Coupling of eddy-current and circuit problems

Ana Alonso Rodríguez*, ALBERTO VALLI*, Rafael Vázquez Hernández**

* Department of Mathematics, University of Trento

** Department of Applied Mathematics, University of Santiago de

Compostela

Time-harmonic eddy-current equations

Starting from Maxwell equations, assuming a sinusoidal dependence on time and disregarding displacement currents one obtains the so-called time-harmonic eddy-current problem

$$\begin{cases} \operatorname{curl} \mathbf{H} - \boldsymbol{\sigma} \mathbf{E} = \mathbf{0} & \text{in } \Omega \\ \operatorname{curl} \mathbf{E} + i \omega \boldsymbol{\mu} \mathbf{H} = \mathbf{0} & \text{in } \Omega \,. \end{cases}$$

Time-harmonic eddy-current equations

Starting from Maxwell equations, assuming a sinusoidal dependence on time and disregarding displacement currents one obtains the so-called time-harmonic eddy-current problem

$$\begin{cases} \operatorname{curl} \mathbf{H} - \boldsymbol{\sigma} \mathbf{E} = \mathbf{0} & \text{in } \Omega \\ \operatorname{curl} \mathbf{E} + i\omega \boldsymbol{\mu} \mathbf{H} = \mathbf{0} & \text{in } \Omega . \end{cases}$$

Here

- It and E are the magnetic and electric fields, respectively
- σ and μ are the electric conductivity and the magnetic permeability, respectively
- $\omega \neq 0$ is the frequency.

Time-harmonic eddy-current equations (cont'd)

[As shown in the previous talk, in an insulator one has $\sigma = 0$, therefore E is not uniquely determined in that region $(E + \nabla \psi \text{ is still a solution})$. Some additional conditions ("gauge" conditions) are thus necessary: as in the insulator Ω_I we have no charges, we impose

$$\operatorname{div}(\boldsymbol{\epsilon}\mathbf{E}) = 0 \qquad \text{in } \Omega_I \,, \tag{2}$$

where ϵ is the electric permittivity.]

Geometry

The physical domain $\Omega \subset \mathbb{R}^3$ is a "box", and the conductor Ω_C is simply-connected with $\partial \Omega_C \cap \partial \Omega = \Gamma_E \cup \Gamma_J$, where Γ_E and Γ_J are connected and disjoint surfaces on $\partial \Omega$ ("electric ports"). Notation: $\Gamma = \overline{\Omega_C} \cap \overline{\Omega_I}$, $\partial \Omega = \Gamma_E \cup \Gamma_J \cup \Gamma_D$, $\partial \Omega_C = \Gamma_E \cup \Gamma_J \cup \Gamma$, $\partial \Omega_I = \Gamma_D \cup \Gamma$.

We will distinguish among three types of boundary conditions.

We will distinguish among three types of boundary conditions.

• Electric (Case A). One imposes $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\partial \Omega$.

We will distinguish among three types of boundary conditions.

- Electric (Case A). One imposes $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\partial \Omega$.
- Magnetic (Case B). One imposes $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\Gamma_E \cup \Gamma_J$, $\mathbf{H} \times \mathbf{n} = \mathbf{0}$ and $\epsilon \mathbf{E} \cdot \mathbf{n} = 0$ on Γ_D .

We will distinguish among three types of boundary conditions.

- Electric (Case A). One imposes $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\partial \Omega$.
- Magnetic (Case B). One imposes $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\Gamma_E \cup \Gamma_J$, $\mathbf{H} \times \mathbf{n} = \mathbf{0}$ and $\epsilon \mathbf{E} \cdot \mathbf{n} = 0$ on Γ_D .
- No-flux (Case C) [Bossavit, 2000]. One imposes $\mathbf{E} \times \mathbf{n} = \mathbf{0}$ on $\Gamma_E \cup \Gamma_J$, $\mu \mathbf{H} \cdot \mathbf{n} = 0$ and $\epsilon \mathbf{E} \cdot \mathbf{n} = 0$ on Γ_D .

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_0 .

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_0 .

Question:

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_0 .

Question:

how can we formulate the eddy-current problems when the excitation is given by a voltage or by a current intensity?

When one wants to couple the eddy-current problem with a circuit problem, one has to consider, as the only external datum that determines the solution, a voltage V or a current intensity I_0 .

Question:

how can we formulate the eddy-current problems when the excitation is given by a voltage or by a current intensity?

