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Maxwell equations

- The complete Maxwell system of electromagnetism reads |

( 0D . .
En + J =curl’H Maxwell-Ampere equation
oB .
—rn +curl€ =0 Faraday equation (1)
divD = p Gauss electrical equation
divB =0 Gauss magnetic equation .

\
#® H and & are the magnetic and electric fields,
respectively

# BB and D are the magnetic and electric inductions,
respectively

#® 7 and p are the (surface) electric current density and
L (volume) electric charge density, respectively. J
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Maxwell equations (cont'd)

-

These fields are related through some constitutive
equations: it is usually assumed a linear dependence like

-

D =¢€e& ; B:HJH, j:(fg"‘je;

where € and p are the electric permittivity and magnetic
permeability, respectively, and o Is the electric conductivity.

In general, €, 4 and o are not constant, but are symmetric
and uniformly positive definite matrices (with entries that
are bounded functions of the space variable x). Clearly, the
conductivity o Is only present in conductors, and Is
identically vanishing in any insulator.

#» 7. Is the applied electric current density.

o |
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Eddy current equations

-

fAs observed in experiments and stated by the Faraday law,
a time-variation of the magnetic field generates an electric
field. Therefore, in each conductor a current density
Jeaay = oE arises; this term expresses the presence In

conducting media of the so-called eddy currents.

This phenomenon, and the related heating of the conductor,
was observed and studied by the French physicist L.
Foucault in the mid of the nineteenth century, and in fact the
generated currents are also known as Foucault currents.

o |
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Eddy current equations (cont’d)

fln many real-life applications, the time of propagation of thej
electromagnetic waves is very small with respect to some
characteristic time scale, or, equivalently, their wave length
IS much larger than the diameter of the physical domain.

Therefore one can think that the speed of propagation is

infinite, and take into account only t
electromagnetic fields, neglecting e

ne diffusion of the
ectromagnetic waves.

Rephrasing this concept, one can a

sSo say that, when

considering time-dependent problems in electromagnetism,
one can distinguish between "fast" varying fields and
"slowly" varying fields. In the latter case, one is led to
simplify the set of equations, neglecting time derivatives, or,
depending on the specific situation at hand, one time

A : oD OB
Lderlvatlve, either Sr or o7,

|
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Eddy current equations (cont’d)

-

Typically, problems of this type are peculiar of electrical
engineering, where low frequencies are involved, but not of
electronic engineering, where the frequency ranges in
much larger bands.

-

We focus on the case in which the displacement current

term %—? can be disregarded, while the time-variation of the

magnetic induction is still important, as well as the related
presence of eddy currents in the conductors.

o |
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Eddy current equations (cont’d)

-

A thumb rule for deciding wheter D can be dropped is the
following: if L is a typical length in Q (say, its diameter), and

we choose w~! as a typical time, it is possibile to disregard
the displacement current term provided that

D||w| < |HIL™' | |D||w| < |o€].

Using the Faraday equation, we can write £ Is terms of H,
finding
EIL7 & |wl|wH].

o J
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Eddy current equations (cont’d)

fHence, recalling that D = e£ and putting everything T
together, one should have

,Uma,><<°:r1f1a><(vu2L2 <1, Ur:lilngmaX’w’ <1,

where umax and e are uniform upper bounds in 2 for the
maximum eigenvalues of u(x) and e(x), respectively, and

omin denotes a uniform lower bound in Q¢ for the minimum
eigenvalues of o(x).

Since the magnitude of the velocity of the electromagnetic

wave can be estimated by (jtmaxemax) /2, the first relation
IS requiring that the wave length is large compared to L.

o |
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Eddy current equations (cont’d)

-

Let us also note that for industrial electrical applications
some typical values of the parameters involved are

1o = 4m x 1077 H/m, g9 = 8.9 x 10~'? F/m,
Teopper = 5.7 X 107 S/m, w = 27 x 50 rad/s (power frequency
of 50 Hz), hence In that case

-

1
VHogo|w]

and dropping the displacement current term looks
appropriate.

106 ~1 N 17
~10°m , opperfolw| A 4.9 x 10777,

Though less apparent, the same Iis true for a typical
conductivity in physiological problem, say,
Latissue ~ 107! S/m, for which o1 eolw| ~ 2.8 x 1078, J

tissue
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Time-harmonic eddy current equations

-

Starting from the Maxwell equations, assuming a sinusoidal
dependence on time and disregarding the displacement

current term %—? one obtains the so-called time-harmonic
eddy current equations

-

cul H—cE=J. InQ
{ (2)

curlE +iwpH =0 In ).

