Coupling of eddy-current and circuit problems

Ana Alonso Rodríguez*, ALBERTO VALLI*, Rafael Vázquez Hernández**

* Department of Mathematics, University of Trento
** Department of Applied Mathematics, University of Santiago de Compostela

Time-harmonic eddy-current equations

Starting from Maxwell equations, assuming a sinusoidal dependence on time and disregarding displacement currents one obtains the so-called time-harmonic eddy-current problem

$$
\begin{cases}\operatorname{curl} \mathbf{H}-\sigma \mathbf{E}=\mathbf{0} & \text { in } \Omega \tag{1}\\ \operatorname{curl} \mathbf{E}+i \omega \boldsymbol{\mu} \mathbf{H}=\mathbf{0} & \text { in } \Omega\end{cases}
$$

Time-harmonic eddy-current equations

Starting from Maxwell equations, assuming a sinusoidal dependence on time and disregarding displacement currents one obtains the so-called time-harmonic eddy-current problem

$$
\begin{cases}\operatorname{curl} \mathbf{H}-\sigma \mathrm{E}=0 & \text { in } \Omega \tag{1}\\ \operatorname{curl} \mathrm{E}+i \omega \boldsymbol{\mu} \mathbf{H}=0 & \text { in } \Omega .\end{cases}
$$

Here

- H and E are the magnetic and electric fields, respectively
- σ and μ are the electric conductivity and the magnetic permeability, respectively
- $\omega \neq 0$ is the frequency.

Time-harmonic eddy-current equations (cont'd)

[As shown in the previous talk, in an insulator one has $\sigma=0$, therefore E is not uniquely determined in that region ($\mathbf{E}+\nabla \psi$ is still a solution).
Some additional conditions ("gauge" conditions) are thus necessary: as in the insulator Ω_{I} we have no charges, we impose

$$
\begin{equation*}
\operatorname{div}(\boldsymbol{\epsilon} \mathbf{E})=0 \quad \text { in } \Omega_{I}, \tag{2}
\end{equation*}
$$

where ϵ is the electric permittivity.]

Geometry

The physical domain $\Omega \subset \mathbf{R}^{3}$ is a "box", and the conductor Ω_{C} is simply-connected with $\partial \Omega_{C} \cap \partial \Omega=\Gamma_{E} \cup \Gamma_{J}$, where Γ_{E} and Γ_{J} are connected and disjoint surfaces on $\partial \Omega$ ("electric ports"). Notation: $\Gamma=\overline{\Omega_{C}} \cap \overline{\Omega_{I}}, \partial \Omega=\Gamma_{E} \cup \Gamma_{J} \cup \Gamma_{D}$, $\partial \Omega_{C}=\Gamma_{E} \cup \Gamma_{J} \cup \Gamma, \partial \Omega_{I}=\Gamma_{D} \cup \Gamma$.

Boundary conditions

We will distinguish among three types of boundary conditions.

Boundary conditions

We will distinguish among three types of boundary conditions.

- Electric (Case A). One imposes $\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\partial \Omega$.

Boundary conditions

We will distinguish among three types of boundary conditions.

- Electric (Case A). One imposes $\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\partial \Omega$.
- Magnetic (Case B). One imposes $\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\Gamma_{E} \cup \Gamma_{J}$, $\mathbf{H} \times \mathbf{n}=\mathbf{0}$ and $\epsilon \mathbf{E} \cdot \mathbf{n}=0$ on Γ_{D}.

Boundary conditions

We will distinguish among three types of boundary conditions.

- Electric (Case A). One imposes $\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\partial \Omega$.
- Magnetic (Case B). One imposes $\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\Gamma_{E} \cup \Gamma_{J}$, $\mathbf{H} \times \mathbf{n}=\mathbf{0}$ and $\epsilon \mathbf{E} \cdot \mathbf{n}=0$ on Γ_{D}.
- No-flux (Case C) [Bossavit, 2000]. One imposes $\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\Gamma_{E} \cup \Gamma_{J}, \boldsymbol{\mu} \mathbf{H} \cdot \mathbf{n}=0$ and $\epsilon \mathbf{E} \cdot \mathbf{n}=0$ on Γ_{D}.