This is a delicate point, as eddy-current problems, for the two cases A and B, have a unique solution already before a voltage or a current intensity is assigned!

Poynting Theorem (energy balance)

In fact one has:

Uniqueness theorem. In the cases A and B for the solution of the eddy-current problem (1) the magnetic field H in Ω and the electric field E_C in Ω_C are uniquely determined. [Adding the "gauge" conditions, also the electric field E_I in Ω_I is uniquely determined.]

Poynting Theorem (energy balance)

In fact one has:

Uniqueness theorem. In the cases A and B for the solution of the eddy-current problem (1) the magnetic field H in Ω and the electric field E_C in Ω_C are uniquely determined. [Adding the "gauge" conditions, also the electric field E_I in Ω_I is uniquely determined.]

Proof. Multiply the Faraday equation by $\overline{\mathbf{H}}$, integrate in Ω and integrate by parts: it holds

$$0 = \int_{\Omega} \operatorname{\mathbf{curl}} \mathbf{E} \cdot \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} = \int_{\Omega} \mathbf{E} \cdot \operatorname{\mathbf{curl}} \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} + \int_{\partial\Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} .$$

Poynting Theorem (energy balance)

In fact one has:

Uniqueness theorem. In the cases A and B for the solution of the eddy-current problem (1) the magnetic field H in Ω and the electric field E_C in Ω_C are uniquely determined. [Adding the "gauge" conditions, also the electric field E_I in Ω_I is uniquely determined.]

Proof. Multiply the Faraday equation by $\overline{\mathbf{H}}$, integrate in Ω and integrate by parts: it holds

$$0 = \int_{\Omega} \operatorname{\mathbf{curl}} \mathbf{E} \cdot \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} = \int_{\Omega} \mathbf{E} \cdot \operatorname{\mathbf{curl}} \overline{\mathbf{H}} + \int_{\Omega} i\omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} + \int_{\partial\Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} .$$

Remembering that $\operatorname{curl} \mathbf{H}_I = \mathbf{0}$ in Ω_I and replacing $\operatorname{curl} \mathbf{H}_C$ with $\sigma \mathbf{E}_C$, one has the Poynting Theorem (energy balance)

Poynting Theorem (energy balance) (cont'd)

 $\int_{\Omega_C} \boldsymbol{\sigma} \mathbf{E}_C \cdot \overline{\mathbf{E}_C} + \int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} = - \int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}}.$

Poynting Theorem (energy balance) (cont'd)

$$\int_{\Omega_C} \boldsymbol{\sigma} \mathbf{E}_C \cdot \overline{\mathbf{E}_C} + \int_{\Omega} i \omega \boldsymbol{\mu} \mathbf{H} \cdot \overline{\mathbf{H}} = - \int_{\partial \Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}}.$$

The term on $\partial \Omega$ is clearly vanishing in the cases A and B.

Poynting Theorem for the case C

In the case C, instead, since $\operatorname{div}_{\tau}(\mathbf{E} \times \mathbf{n}) = -i\omega \mu \mathbf{H} \cdot \mathbf{n} = 0$ on $\partial \Omega$, one has

$$\mathbf{E} \times \mathbf{n} = \mathbf{grad} \, W \times \mathbf{n} \; \text{ on } \partial \Omega \; ,$$

and therefore

$$\begin{split} -\int_{\partial\Omega} \mathbf{n} \times \mathbf{E} \cdot \overline{\mathbf{H}} &= -\int_{\partial\Omega} \overline{\mathbf{H}} \times \mathbf{n} \cdot \operatorname{\mathbf{grad}} W \\ &= \int_{\partial\Omega} \operatorname{div}(\overline{\mathbf{H}} \times \mathbf{n}) W \\ &= \int_{\partial\Omega} \operatorname{\mathbf{curl}} \overline{\mathbf{H}} \cdot \mathbf{n} W = W_{|\Gamma_J} \int_{\Gamma_J} \operatorname{\mathbf{curl}} \overline{\mathbf{H}_C} \cdot \mathbf{n}, \end{split}$$

as curl $\mathbf{H}_I = \mathbf{0}$ in Ω_I , and we have denoted by $W_{|\Gamma_J}$ the (constant) value of the potential W on the electric port Γ_J (whereas $W_{|\Gamma_E} = 0$).