Here
#® w # 01is the (angular) frequency.

As a consequence one has div(uH) = 0 In €2, and the
electric charge in conductors is defined by p = div(eE).

o |
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Time-harmonic eddy current equations (cont’'d)

-

Since in an insulator one has o = 0, It follows that E is not
uniquely determined in that region (E + V1) is still a
solution).

Some additional conditions ("gauge" conditions) are thus
necessary. the most natural idea is to impose the
conditions satisfied by the solution E¢ of the Maxwell
equations.

As In the insulator €2; we have no charges, the first
additional condition is

-

diV(EI[E]) =0 N Q7 (3)

(Er means Eq,, and similarly for other quantities).

o |
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Topological gauge conditions for the electric field

. N

Other gauge conditions are related to the topology of the
Insulator €2;. Denoting by )~ the conductor (strictly
contained in the physical domain 2, and surrounded by the

insulator Q;) and by I" := Q- N Q7, let us define

Hr:={Gy € (L*(Q))? |curtG; = 0,div(e;G) = 0
G;xn=0onI,BCgr(Gy)=0o0n0},

where BCy denotes the boundary condition imposed on Ej;.
The topological gauge conditions can be written as

E]E[J_H[. (4)

o |
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Topological gauge conditions for the electric field (cont’dl

fThus these conditions are assuring that, if in addition one T
has curl E; = 01n 7, diV(EI[E[) =0, E;xn=00nT
and BCg(E;) = 0 on 012, then it follows E; = 0 In ;.

# It can be shown that the orthogonality condition
erEr L Hy Is equivalent to impose that the flux of e;E;
IS vanishing on a suitable set of surfaces.
[This set depends on the choice of the boundary
condition for E;; for instance, for E; x n = 0 on 0f2 the
surfaces are the connected components of 0QQ UT'.]

o |
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The spaces of harmonic fields

- N

Let us consider a couple of questions.

# If a vector field satisfies curlv =0 and divv =01n a
domain, together with the boundary conditions v xn =0
on a part of the boundary and v - n = 0 on the other
part, is it non-trivial, namely, not vanishing everywhere
In the domain? [A field like that is called harmonic field.]

# |f that is the case, do harmonic fields appear in
electromagnetism?

Both questions have an affermative answer.

o |
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The spaces of harmonic fields (cont’d)

- N

Let us start from the first question.

If the domain O is homeomorphic to a three-dimensional
ball, a curl-free vector field v must be a gradient of a scalar
function v, that must be harmonic due to the constraint on
the divergence.

If the boundary condition is v x n = 0 on 90, which In this
case Is a connected surface, then it follows ) = const. on
00, and therefore ¢y = const. In @ and v=01n O.

o |
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The spaces of harmonic fields (cont’d)

-

fIf the boundary condition is v - n = 0 on 00, then ) satisfies
a homogeneous Neumann boundary condition and thus
Y =const. iInOandv =01n O.

The same result follows if the boundary conditions are
vxn=0onI'pandv-n=0o0nIy, andI'p Is a connected
surface: in fact, we still have ¢ = const. on I"p and

grady - n = 0 on I'y, hence ¢ satisfies a mixed boundary
value problem and we obtain ) = const. In ® and v =0 in O.

o |
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The spaces of harmonic fields (cont’d)

- N

However, the problem is different in a more general
geometry.

In fact, take the magnetic field generated in the vacuum by
a current of constant intensity 7' passing along the z3-axis:
as it is well-known, for x§ + 23 > 0 it is given by

IV 9 1
H(z1,29,23) = — | — , 0] .
(21,2, 3) 27T( x%+x% ZC%—i—iE% )

o |
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The spaces of harmonic fields (cont’d)

fIt IS easily checked that, as Maxwell equations require, T
curlH= 0 and divH = 0.

Let us consider now the torus 7 obtained by rotating
around the z3-axis the disk of centre (a,0,0) and radius b,
with 0 < b < a. One sees atoncethat H-n =0 on 907;
hence we have found a non-trivial harmonic field H in 7

satisfying H-n = 0 on 07.

o |
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The spaces of harmonic fields (cont’d)

fOn the other hand, consider now the electric field T
generated in the vacuum by a pointwise charge pg placed at

the origin. For x # 0 it is given by

po X
47T€() ’X’g 7

E(Qfl, L2, x?)) —

where ¢ Is the electric permittivity of the vacuum.