Voltage and current intensity

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_{0}.

Voltage and current intensity

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_{0}.
Question:

Voltage and current intensity

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_{0}.
Question:

- how can we formulate the eddy-current problems when the excitation is given by a voltage or by a current intensity?

Voltage and current intensity

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_{0}.
Question:

- how can we formulate the eddy-current problems when the excitation is given by a voltage or by a current intensity?
This is a delicate point, as eddy-current problems, for the two cases A and B, have a unique solution already before a voltage or a current intensity is assigned!

Poynting Theorem (energy balance)

> In fact one has:
> Uniqueness theorem. In the cases A and B for the solution of the eddy-current problem (1) the magnetic field \mathbf{H} in Ω and the electric field E_{C} in Ω_{C} are uniquely determined. [Adding the "gauge" conditions, also the electric field \mathbf{E}_{I} in Ω_{I} is uniquely determined.]

Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the cases A and B for the solution of the eddy-current problem (1) the magnetic field H in Ω and the electric field E_{C} in Ω_{C} are uniquely determined. [Adding the "gauge" conditions, also the electric field E_{I} in Ω_{I} is uniquely determined.]
Proof. Multiply the Faraday equation by $\overline{\mathbf{H}}$, integrate in Ω and integrate by parts: it holds

$$
\begin{aligned}
0 & =\int_{\Omega} \operatorname{curl} \mathbf{E} \cdot \overline{\mathbf{H}}+\int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} \\
& =\int_{\Omega} \mathbf{E} \cdot \operatorname{curl} \overline{\mathbf{H}}+\int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}}+\int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} .
\end{aligned}
$$

Poynting Theorem (energy balance)

In fact one has:
Uniqueness theorem. In the cases A and B for the solution of the eddy-current problem (1) the magnetic field H in Ω and the electric field E_{C} in Ω_{C} are uniquely determined. [Adding the "gauge" conditions, also the electric field E_{I} in Ω_{I} is uniquely determined.]
Proof. Multiply the Faraday equation by $\overline{\mathbf{H}}$, integrate in Ω and integrate by parts: it holds

$$
\begin{aligned}
0 & =\int_{\Omega} \operatorname{curl} \mathbf{E} \cdot \overline{\mathbf{H}}+\int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} \\
& =\int_{\Omega} \mathbf{E} \cdot \operatorname{curl} \overline{\mathbf{H}}+\int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}}+\int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} .
\end{aligned}
$$

Remembering that curl $\mathrm{H}_{I}=0$ in Ω_{I} and replacing $\operatorname{curl} \mathrm{H}_{C}$ with $\sigma \mathrm{E}_{C}$, one has the Poynting Theorem (energy balance)

Poynting Theorem (energy balance) (cont'd)

$$
\int_{\Omega_{C}} \boldsymbol{\sigma} \mathbf{E}_{C} \cdot \overline{\mathbf{E}_{C}}+\int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}}=-\int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}}
$$

Poynting Theorem (energy balance) (cont'd)

$$
\int_{\Omega_{C}} \boldsymbol{\sigma} \mathbf{E}_{C} \cdot \overline{\mathbf{E}_{C}}+\int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}}=-\int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}}
$$

The term on $\partial \Omega$ is clearly vanishing in the cases A and $\mathrm{B} . \square$

Poynting Theorem for the case C

In the case C, instead, since $\operatorname{div}_{\tau}(\mathbf{E} \times \mathbf{n})=-i \omega \boldsymbol{\mu} \mathbf{H} \cdot \mathbf{n}=0$ on $\partial \Omega$, one has

$$
\mathbf{E} \times \mathbf{n}=\operatorname{grad} W \times \mathbf{n} \text { on } \partial \Omega
$$

and therefore

$$
\begin{aligned}
-\int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} & =-\int_{\partial \Omega} \overline{\mathbf{H}} \times \mathbf{n} \cdot \operatorname{grad} W \\
& =\int_{\partial \Omega} \operatorname{div}(\overline{\mathbf{H}} \times \mathbf{n}) W \\
& =\int_{\partial \Omega} \operatorname{curl} \overline{\mathbf{H}} \cdot \mathbf{n} W=W_{\mid \Gamma_{J}} \int_{\Gamma_{J}} \operatorname{curl} \overline{\mathbf{H}_{C}} \cdot \mathbf{n}
\end{aligned}
$$

as curl $\mathbf{H}_{I}=0$ in Ω_{I}, and we have denoted by $W_{\mid \Gamma_{J}}$ the (constant) value of the potential W on the electric port Γ_{J} (whereas $W_{\mid \Gamma_{E}}=0$).

