}?h = {Wr € X},h | curlw;, = 01n Q) (WLhXH)mQ = OM
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Time-harmonic eddy current equations (cont’d)

-

[It has been assumed that ¢; Is a piecewise-constant matrix
N Q[]

-
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Time-harmonic eddy current equations (cont’d)

-

[It has been assumed that ¢; Is a piecewise-constant matrix
N Q[]

Having proved these results, the error estimate is more or
less standard.

-
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Other saddle-point for mulations

- N

# E formulation: Ampere in Q + differential constraint
diV(G[E[) =01n Qy
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Other saddle-point for mulations

- N

# E formulation: Ampere in Q + differential constraint
diV(G[E[) =01n Qy

# hybrid Ho /E; formulation: Faraday in Qc/Ampere in Q;
+ differential constraint div(e;E;) = 01n Q7
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Other saddle-point for mulations

- N

# E formulation: Ampere in Q + differential constraint
diV(G[E[) =01n Qy

# hybrid Ho /E; formulation: Faraday in Qc/Ampere in Q;
+ differential constraint div(e;E;) = 01n Q7

# hybrid E/H; formulation: Ampere in Qg/Gauss in Qf +
differential constraint curlH; = J. 7 In §;
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