It satisfies divE = 0 and curl E = 0, and moreover E x n = 0
on the boundary of C := Bp, \ Bg,, where 0 < R; < Ry and
Bgr := {x €3 ||x| < R} is the ball of centre 0 and radius R.
We have thus found a non-trivial harmonic field E in C
satisfying E x n = 0 on oC.

o |
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The spaces of harmonic fields (cont’d)

-

These two examples show that the geometry of the domain
and the type of boundary conditions play an essential role
when considering harmonic fields.

-

What are the relevant differences between the set O,
homeomorphic to a ball, and the sets 7 and C?

For the former, the point is that in 7 we have a
non-bounding cycle, namely, a cycle that is not the
boundary of a surface contained in 7 (take for instance the
circle of centre 0 and radius a In the (z1, z2)-plane).

In the latter case, the boundary of C is not connected.

o |
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The spaces of harmonic fields (cont’d)

-

Four types of spaces of harmonic fields are coming into
play.
o For the electric field

HWY = (G € (L2(9))3 | eurl G = 0,div(e;G) = 0

Grxn=0onI,G; xn=0o0n0d},

HPB) = {G] e (L2(9))3 | curl G = 0,div(e;G]) = 0
Grxn=0onT,e;G;-n=00n0d0},

o |

Eddy current problems in the time-harmonic regime — p.21/150



The spaces of harmonic fields (cont’d)

- N

# For the magnetic field

HO = (G € (L2(Q))® |cur G = 0, div(p; G 1) = 0

prGr-n=0onT,G; xn=0on 0},

(D

HP) = (G € (L2(Q)3 | curl G = 0, div(p;Gp) = 0

piGr-n=0onT, u;G;-n=0o0n00}.

All are finite dimensional! Their dimension is a topological
Invariant (precisely,... see below!).

o |
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The basis functions of the spaces of harmonic fields

Let us make precise which are the basis functions of Hﬁ-D )
and H§C).

For Hﬁ-D ) one has first to introduce the "cutting” surfaces

= CQna=1,...,nq,, with 0= C 0Q UT, such that every
curl-free vector field in 2; has a global potential in
Wi \ U= -

The number ng, is the number of (independent)
non-bounding cycles in 2;, namely, the first Betti number of
(27, or, equivalently, the dimension of the first homology
space of ;.

These surfaces "cuts" the non-bounding cycles in ;.

o |
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The basis functions of the spaces of harmonic fields (cont’d)

-

The basis functions p* ; are the (L*();))3-extension of
grad p* ;, where p’ ; Is the solution to

( div(p; grad py, ;) =0 in Q7 \ =*
proradp’ ;-ny =0 on (0QUTI)\ =%
< ngfadpz,]'na*}:* =0
p:é’[i| — =1 )
. L =x

having denoted by |- |z« the jump across the surface =, and
by n=- the unit normal vector on =}..

o |
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The basis functions of the spaces of harmonic fields (cont’d)

(C) T

The basis functions for ;" can be defined as follows.

First of all we have grad z, ;, the solutions to

* div(p; grad zr1) =0 N Q7

prorad z. r-ny =0 onI’
zr1 =0 on o0\ (0N),
L =1 on (09), ,

where r =1,...,psq, and psqo + 1 1S the number of
connected components of 0.

o |
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The basis functions of the spaces of harmonic fields (cont’d)

o .

To complete the construction of the basis functions we have
to proceed further.

For that, as in the preceding case, let us recall that in Q;
there exist a set of "cutting"” surfaces =;, with 9=; C T", such
that every curl-free vector field in €2; with vanishing
tangential component on J€) has a global potential in

97 \ Ui=y.

These surfaces "cuts" the 0Q-independent non-bounding
cycles in €; (whose number is denoted by nr).

o |
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The basis functions of the spaces of harmonic fields (cont’d)

fThen introduce the functions p; 7, defined in Q7 \ =; and

-

solutions to
( : . —_
div(pygradp; ) =0 in Q7 \ 5
proradp;r-ny =0 onTI'\ 0=
S m1=0 on oS
\prgradp; 1 - nz] = = U
\ p1.1] = =1,
having denoted by |- |z, the jump across the surface =; and

by nz the unit normal vector on =;.