Poynting Theorem for the case C (cont'd)

- In this case a degree of freedom is indeed still free (either the voltage $W_{\mid \Gamma_{J}}$, that will be denoted by V, or else the current intensity $\int_{\Gamma_{J}} \operatorname{curl} \mathbf{H}_{C} \cdot \mathbf{n}$ in Ω_{C}, that will be denoted by I_{0}).

Poynting Theorem for the case C (cont'd)

- In this case a degree of freedom is indeed still free (either the voltage $W_{\mid \Gamma_{J}}$, that will be denoted by V, or else the current intensity $\int_{\Gamma_{J}} \operatorname{curl} \mathbf{H}_{C} \cdot \mathbf{n}$ in Ω_{C}, that will be denoted by I_{0}).

We can thus conclude that the only meaningful boundary value problem is the one with assigned no-flux boundary conditions: the case C.

The case C: variational formulation

- How can we formulate the problem when the voltage or the current intensity are assigned?
[Alonso Rodríguez, Valli and Vázquez Hernández, 2009] [Other approaches: Bíró, Preis, Buchgraber and Tičar, 2004; Bermúdez, Rodríguez and Salgado, 2005]

The case C: variational formulation

- How can we formulate the problem when the voltage or the current intensity are assigned?
[Alonso Rodríguez, Valli and Vázquez Hernández, 2009] [Other approaches: Bíró, Preis, Buchgraber and Tičar, 2004; Bermúdez, Rodríguez and Salgado, 2005]
This orthogonal decomposition result turns out to be useful: each vector function v_{I} can be decomposed as

$$
\mathbf{v}_{I}=\boldsymbol{\mu}_{I}^{-1} \operatorname{curl} \mathbf{q}_{I}+\operatorname{grad} \psi_{I}+\alpha \boldsymbol{\rho}_{I},
$$

where ρ_{I} is a harmonic field, namely, it belongs to the space

$$
\begin{array}{r}
\mathcal{H}_{\mu_{I}}\left(\Omega_{I}\right):=\left\{\mathbf{v}_{I} \in\left(L^{2}\left(\Omega_{I}\right)\right)^{3} \mid \operatorname{curl} \mathbf{v}_{I}=\mathbf{0}, \operatorname{div}\left(\boldsymbol{\mu}_{I} \mathbf{v}_{I}\right)=0,\right. \\
\left.\boldsymbol{\mu}_{I} \mathbf{v}_{I} \cdot \mathbf{n}=0 \text { on } \partial \Omega_{I}\right\} .
\end{array}
$$

The case C: variational formulation (cont'd)

The harmonic field ρ_{I} is known from the data of the problem, and satisfies $\int_{\partial \Gamma_{J}} \rho_{I} \cdot d \tau=1$; moreover, if the vector field v_{I} satisfies curl $\mathrm{v}_{I}=0$, it follows $\mathrm{q}_{I}=0$ and therefore $\alpha=\int_{\partial \Gamma_{J}} \mathbf{v}_{I} \cdot d \boldsymbol{\tau}$.

The case C: variational formulation (cont'd)

The harmonic field ρ_{I} is known from the data of the problem, and satisfies $\int_{\partial \Gamma_{J}} \rho_{I} \cdot d \boldsymbol{\tau}=1$; moreover, if the vector field v_{I} satisfies curl $\mathrm{v}_{I}=0$, it follows $\mathrm{q}_{I}=0$ and therefore $\alpha=\int_{\partial \Gamma_{J}} \mathbf{v}_{I} \cdot d \boldsymbol{\tau}$.
In particular, setting $\mathbf{H}_{I}=\operatorname{grad} \psi_{I}+\alpha_{I} \boldsymbol{\rho}_{I}$, from the Stokes Theorem one has

$$
I_{0}=\int_{\Gamma_{J}} \operatorname{curl} \mathbf{H}_{C} \cdot \mathbf{n}_{C}=\int_{\partial \Gamma_{J}} \mathbf{H}_{C} \cdot d \boldsymbol{\tau}=\int_{\partial \Gamma_{J}} \mathbf{H}_{I} \cdot d \boldsymbol{\tau}=\alpha_{I},
$$

hence

$$
\begin{equation*}
\mathbf{H}_{I}=\operatorname{grad} \psi_{I}+I_{0} \boldsymbol{\rho}_{I} . \tag{3}
\end{equation*}
$$