Poynting Theorem for the case C (cont'd)

■ In this case a degree of freedom is indeed still free (either the voltage $W_{|\Gamma_J}$, that will be denoted by V, or else the current intensity $\int_{\Gamma_J} \operatorname{curl} \mathbf{H}_C \cdot \mathbf{n}$ in Ω_C , that will be denoted by I_0).

Poynting Theorem for the case C (cont'd)

■ In this case a degree of freedom is indeed still free (either the voltage $W_{|\Gamma_J}$, that will be denoted by V, or else the current intensity $\int_{\Gamma_J} \operatorname{curl} \mathbf{H}_C \cdot \mathbf{n}$ in Ω_C , that will be denoted by I_0).

We can thus conclude that the only meaningful boundary value problem is the one with assigned no-flux boundary conditions: the case C.

The case C: variational formulation

How can we formulate the problem when the voltage or the current intensity are assigned?

[Alonso Rodríguez, Valli and Vázquez Hernández, 2009] [Other approaches: Bíró, Preis, Buchgraber and Tičar, 2004; Bermúdez, Rodríguez and Salgado, 2005]

The case C: variational formulation

How can we formulate the problem when the voltage or the current intensity are assigned?

[Alonso Rodríguez, Valli and Vázquez Hernández, 2009] [Other approaches: Bíró, Preis, Buchgraber and Tičar, 2004; Bermúdez, Rodríguez and Salgado, 2005]

This orthogonal decomposition result turns out to be useful: each vector function v_I can be decomposed as

$$\mathbf{v}_I = \boldsymbol{\mu}_I^{-1} \operatorname{curl} \mathbf{q}_I + \operatorname{grad} \psi_I + \alpha \boldsymbol{\rho}_I,$$

where ρ_I is a harmonic field, namely, it belongs to the space

$$\mathcal{H}_{\mu_{I}}(\Omega_{I}) := \{ \mathbf{v}_{I} \in (L^{2}(\Omega_{I}))^{3} | \operatorname{\mathbf{curl}} \mathbf{v}_{I} = \mathbf{0}, \operatorname{div}(\boldsymbol{\mu_{I}}\mathbf{v}_{I}) = 0, \\ \boldsymbol{\mu_{I}}\mathbf{v}_{I} \cdot \mathbf{n} = 0 \text{ on } \partial\Omega_{I} \}.$$

The harmonic field ρ_I is known from the data of the problem, and satisfies $\int_{\partial \Gamma_J} \rho_I \cdot d\tau = 1$; moreover, if the vector field \mathbf{v}_I satisfies $\operatorname{curl} \mathbf{v}_I = \mathbf{0}$, it follows $\mathbf{q}_I = \mathbf{0}$ and therefore $\alpha = \int_{\partial \Gamma_J} \mathbf{v}_I \cdot d\tau$.

The harmonic field ρ_I is known from the data of the problem, and satisfies $\int_{\partial \Gamma_J} \rho_I \cdot d\tau = 1$; moreover, if the vector field \mathbf{v}_I satisfies $\operatorname{curl} \mathbf{v}_I = \mathbf{0}$, it follows $\mathbf{q}_I = \mathbf{0}$ and therefore $\alpha = \int_{\partial \Gamma_J} \mathbf{v}_I \cdot d\tau$.

In particular, setting $\mathbf{H}_I = \operatorname{grad} \psi_I + \alpha_I \rho_I$, from the Stokes Theorem one has

$$I_0 = \int_{\Gamma_J} \operatorname{\mathbf{curl}} \mathbf{H}_C \cdot \mathbf{n}_C = \int_{\partial \Gamma_J} \mathbf{H}_C \cdot d\boldsymbol{\tau} = \int_{\partial \Gamma_J} \mathbf{H}_I \cdot d\boldsymbol{\tau} = \alpha_I \,,$$

hence

$$\mathbf{H}_{I} = \operatorname{\mathbf{grad}} \psi_{I} + I_{0} \boldsymbol{\rho}_{I} \,. \tag{3}$$

The harmonic field ρ_I is known from the data of the problem, and satisfies $\int_{\partial \Gamma_J} \rho_I \cdot d\tau = 1$; moreover, if the vector field \mathbf{v}_I satisfies $\operatorname{curl} \mathbf{v}_I = \mathbf{0}$, it follows $\mathbf{q}_I = \mathbf{0}$ and therefore $\alpha = \int_{\partial \Gamma_J} \mathbf{v}_I \cdot d\tau$.