The other basis functions p, ; are the (L*(Q;))*-extension of

Lgrad Di.1 (computed in €; \ =1). J
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Boundary conditions

We will distinguish among two types of boundary T
conditions.

# Electric. One imposes E x n = 0 on 9€). [As a
consequence, one also has uH - n = 0 on 0f).]

# Magnetic. One imposes H xn =0 and €E-n = 0 on 0f).

The notation BCx(E;) on 02 therefore refers to E; x n for
the electric boundary condition, and to £;E; - n for the
magnetic boundary conditions.

[A third type of boundary conditions can be considered:

# No-flux [Bossavit (2000)]. One imposes uH - n = 0 and
eE - n = 0 on 9.

LWe will not dwell on these boundary conditions in the

sequel.] J
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E and H formulations

-

As for the Maxwell equations, the problem can be
formulated in terms of E or H only.

» E formulation

( curl(pw™Lcur E) +iwoE = —iwJ, in Q
diV(EI]E]) =0 N Q7
{ pleurlExn=0 on of) (5)
BCr(E;) =0 on of?
\ €[E[ 1 H[

[where the condition i~ curlE x n = 0 on 992 has to be
dropped if considering the electric boundary condition].

o |
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E and H formulations (cont’d)

-

Once the electric field E is available, one sets
H=iv'p tcurlE in ),

and the complete solution is recovered.

o |
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E and H formulations (cont’d)

f #® H formulation T

( curl(oc™teurl He) +iwp-He
= curl(a_lJe,C) In Q¢
CUle]:JeJ N i
! div(uH) = 0 in 0 (6)
BCH(H[) =0 on of
H; xn;+Heg xXxng =0 onI’
| TOP(H) =0,

where BCy (H;) means u;H; - n for the electric

boundary condition, and H; x n for the magnetic

boundary conditions, and TOP(H) = 0 is a set of

topological conditions that have to be satisfied by the
L magnetic field H.
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E and H formulations (cont’d)

-

Having determined H, the electric field is obtained by
setting

Ec = o (curl He — Je.c) in Q¢ ,

and solving the problem

( curlE; = —iquH[ N i
diV(&?]E[) =0 N Q7
§ BCr(Er) =0 on of?
E;rxny=—-Ec xno onl
\ €]E[ J_H].

This last problem is not always solvable, but needs that
Lsome compatibility conditions on the data are satisfied. J
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Topological conditions on the magnetic field

fBesides the conditions div(uH) = 0in Q and u;H; - n =0 onj
00 (iIf E; x n = 0 on 9f), that are clearly satisfied, it is
Important to underline that the other needed compatibility
conditions are the topological conditions TOP(H) = 0.

Let us make clear their structure. For the sake of
definiteness, let us focus on the electric boundary condition.
We need to consider again the (finite dimensional) space

HP) = (G e (L2(Q7))3 | curl Gy = 0, div(pa;Gp) = 0
piGr-n=00n0QUTI},

and its basis functions p? ;, a =1,...,nq, [let us recall that

nq, 1S the first Betti number of Q2;, or, equivalently, the
Lnumber of (independent) non-bounding cycles in y]. J
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Topological conditions on the magnetic field (cont’'d)

-

fQ iW[,LIH[ pj;[ (7)
+ [plo™HeunHe — J. 0)] xng-ph =0

.

he topological conditions TOP(H) = 0 mean that

foreach a =1,... nq,.

Note that one has nqg, > 1 If the conductor ¢ is not
simply-connected, and therefore in that case these
conditions have to be taken into account.

# |t can be proved that the topological conditions
TOP(H) = 0 are equivalent to the integral form of the
Faraday equation on each surface that "cuts" a
L non-bounding cycle [Selfert surface]. J
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Don’t forget the Faraday equation!

-

Instead of proving this statement, let us change our point ofT
view and show that, if TOP(H) are not imposed, the Faraday
equation is not completely solved.

Since we have imposed the Faraday equation in €2~ and the
electric field E; will be determined by solving the Faraday
equation in Q7 (with H; already known), it really seems that
everything is all right...

But, as already remarked, finding E; is possible only if
some compatibility conditions are satisfied!