The case C: variational formulation (cont'd)

The harmonic field ρ_{I} is known from the data of the problem, and satisfies $\int_{\partial \Gamma_{J}} \rho_{I} \cdot d \boldsymbol{\tau}=1$; moreover, if the vector field v_{I} satisfies curl $\mathrm{v}_{I}=0$, it follows $\mathrm{q}_{I}=0$ and therefore $\alpha=\int_{\partial \Gamma_{J}} \mathbf{v}_{I} \cdot d \boldsymbol{\tau}$.
In particular, setting $\mathbf{H}_{I}=\operatorname{grad} \psi_{I}+\alpha_{I} \boldsymbol{\rho}_{I}$, from the Stokes Theorem one has

$$
I_{0}=\int_{\Gamma_{J}} \operatorname{curl} \mathbf{H}_{C} \cdot \mathbf{n}_{C}=\int_{\partial \Gamma_{J}} \mathbf{H}_{C} \cdot d \boldsymbol{\tau}=\int_{\partial \Gamma_{J}} \mathbf{H}_{I} \cdot d \boldsymbol{\tau}=\alpha_{I},
$$

hence

$$
\begin{equation*}
\mathbf{H}_{I}=\operatorname{grad} \psi_{I}+I_{0} \boldsymbol{\rho}_{I} . \tag{3}
\end{equation*}
$$

We want to provide a "coupled" variational formulation, in terms of \mathbf{E}_{C} in Ω_{C} and of \mathbf{H}_{I} in Ω_{I}.

The case C: variational formulation (cont'd)

Inserting the Faraday equation into the Ampère equation in Ω_{C} we find

$$
\begin{gather*}
\int_{\Omega_{C}} \boldsymbol{\mu}_{C}^{-1} \operatorname{curl} \mathbf{E}_{C} \cdot \operatorname{curl} \overline{\overline{\mathbf{w}}_{C}}+i \omega \int_{\Omega_{C}} \boldsymbol{\sigma} \mathbf{E}_{C} \cdot \overline{\mathbf{w}_{C}} \tag{4}\\
-i \omega \int_{\Gamma} \overline{\mathbf{w}_{C}} \times \mathbf{n}_{C} \cdot \mathbf{H}_{I}=0 .
\end{gather*}
$$

The case C: variational formulation (cont'd)

Inserting the Faraday equation into the Ampère equation in Ω_{C} we find

$$
\begin{gather*}
\int_{\Omega_{C}} \boldsymbol{\mu}_{C}^{-1} \operatorname{curl} \mathbf{E}_{C} \cdot \operatorname{curl} \overline{\overline{\mathbf{w}}_{C}}+i \omega \int_{\Omega_{C}} \boldsymbol{\sigma} \mathbf{E}_{C} \cdot \overline{\mathbf{w}_{C}} \tag{4}\\
-i \omega \int_{\Gamma} \overline{\mathbf{w}_{C}} \times \mathbf{n}_{C} \cdot \mathbf{H}_{I}=0 .
\end{gather*}
$$

Instead, the Faraday equation in Ω_{I} gives

$$
\begin{equation*}
i \omega \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \mathbf{H}_{I} \cdot \operatorname{grad} \overline{\varphi_{I}}+\int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \operatorname{grad} \overline{\varphi_{I}}=0 \tag{5}
\end{equation*}
$$

The case C: variational formulation (cont'd)