In particular, setting $\mathbf{H}_I = \operatorname{grad} \psi_I + \alpha_I \rho_I$, from the Stokes Theorem one has

$$I_0 = \int_{\Gamma_J} \operatorname{\mathbf{curl}} \mathbf{H}_C \cdot \mathbf{n}_C = \int_{\partial \Gamma_J} \mathbf{H}_C \cdot d\boldsymbol{\tau} = \int_{\partial \Gamma_J} \mathbf{H}_I \cdot d\boldsymbol{\tau} = \alpha_I \,,$$

hence

$$\mathbf{H}_{I} = \operatorname{\mathbf{grad}} \psi_{I} + I_{0} \boldsymbol{\rho}_{I} \,. \tag{3}$$

We want to provide a "coupled" variational formulation, in terms of E_C in Ω_C and of H_I in Ω_I .

Inserting the Faraday equation into the Ampère equation in Ω_C we find

$$\int_{\Omega_C} \boldsymbol{\mu}_C^{-1} \operatorname{curl} \mathbf{E}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} + i\omega \int_{\Omega_C} \boldsymbol{\sigma} \mathbf{E}_C \cdot \overline{\mathbf{w}_C} -i\omega \int_{\Gamma} \overline{\mathbf{w}_C} \times \mathbf{n}_C \cdot \mathbf{H}_I = 0.$$
(4)

Inserting the Faraday equation into the Ampère equation in Ω_C we find

$$\int_{\Omega_C} \boldsymbol{\mu}_C^{-1} \operatorname{curl} \mathbf{E}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} + i\omega \int_{\Omega_C} \boldsymbol{\sigma} \mathbf{E}_C \cdot \overline{\mathbf{w}_C} -i\omega \int_{\Gamma} \overline{\mathbf{w}_C} \times \mathbf{n}_C \cdot \mathbf{H}_I = 0.$$

$$(4)$$

Instead, the Faraday equation in Ω_I gives

$$i\omega \int_{\Omega_I} \boldsymbol{\mu}_I \mathbf{H}_I \cdot \mathbf{grad} \,\overline{\varphi_I} + \int_{\Gamma} \mathbf{E}_C \times \mathbf{n}_C \cdot \mathbf{grad} \,\overline{\varphi_I} = 0$$
 (5)

Inserting the Faraday equation into the Ampère equation in Ω_C we find

$$\int_{\Omega_C} \boldsymbol{\mu}_C^{-1} \operatorname{curl} \mathbf{E}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} + i\omega \int_{\Omega_C} \boldsymbol{\sigma} \mathbf{E}_C \cdot \overline{\mathbf{w}_C} -i\omega \int_{\Gamma} \overline{\mathbf{w}_C} \times \mathbf{n}_C \cdot \mathbf{H}_I = 0.$$

$$(4)$$

Instead, the Faraday equation in Ω_I gives

$$i\omega \int_{\Omega_I} \boldsymbol{\mu}_I \mathbf{H}_I \cdot \mathbf{grad} \,\overline{\varphi_I} + \int_{\Gamma} \mathbf{E}_C \times \mathbf{n}_C \cdot \mathbf{grad} \,\overline{\varphi_I} = 0 \qquad (5)$$

and

$$i\omega \int_{\Omega_I} \boldsymbol{\mu}_I \mathbf{H}_I \cdot \boldsymbol{\rho}_I + \int_{\Gamma} \mathbf{E}_C \times \mathbf{n}_C \cdot \boldsymbol{\rho}_I = V .$$
 (6)

Here we have to note that

$$\int_{\Gamma_D} \mathbf{E}_I \times \mathbf{n}_I \cdot \boldsymbol{\rho}_I = \int_{\Gamma_D} \operatorname{\mathbf{grad}} W \times \mathbf{n}_I \cdot \boldsymbol{\rho}_I$$
$$= \int_{\Gamma_D} \operatorname{div}_{\tau} (\boldsymbol{\rho}_I \times \mathbf{n}_I) W + V \int_{\partial \Gamma_J} \boldsymbol{\rho}_I \cdot d\boldsymbol{\tau} = V.$$