Thus let us see in more detail: the Faraday equation relates
the flux of the magnetic induction through a surface with the
line integral of the electric field on the boundary of that

Lsurface. J
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Don’t forget the Faraday equation! (cont’d)

. N

Since we know the magnetic field in the whole €, surfaces
can stay everywhere in 2; but, before determining E;, we
know the electric field only in Q~, therefore the boundary of

the surface must stay in Q.

On the other hand, the Faraday equation (in differential
form) Is satisfied in Q)¢, therefore for a surface contained in
()¢ everything is all right.

Thus we must verify If there are surfaces in ); with
boundary on I', and moreover such that this boundary is not
the boundary of a surface in Q¢ [if this is not the case, the
Divergence Theorem says that again everything is all right,
as the magnetic induction is divergence free in €)...].

o |
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Don’t forget the Faraday equation! (cont’d)

- N

# Conclusion: the Faraday equation has not been
Imposed on the "cutting" surface A! [The non-bounding
cycle is the boundary of the surface 3..]

o012

o |
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Weak formulations

fLet us come back to our eddy current problems. T

Looking at the E-formulation (5) and the H-formulation (6)
one sees that they have not a simple structure, and that a
degeneration occurs where o Is vanishing (namely, in the

iInsulator ;).

The constraints on the divergence should balance in some
way the degeneration of the operator: but it does not look
so trivial to take into account this fact.

However, passing to weak formulations permits to show the
well-posedness of eddy current problems.

o |
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Weak H-formulation

-

First of all, under the necessary conditions

divJer =0 in{)y
Jer-n=0 ondf}
Je,l 1 HI;

It can be shown that there exists a vector field
H,. € H(curl;2) satisfying

curlHe y = Je 1 IN QY
BCH(HG’]) =0 on 9N

[the boundary conditions for J. ; and H. ; have to be
Ldropped If considering the electric boundary condition]. J
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Weak H-formulation (cont’d)

~ Setting o

Vi={ve H(curl;Q)| curlvy =01In Q;,vy x n =0 on 02}

[the boundary condition has to be dropped if considering
the electric boundary condition], multiplying the Faraday

equation by v, with v € V, integrating in €2 and integrating
by parts one finds

/ EC-curIW+/ E[-curlv_]+/ an-V+/ wpH-v =0,
Qc Qp o012 Q

thus

/ E(;-curlﬁ—l—/iwuH-V:O,
Qc Q)

Las curlvy =0 1In ;. J
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Weak H-formulation (cont’d)

Using the Ampere equation in Q- for expressing E., we T
end up with the following problem

Find (H—H.) e V :

1 — : _
Jo, o culHg - curl Vo + [ iwpH - v
= ch U_lJe’C -curl ve

(8)

foreachv € V .

This formulation is well-posed via the Lax—Milgram lemma,
as the sesquilinear form

a(u,v) ::/ o Lcurluc - curl Vg + / iwpl -V
Qc Q

Lis clearly continuous and coercive in V. J
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Weak E-formulation

-

For deriving the weak E-formulation one starts from the
Ampere equation: multiplying by z, integrating in Q2 and
Integrating by parts one easily sees that

-

JoH-cunz+ [jonxH-Z— [, 0Ec-72¢c = [yJc-Z

for all z € H(curl; Q).
The boundary term disappears if H satisfies the magnetic

boundary condition, or if z satisfies the electric boundary
condition.

Set

7 :=A{ze€ H(curl;Q) | div(eyzr) = 0in Qy,
BCE(Z[) = 0, EI[Z]J_H]}.

o |
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Weak E-formulation (cont’'d)

fExpressing H through the Faraday equation, the weak T
E-formulation finally reads

Find E € Z :

1

JopteunE-cunz +iw [, oEc-7Zg = —iw [oJe-Z  (9)

foreach z € /.

Though less straightforward, it can be proved that the
sesquilinear form

1

ac(W,2z) = [ou culw - curlz +iw [, owe - Zo

IS continuous and coercive in Z, and well-posedness of the
Lweak E-formulation follows from Lax—Milgram lemma. J
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From the weak to the strong formulations

-

Since we have proved well-posedness for the weak T
problems (8) and (9), in order to prove that the eddy current
problem is completely solved it is necessary to show that

(5) or (6) are satisfied.

The easiest case is the proof that (5) holds. For that, it is
enough to choose suitable test functions v in (8).