Inserting the Faraday equation into the Ampère equation in Ω_{C} we find

$$
\begin{gather*}
\int_{\Omega_{C}} \boldsymbol{\mu}_{C}^{-1} \operatorname{curl} \mathbf{E}_{C} \cdot \operatorname{curl} \overline{\overline{\mathbf{w}}_{C}}+i \omega \int_{\Omega_{C}} \boldsymbol{\sigma} \mathbf{E}_{C} \cdot \overline{\mathbf{w}_{C}} \tag{4}\\
-i \omega \int_{\Gamma} \overline{\mathbf{w}_{C}} \times \mathbf{n}_{C} \cdot \mathbf{H}_{I}=0 .
\end{gather*}
$$

Instead, the Faraday equation in Ω_{I} gives

$$
\begin{equation*}
i \omega \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \mathbf{H}_{I} \cdot \operatorname{grad} \overline{\varphi_{I}}+\int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \operatorname{grad} \overline{\varphi_{I}}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
i \omega \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \mathbf{H}_{I} \cdot \boldsymbol{\rho}_{I}+\int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \boldsymbol{\rho}_{I}=V \tag{6}
\end{equation*}
$$

The case C: variational formulation (cont'd)

Here we have to note that

$$
\begin{aligned}
& \int_{\Gamma_{D}} \mathbf{E}_{I} \times \mathbf{n}_{I} \cdot \boldsymbol{\rho}_{I}=\int_{\Gamma_{D}} \operatorname{grad} W \times \mathbf{n}_{I} \cdot \boldsymbol{\rho}_{I} \\
& \quad=\int_{\Gamma_{D}} \operatorname{div}_{\tau}\left(\boldsymbol{\rho}_{I} \times \mathbf{n}_{I}\right) W+V \int_{\partial \Gamma_{J}} \boldsymbol{\rho}_{I} \cdot d \boldsymbol{\tau}=V
\end{aligned}
$$

The case C: variational formulation (cont'd)

Here we have to note that

$$
\begin{aligned}
& \int_{\Gamma_{D}} \mathbf{E}_{I} \times \mathbf{n}_{I} \cdot \boldsymbol{\rho}_{I}=\int_{\Gamma_{D}} \operatorname{grad} W \times \mathbf{n}_{I} \cdot \boldsymbol{\rho}_{I} \\
& \quad=\int_{\Gamma_{D}} \operatorname{div}_{\tau}\left(\boldsymbol{\rho}_{I} \times \mathbf{n}_{I}\right) W+V \int_{\partial \Gamma_{J}} \boldsymbol{\rho}_{I} \cdot d \boldsymbol{\tau}=V .
\end{aligned}
$$

Using (3) in (4), (5) and (6) one has

$$
\begin{align*}
& \int_{\Omega_{C}} \boldsymbol{\mu}_{C}^{-1} \operatorname{curl} \mathbf{E}_{C} \cdot \operatorname{curl} \overline{\mathbf{w}_{C}}+i \omega \int_{\Omega_{C}} \boldsymbol{\sigma} \mathbf{E}_{C} \cdot \overline{\mathbf{w}_{C}} \tag{7}\\
& -i \omega \int_{\Gamma} \overline{\mathbf{w}_{C}} \times \mathbf{n}_{C} \cdot \operatorname{grad} \psi_{I}-i \omega I_{0} \int_{\Gamma} \overline{\mathbf{w}_{C}} \times \mathbf{n}_{C} \cdot \boldsymbol{\rho}_{I}=0 \\
& -i \omega \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \operatorname{grad} \overline{\varphi_{I}}+\omega^{2} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \operatorname{grad} \psi_{I} \cdot \operatorname{grad} \overline{\varphi_{I}}=0 \tag{8}\\
& -i \omega \bar{Q} \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \boldsymbol{\rho}_{I}+\omega^{2} I_{0} \bar{Q} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \boldsymbol{\rho}_{I} \cdot \boldsymbol{\rho}_{I}=-i \omega V \bar{Q} \tag{9}
\end{align*}
$$

The case C : existence and uniqueness

- If V is given, one solves (7), (8), (9) and determines E_{C}, ψ_{I} and I_{0} (hence \mathbf{H}_{C} and \mathbf{H}_{I}).