Here we have to note that

$$\int_{\Gamma_D} \mathbf{E}_I \times \mathbf{n}_I \cdot \boldsymbol{\rho}_I = \int_{\Gamma_D} \operatorname{\mathbf{grad}} W \times \mathbf{n}_I \cdot \boldsymbol{\rho}_I$$
$$= \int_{\Gamma_D} \operatorname{div}_{\tau} (\boldsymbol{\rho}_I \times \mathbf{n}_I) W + V \int_{\partial \Gamma_J} \boldsymbol{\rho}_I \cdot d\boldsymbol{\tau} = V$$

Using (3) in (4), (5) and (6) one has

$$\int_{\Omega_C} \boldsymbol{\mu}_C^{-1} \operatorname{curl} \mathbf{E}_C \cdot \operatorname{curl} \overline{\mathbf{w}_C} + i\omega \int_{\Omega_C} \boldsymbol{\sigma} \mathbf{E}_C \cdot \overline{\mathbf{w}_C} -i\omega \int_{\Gamma} \overline{\mathbf{w}_C} \times \mathbf{n}_C \cdot \operatorname{grad} \psi_I - i\omega I_0 \int_{\Gamma} \overline{\mathbf{w}_C} \times \mathbf{n}_C \cdot \boldsymbol{\rho}_I = 0$$
(7)

$$-i\omega \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \mathbf{grad} \,\overline{\varphi_{I}} + \omega^{2} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \,\mathbf{grad} \,\psi_{I} \cdot \mathbf{grad} \,\overline{\varphi_{I}} = 0 \quad (8)$$
$$-i\omega \overline{Q} \int_{\Gamma} \mathbf{E}_{C} \times \mathbf{n}_{C} \cdot \boldsymbol{\rho}_{I} + \omega^{2} I_{0} \overline{Q} \int_{\Omega_{I}} \boldsymbol{\mu}_{I} \boldsymbol{\rho}_{I} \cdot \boldsymbol{\rho}_{I} = -i\omega V \overline{Q} \quad (9)$$

If V is given, one solves (7), (8), (9) and determines \mathbf{E}_C , ψ_I and I_0 (hence \mathbf{H}_C and \mathbf{H}_I).

- If *V* is given, one solves (7), (8), (9) and determines \mathbf{E}_C , ψ_I and I_0 (hence \mathbf{H}_C and \mathbf{H}_I).
- If I_0 is given, one solves (7), (8) and determines \mathbf{E}_C and ψ_I (hence \mathbf{H}_C and \mathbf{H}_I); then from (9) one can also compute V.

- If *V* is given, one solves (7), (8), (9) and determines \mathbf{E}_C , ψ_I and I_0 (hence \mathbf{H}_C and \mathbf{H}_I).
- If I_0 is given, one solves (7), (8) and determines \mathbf{E}_C and ψ_I (hence \mathbf{H}_C and \mathbf{H}_I); then from (9) one can also compute V.

Both problems are well-posed, namely, they have a unique solution, since the associated sesquilinear form is coercive (thus one can apply the Lax–Milgram Lemma).

- If *V* is given, one solves (7), (8), (9) and determines \mathbf{E}_C , ψ_I and I_0 (hence \mathbf{H}_C and \mathbf{H}_I).
- If I_0 is given, one solves (7), (8) and determines \mathbf{E}_C and ψ_I (hence \mathbf{H}_C and \mathbf{H}_I); then from (9) one can also compute V.

Both problems are well-posed, namely, they have a unique solution, since the associated sesquilinear form is coercive (thus one can apply the Lax–Milgram Lemma).

Moreover, it is simple to propose an approximation method based on finite elements, of "edge" type for E_C in Ω_C and of (scalar) nodal type for ψ_I in Ω_I . Convergence is assured by the Céa Lemma.

- If *V* is given, one solves (7), (8), (9) and determines \mathbf{E}_C , ψ_I and I_0 (hence \mathbf{H}_C and \mathbf{H}_I).
- If I_0 is given, one solves (7), (8) and determines \mathbf{E}_C and ψ_I (hence \mathbf{H}_C and \mathbf{H}_I); then from (9) one can also compute V.

Both problems are well-posed, namely, they have a unique solution, since the associated sesquilinear form is coercive (thus one can apply the Lax–Milgram Lemma).

Moreover, it is simple to propose an approximation method based on finite elements, of "edge" type for E_C in Ω_C and of (scalar) nodal type for ψ_I in Ω_I . Convergence is assured by the Céa Lemma. [However, an efficient implementation demands to replace the harmonic field ρ_I with an easily computable function.]