For the sake of definiteness, let us consider the electric
boundary case.

o |
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From the weak to the strong formulations (cont’d)

- N

# Taking as test function v = grad ¢ it follows div(pH) = 0
In Qand u;H; - n =0 on o).

# Taking as test function v with compact support in Q¢
one finds curl(c ! curlHe) + iwpcHe = curl(e™1J,. ) in
Qe

» Taking as test function v such that v; = p7 ; In {; gives

fQI wprHy - PZ’[ = — ch wpcHe - vo
+ fQC U_l(Je,C —curlHe) - curlve
— fI‘ U_l(Je,C — curl HC) ' (ncxﬁ)
= Jro ' (Jec —culHe) - (noxp}, ;)

L namely, TOP(H) = 0. J
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Numerical approximation

-

Both problems (8) and (9) contain a differential constraint:
the former on the curl, the latter on the divergence.

-

# Numerical approximation needs some care!

Possible ways of attack:
# saddle-point formulations [Lagrange multipliers]
# a scalar potential for Hy — H, ;

#® a vector potential for e;E;.

o |
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Numerical approximation (cont’d)

-

The first choice has been considered by Alonso Rodriguez,
Hiptmair and V. (2004) (for the magnetic field) and by
Alonso Rodriguez and V. (2004) (for the electric field);
hybrid formulations in terms of (Hq, E;) or (Ec«, Hy) have
been also proposed and analyzed (Alonso Rodriguez,
Hiptmair and V. (2004, 2005)).

The second possiblility will be described here below.

-

To our knowledge, the third choice has not been completely
exploited. A possible modification is to look for a vector
potential for pH: this (classical) approach will be illustrated
In the following.

o |
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Scalar potential formulation

-

Again, for the sake of definiteness let us consider the
electric boundary condition.

-

The starting point is to consider H, € H (curl; 2) satisfying
Cur|H€7[:J67[ In Q.

Then the main step is to use the orthogonal decomposition

'n/QI

H; — He,[ = grad w; + Z n;,apj;,l ; (10)

a=1

where ¢ € H'(Q7)/C and n; , € C (the two terms of the
decomposition are orthogonal, with respect to the scalar

Lproduct (ar, vi)u, .0 = fQI puay - vy). J
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Orthogonal decompositions

-

There are infinitely many of these decomposition results...

-

Let us recall the two that are interesting for the magnetic
field:

nQI
vi=pyoul QF +grad X+ > 07 0
a=1
and
PoQ nr
V] = Hfl curl Qr + grad x 7 + Z ayrgrad z, 1 + Z br1p1 1 -
r=1 =1

o |

Eddy current problems in the time-harmonic regime — p.49/150



Orthogonal decompositions (cont’'d)

~ Let us explain the first decomposition. o
The vector function Q7 Is the solution to

( curl(p,l_1 curl Q7) = curlvy In Qg

diVQ}E:O In )

Q?XIIIZO onI'U o
. (A

\ QIJ—Hg,)

€0

[Hg’g denotes HgA) for e; = ¢, a positive constant].
The scalar function 7 is the solution to the elliptic
Neumann boundary value problem

div(pey grad x7) = div(peyvy) 1IN €Yy
progradx7-ny = prvy-ny  onI'Uo. J

o
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Orthogonal decompositions (cont’'d)

-

Finally the vector 07  Is the solution of the linear system

-

TLQI

> A5bia = / BV Pl
a=1 Qr

where
A* = fQI Hlpa] ng 7
and the harmonic vector fields p” , are the basis functions

of the space HE,D )

o J
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Orthogonal decompositions (cont’'d)

L

The vector function Q; is the solution to

et us explain the second decomposition.

( curl(u[_1 curl Qr) = curlvy In €
divQ; =20 In 7
; Q; xn;=0 onTI
Q; n=0 on of)
(u,fl curlQ7) xn=vy; xn on o2
\ QILH%B;)

0

[H@) denotes HgB ) for e ;1 = €0, @ positive constant].

o |

Eddy current problems in the time-harmonic regime — p.52/150



Orthogonal decompositions (cont’'d)

-

The scalar function y; is the solution to the elliptic mixed
boundary value problem

-

div(pergrad x7) = div(prvy) 1IN Qg
prograd xy-ny = prvy-ny  onl
xr =20 on of) .