The case C : existence and uniqueness

- If V is given, one solves (7), (8), (9) and determines \mathbf{E}_{C}, ψ_{I} and I_{0} (hence \mathbf{H}_{C} and \mathbf{H}_{I}).
- If I_{0} is given, one solves (7), (8) and determines E_{C} and ψ_{I} (hence \mathbf{H}_{C} and \mathbf{H}_{I}); then from (9) one can also compute V.

The case C: existence and uniqueness

- If V is given, one solves (7), (8), (9) and determines E_{C}, ψ_{I} and I_{0} (hence \mathbf{H}_{C} and \mathbf{H}_{I}).
- If I_{0} is given, one solves (7), (8) and determines E_{C} and ψ_{I} (hence \mathbf{H}_{C} and \mathbf{H}_{I}); then from (9) one can also compute V.

Both problems are well-posed, namely, they have a unique solution, since the associated sesquilinear form is coercive (thus one can apply the Lax-Milgram Lemma).

The case C: existence and uniqueness

- If V is given, one solves (7), (8), (9) and determines E_{C}, ψ_{I} and I_{0} (hence \mathbf{H}_{C} and \mathbf{H}_{I}).
- If I_{0} is given, one solves (7), (8) and determines E_{C} and ψ_{I} (hence \mathbf{H}_{C} and \mathbf{H}_{I}); then from (9) one can also compute V.

Both problems are well-posed, namely, they have a unique solution, since the associated sesquilinear form is coercive (thus one can apply the Lax-Milgram Lemma).
Moreover, it is simple to propose an approximation method based on finite elements, of "edge" type for E_{C} in Ω_{C} and of (scalar) nodal type for ψ_{I} in Ω_{I}. Convergence is assured by the Céa Lemma.

The case C: existence and uniqueness

- If V is given, one solves (7), (8), (9) and determines E_{C}, ψ_{I} and I_{0} (hence \mathbf{H}_{C} and \mathbf{H}_{I}).
- If I_{0} is given, one solves (7), (8) and determines E_{C} and ψ_{I} (hence \mathbf{H}_{C} and \mathbf{H}_{I}); then from (9) one can also compute V.

Both problems are well-posed, namely, they have a unique solution, since the associated sesquilinear form is coercive (thus one can apply the Lax-Milgram Lemma).
Moreover, it is simple to propose an approximation method based on finite elements, of "edge" type for E_{C} in Ω_{C} and of (scalar) nodal type for ψ_{I} in Ω_{I}. Convergence is assured by the Céa Lemma. [However, an efficient implementation demands to replace the harmonic field ρ_{I} with an easily computable function.]

Physical interpretation

Note: the physical interpretation of equation (9) is that

$$
-\int_{\gamma} \mathbf{E}_{C} \cdot d \mathbf{r}+i \omega \int_{\Xi} \boldsymbol{\mu}_{I} \mathbf{H}_{I} \cdot \mathbf{n}_{\Xi}=V,
$$

where $\gamma=\partial \Xi \cap \Gamma$ is oriented from Γ_{J} to Γ_{E}, and \mathbf{n}_{Ξ} is directed in such a way that γ is clockwise oriented with respect to it. In other words, if it is possible to determine the electric field E_{I} in Ω_{I} satisfying the Faraday equation, it follows that

$$
\int_{\gamma_{*}} \mathbf{E}_{I} \cdot d \mathbf{r}=V
$$

where $\gamma_{*}=\partial \Xi \cap \Gamma_{D}$ is oriented from Γ_{E} to Γ_{J} : hence (9) is indeed determining the voltage drop between the electric ports.

Physical interpretation (cont'd)

This explains from another point of view why, when the source is a voltage drop or a current intensity, it is not possible to assume the electric boundary conditions $\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\partial \Omega$.

Physical interpretation (cont'd)

This explains from another point of view why, when the source is a voltage drop or a current intensity, it is not possible to assume the electric boundary conditions
$\mathbf{E} \times \mathbf{n}=\mathbf{0}$ on $\partial \Omega$.
In fact, in that case one would have

$$
\int_{\gamma_{*}} \mathbf{E}_{I} \cdot d \mathbf{r}=0
$$

hence from (9)

$$
\begin{aligned}
i \omega \int_{\Xi} \boldsymbol{\mu}_{I} \mathbf{H}_{I} \cdot \mathbf{n}_{\Xi} & =V+\int_{\gamma} \mathbf{E}_{C} \cdot d \mathbf{r}=V+\int_{\gamma \cup \gamma_{*}} \mathbf{E} \cdot d \mathbf{r} \\
& =V+\int_{\partial \Xi} \mathbf{E} \cdot d \mathbf{r},
\end{aligned}
$$

with $\partial \Xi$ clockwise oriented with respect \mathbf{n}_{Ξ} : due to the term V the Faraday equation would be violated on Ξ !