Physical interpretation

Note: the physical interpretation of equation (9) is that

$$-\int_{\gamma} \mathbf{E}_C \cdot d\mathbf{r} + i\omega \int_{\Xi} \boldsymbol{\mu}_I \mathbf{H}_I \cdot \mathbf{n}_{\Xi} = V \,,$$

where $\gamma = \partial \Xi \cap \Gamma$ is oriented from Γ_J to Γ_E , and \mathbf{n}_{Ξ} is directed in such a way that γ is clockwise oriented with respect to it.

In other words, if it is possible to determine the electric field E_I in Ω_I satisfying the Faraday equation, it follows that

$$\int_{\gamma_*} \mathbf{E}_I \cdot d\mathbf{r} = V \,,$$

where $\gamma_* = \partial \Xi \cap \Gamma_D$ is oriented from Γ_E to Γ_J : hence (9) is indeed determining the voltage drop between the electric ports.

Physical interpretation (cont'd)

This explains from another point of view why, when the source is a voltage drop or a current intensity, it is not possible to assume the electric boundary conditions $E \times n = 0$ on $\partial \Omega$.

Physical interpretation (cont'd)

This explains from another point of view why, when the source is a voltage drop or a current intensity, it is not possible to assume the electric boundary conditions $E \times n = 0$ on $\partial \Omega$.

In fact, in that case one would have

$$\int_{\gamma_*} \mathbf{E}_I \cdot d\mathbf{r} = 0 \,,$$

hence from (9)

$$i\omega \int_{\Xi} \boldsymbol{\mu}_{I} \mathbf{H}_{I} \cdot \mathbf{n}_{\Xi} = V + \int_{\gamma} \mathbf{E}_{C} \cdot d\mathbf{r} = V + \int_{\gamma \cup \gamma_{*}} \mathbf{E} \cdot d\mathbf{r}$$
$$= V + \int_{\partial \Xi} \mathbf{E} \cdot d\mathbf{r},$$

with $\partial \Xi$ clockwise oriented with respect n_{Ξ} : due to the term *V* the Faraday equation would be violated on Ξ !

Numerical results for the Case C

Coming back to the case C and to its variational formulation (7), (8), (9), we use edge finite elements of the lowest degree ($\mathbf{a} + \mathbf{b} \times \mathbf{x}$ in each element) for approximating \mathbf{E}_C , and scalar piecewise-linear elements for approximating ψ_I .

Numerical results for the Case C

Coming back to the case C and to its variational formulation (7), (8), (9), we use edge finite elements of the lowest degree ($\mathbf{a} + \mathbf{b} \times \mathbf{x}$ in each element) for approximating \mathbf{E}_C , and scalar piecewise-linear elements for approximating ψ_I .

The problem description is the following: the conductor Ω_C and the whole domain Ω are two coaxial cylinders of radius R_C and R_D , respectively, and height *L*. Assuming that σ and μ are scalar constants, the exact solution for an assigned current intensity I_0 is known (through suitable Bessel functions), and also the basis function ρ_I is known, thus from (9) one easily computes the voltage *V*, too.

We have the following data:

$$R_C = 0.25 \,\mathrm{m}$$

$$R_D = 0.5 \text{ m}$$

$$L = 0.25 \,\mathrm{m}$$

$$\sigma ~=~ 151565.8~{
m S/m}$$

$$\mu~=~4\pi imes 10^{-7}$$
 H/m

$$\omega~=~2\pi imes 50$$
 rad/s

and

$$I_0 = 10^4 \text{ A}$$
 or $V = 0.08979 + 0.14680i$

[the voltage corresponds to the current intensity $I_0 = 10^4$ A].

The relative errors (for \mathbf{E}_C in $H(\mathbf{curl}; \Omega_C)$ and for \mathbf{H}_I in $L^2(\Omega_I)$) with respect to the number of degrees of freedom are given by:

The relative errors (for \mathbf{E}_C in $H(\mathbf{curl}; \Omega_C)$ and for \mathbf{H}_I in $L^2(\Omega_I)$) with respect to the number of degrees of freedom are given by:

Elements	DoF	e_E	e_H	e_V
2304	1684	0.2341	0.1693	0.0312
18432	11240	0.1132	0.0847	0.0089
62208	35580	0.0750	0.0567	0.0048
147456	81616	0.0561	0.0425	0.0018

The relative errors (for \mathbf{E}_C in $H(\mathbf{curl}; \Omega_C)$ and for \mathbf{H}_I in $L^2(\Omega_I)$) with respect to the number of degrees of freedom are given by:

Elements	DoF	e_E	e_H	e_V
2304	1684	0.2341	0.1693	0.0312
18432	11240	0.1132	0.0847	0.0089
62208	35580	0.0750	0.0567	0.0048
147456	81616	0.0561	0.0425	0.0018

Elements	DoF	e_E	e_H	e_{I_0}
2304	1685	0.2336	0.1685	0.0274
18432	11241	0.1132	0.0847	0.0085
62208	35581	0.0750	0.0566	0.0041
147456	81617	0.0561	0.0425	0.0024

On a graph: for assigned current intensity

for assigned voltage

A more realistic problem, considered by Bermúdez, Rodríguez and Salgado, 2005, is that of a cylindrical electric furnace with three electrodes ELSA [dimensions: furnace height 2 m; furnace diameter 8.88 m; electrode height 1.25 m; electrode diameter 1 m; distance of the center of the electrode from the wall 3 m].

A more realistic problem, considered by Bermúdez, Rodríguez and Salgado, 2005, is that of a cylindrical electric furnace with three electrodes ELSA [dimensions: furnace height 2 m; furnace diameter 8.88 m; electrode height 1.25 m; electrode diameter 1 m; distance of the center of the electrode from the wall 3 m]. The three electrodes ELSA are constituted by a graphite core of 0.4 m of diameter, and by an outer part of Söderberg paste. The electric current enters the electrodes through horizontal copper bars of rectangular section (0.07) $m \times 0.25$ m), connecting the top of the electrode with the external boundary.

A more realistic problem, considered by Bermúdez, Rodríguez and Salgado, 2005, is that of a cylindrical electric furnace with three electrodes ELSA [dimensions: furnace height 2 m; furnace diameter 8.88 m; electrode height 1.25 m; electrode diameter 1 m; distance of the center of the electrode from the wall 3 m]. The three electrodes ELSA are constituted by a graphite core of 0.4 m of diameter, and by an outer part of Söderberg paste. The electric current enters the electrodes through horizontal copper bars of rectangular section (0.07) $m \times 0.25$ m), connecting the top of the electrode with the external boundary.

Data: $\sigma = 10^6$ S/m for graphite, $\sigma = 10^4$ S/m for Söderberg paste, $\sigma = 5 \times 10^6$ S/m for copper, $\mu = 4\pi \times 10^{-7}$ H/m, $\omega = 2\pi \times 50$ rad/s, $I_0 = 7 \times 10^4$ A for each electrode.

The value of the magnetic "potential" in the insulator: the magnetic field is the gradient of the represented function (not taking into account the jump surfaces).

The magnitude of the current density σE_C on a horizontal section of one electrode.

The magnitude of the current density σE_C on a vertical section of one electrode.

References

A. Alonso Rodríguez, A. Valli and R. Vázquez Hernández: A formulation of the eddy-current problem in the presence of electric ports. Numer. Math., 113 (2009), 643–672.

A. Bermúdez, R. Rodríguez and P. Salgado: Numerical solution of eddy-current problems in bounded domains using realistic boundary conditions. Comput. Methods Appl. Mech. Engrg., 194 (2005), 411–426.

O. Bíró, K. Preis, G. Buchgraber and I. Tičar: Voltage-driven coils in finite-element formulations using a current vector and a magnetic scalar potential, IEEE Trans. Magn., 40 (2004), 1286–1289.

A. Bossavit: Most general 'non-local' boundary conditions for the Maxwell equations in a bounded region. COMPEL, 19 (2000), 239—245.

Additional references

A. Alonso Rodríguez and A. Valli: Voltage and current excitation for time-harmonic eddy-current problem. SIAM J. Appl. Math., 68 (2008), 1477–1494.

P. Dular, C. Geuzaine and W. Legros: A natural method for coupling magnetodynamic H-formulations and circuits equations. IEEE Trans. Magn., 35 (1999), 1626–1629.

R. Hiptmair and O. Sterz: Current and voltage excitations for the eddy current model. Int. J. Numer. Modelling, 18 (2005), 1–21.

J. Rappaz, M. Swierkosz and C. Trophime: Un modèle mathématique et numérique pour un logiciel de simulation tridimensionnelle d'induction électromagnétique. Report 05.99, Département de Mathématiques, École Polytechnique Fédérale de Lausanne, 1999.