Numerical results for the Case C

Coming back to the case C and to its variational formulation (7), (8), (9), we use edge finite elements of the lowest degree ($\mathbf{a}+\mathbf{b} \times \mathbf{x}$ in each element) for approximating \mathbf{E}_{C}, and scalar piecewise-linear elements for approximating ψ_{I}.

Numerical results for the Case C

Coming back to the case C and to its variational formulation (7), (8), (9), we use edge finite elements of the lowest degree ($\mathbf{a}+\mathbf{b} \times \mathbf{x}$ in each element) for approximating \mathbf{E}_{C}, and scalar piecewise-linear elements for approximating ψ_{I}.
The problem description is the following: the conductor Ω_{C} and the whole domain Ω are two coaxial cylinders of radius R_{C} and R_{D}, respectively, and height L. Assuming that σ and μ are scalar constants, the exact solution for an assigned current intensity I_{0} is known (through suitable Bessel functions), and also the basis function ρ_{I} is known, thus from (9) one easily computes the voltage V, too.

Numerical results for the Case C (cont'd)

We have the following data:

$$
\begin{aligned}
R_{C} & =0.25 \mathrm{~m} \\
R_{D} & =0.5 \mathrm{~m} \\
L & =0.25 \mathrm{~m} \\
\sigma & =151565.8 \mathrm{~S} / \mathrm{m} \\
\mu & =4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
\omega & =2 \pi \times 50 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

and

$$
I_{0}=10^{4} \mathrm{~A} \quad \text { or } \quad V=0.08979+0.14680 i
$$

[the voltage corresponds to the current intensity $I_{0}=10^{4} \mathrm{~A}$].

Numerical results for the Case C (cont'd)

The relative errors (for \mathbf{E}_{C} in $H\left(\right.$ curl $\left.; \Omega_{C}\right)$ and for \mathbf{H}_{I} in $L^{2}\left(\Omega_{I}\right)$) with respect to the number of degrees of freedom are given by:

Numerical results for the Case C (cont'd)

The relative errors (for \mathbf{E}_{C} in $H\left(\mathbf{c u r l} ; \Omega_{C}\right)$ and for \mathbf{H}_{I} in $L^{2}\left(\Omega_{I}\right)$) with respect to the number of degrees of freedom are given by:

Elements	DoF	e_{E}	e_{H}	e_{V}
2304	1684	0.2341	0.1693	0.0312
18432	11240	0.1132	0.0847	0.0089
62208	35580	0.0750	0.0567	0.0048
147456	81616	0.0561	0.0425	0.0018

Numerical results for the Case C (cont'd)

The relative errors (for \mathbf{E}_{C} in $H\left(\right.$ curl $\left.; \Omega_{C}\right)$ and for \mathbf{H}_{I} in $L^{2}\left(\Omega_{I}\right)$) with respect to the number of degrees of freedom are given by:

Elements	DoF	e_{E}	e_{H}	e_{V}
2304	1684	0.2341	0.1693	0.0312
18432	11240	0.1132	0.0847	0.0089
62208	35580	0.0750	0.0567	0.0048
147456	81616	0.0561	0.0425	0.0018

Elements	DoF	e_{E}	e_{H}	$e_{I_{0}}$
2304	1685	0.2336	0.1685	0.0274
18432	11241	0.1132	0.0847	0.0085
62208	35581	0.0750	0.0566	0.0041
147456	81617	0.0561	0.0425	0.0024

Numerical results for the Case C (cont'd)

On a graph: for assigned current intensity

Numerical results for the Case C (cont'd)

for assigned voltage

Numerical results for the Case C (cont'd)

A more realistic problem, considered by Bermúdez, Rodríguez and Salgado, 2005, is that of a cylindrical electric furnace with three electrodes ELSA [dimensions: furnace height 2 m ; furnace diameter 8.88 m ; electrode height 1.25 m ; electrode diameter 1 m ; distance of the center of the electrode from the wall 3 m].

Numerical results for the Case C (cont'd)

A more realistic problem, considered by Bermúdez, Rodríguez and Salgado, 2005, is that of a cylindrical electric furnace with three electrodes ELSA [dimensions: furnace height 2 m ; furnace diameter 8.88 m ; electrode height 1.25 m ; electrode diameter 1 m ; distance of the center of the electrode from the wall 3 m].
The three electrodes ELSA are constituted by a graphite core of 0.4 m of diameter, and by an outer part of Söderberg paste. The electric current enters the electrodes through horizontal copper bars of rectangular section (0.07 $\mathrm{m} \times 0.25 \mathrm{~m}$), connecting the top of the electrode with the external boundary.

Numerical results for the Case C (cont'd)

A more realistic problem, considered by Bermúdez, Rodríguez and Salgado, 2005, is that of a cylindrical electric furnace with three electrodes ELSA [dimensions: furnace height 2 m ; furnace diameter 8.88 m ; electrode height 1.25 m ; electrode diameter 1 m ; distance of the center of the electrode from the wall 3 m].
The three electrodes ELSA are constituted by a graphite core of 0.4 m of diameter, and by an outer part of Söderberg paste. The electric current enters the electrodes through horizontal copper bars of rectangular section (0.07 $\mathrm{m} \times 0.25 \mathrm{~m}$), connecting the top of the electrode with the external boundary.
Data: $\sigma=10^{6} \mathrm{~S} / \mathrm{m}$ for graphite, $\sigma=10^{4} \mathrm{~S} / \mathrm{m}$ for Söderberg paste, $\sigma=5 \times 10^{6} \mathrm{~S} / \mathrm{m}$ for copper, $\mu=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$, $\omega=2 \pi \times 50 \mathrm{rad} / \mathrm{s}, I_{0}=7 \times 10^{4} \mathrm{~A}$ for each electrode.

Numerical results for the Case C (cont'd)

The value of the magnetic "potential" in the insulator: the magnetic field is the gradient of the represented function (not taking into account the jump surfaces).

Numerical results for the Case C (cont'd)

The magnitude of the current density $\sigma \mathbf{E}_{C}$ on a horizontal section of one electrode.

Numerical results for the Case C (cont'd)

The magnitude of the current density $\sigma \mathbf{E}_{C}$ on a vertical section of one electrode.

References

A. Alonso Rodríguez, A. Valli and R. Vázquez Hernández: A formulation of the eddy-current problem in the presence of electric ports. Numer. Math., 113 (2009), 643-672.
A. Bermúdez, R. Rodríguez and P. Salgado: Numerical solution of eddy-current problems in bounded domains using realistic boundary conditions. Comput. Methods Appl. Mech. Engrg., 194 (2005), 411-426.
O. Bíró, K. Preis, G. Buchgraber and I. Tičar: Voltage-driven coils in finite-element formulations using a current vector and a magnetic scalar potential, IEEE Trans. Magn., 40 (2004), 1286-1289.
A. Bossavit: Most general 'non-local' boundary conditions for the Maxwell equations in a bounded region. COMPEL, 19 (2000), 239-245.

Additional references

A. Alonso Rodríguez and A. Valli: Voltage and current excitation for time-harmonic eddy-current problem. SIAM J. Appl. Math., 68 (2008), 1477-1494.
P. Dular, C. Geuzaine and W. Legros: A natural method for coupling magnetodynamic H -formulations and circuits equations. IEEE Trans. Magn., 35 (1999), 1626-1629.
R. Hiptmair and O. Sterz: Current and voltage excitations for the eddy current model. Int. J. Numer. Modelling, 18 (2005), 1-21.
J. Rappaz, M. Swierkosz and C.Trophime: Un modèle mathématique et numérique pour un logiciel de simulation tridimensionnelle d'induction électromagnétique. Report 05.99, Département de Mathématiques, École Polytechnique Fédérale de Lausanne, 1999.