Finally the vector (az,,br;) Is the solution of the linear

system
A M) _ fQI prvy - grad zg g
br Jo, B1VI - P 1 |

o |
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Orthogonal decompositions (cont’'d)

- N

where A = DT B with
B C

Dy, = fﬂz prorad z, 1 - grad zg 1
By = sz prp; - grad zg g
Cot = Jq, RIPLT " Pn.T

and the harmonic vector fields grad z,.; and p; ; are the basis

functions of the space H&C).

o |
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Scalar potential formulation (cont’d)

fComing back to the scalar potential formulation, in (8) eachj
test function v € V' can be thus written as

nQI

Vi = gradx}EJrZQ?OépZ,I. (11)

a=1

Inserting (10) and (11) in (8) and using orthogonality one
easily finds, for the unknowns Z¢ := He — He ¢, ¢7, 117 4

ch o teurl Ze - curl v + ch iwiczc Ve
- Jo by a5 - rad X + i A", O
=—Jo. O “leulHe ¢ - curlvg — Ja, iwpncHe o -ve  (12)
— Jo, iwnHe g - (grad X7+ 32,2 07 ,p5 1)

\_ +fQC 1Je,C’ curl v | J
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Scalar potential formulation (cont’d)

o N

where we recall that the matrix A* is defined by

0f = / 1Pl P3I
Qr

and Is symmetric and positive definite (the fields p;, ; form a
basis for the space 7).

Clearly, the solutions Z¢, 7 and 57 have to satisfy on I' the
matching condition

nQI

Zo X ng +gradyr X ny + ZU?,QPZ,I xny=0.

a=1

LThe same holds for the test functions v, x; and 67. J
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Scalar potential formulation (cont’d)

fThe left hand side in (12) is a continuous and coercive T
sesquilinear form, therefore the problem is well-posed.

The numerical approximation is standard:
# (vector) edge finite elements in Q¢

# (scalar) nodal finite elements in €;.

In addition, one looks for

# other ng, degrees of freedom (expressing the line
integrals of H; — H. ; along the non-bounding cycles

contained in Qj).
Convergence is assured by Cea lemma.

[Bermudez, Rodriguez and Salgado (2002), Alonso
LRodrl’guez, Fernandes and V. (2003).] J
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Scalar potential formulation (cont’d)

-

Some remarks about implementation issues:

-

# The matching condition on the interface I' is easily
iImposed by eliminating the degrees of freedom of v 5,

associated to the edges and faces on I' in terms of
those of grad x7 ;, + Zgifl 0T aPa.1-

# The construction of the fields p? ; (or of a suitable

approximation of them) is not needed.

It is enough to construct ng, interpolants A7, each one
jumping by 1 on a "cutting" surface (and continuous
across all the others).

One looses (in part) orthogonality properties, but
everything works well.

o |
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-

# For the electric boundary condition, the construction of

Scalar potential formulation (cont’d)

-

the vector H, ; can be done through the Biot—Savart
formula

H, ;(x) = curl (sz m Je.1(y) dy)
— fQI 47T:’yX__Xy‘3 X Je,I(Y) dy

[at least for J. ;- n = 0 on 0Q UT; If this Is not satisfied,
one has to extend J. ; on a set larger than €2y, in such a
way that J. ; Is tangential on the boundary of this set].

|
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Scalar potential formulation (cont’d)

- N

# When considering the magnetic boundary condition, it
must be noted that the Biot—Savart formula gives a
vector field H, ; that does not satisfy the boundary

condition H, ; x n = 0 on 912.
Then, a couple of procedures can be adopted:

s construct H, ; (or a suitable approximation of it) by
means of a different approach, in such a way that
H.; xn=0o0n 0, and decompose H; — H. ; as a
sum of orthogonal terms, each one with vanishing
tangential value on of2

» Uuse again the Biot—Savart formula, and decompose
H; — H,. ; as in the case of the electric boundary
condition.

o |
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Scalar potential formulation (cont’d)

fLet us illustrate this second approach: we again write T
nQI
Zr =H;—H,;=grady7 + Z N ,aPa,l »
a=1

but now we have to consider a non-homogeneous
boundary value problem (on 02 we have Z; x n # 0).

The problem reads as follows: one looks for Z¢, 17, n7 such
that

o |
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Scalar potential formulation (cont’'d)

- N

grad {7 X n + ZZZ 77?,& PZ,I xn=—H,; xn on J

ch o teurl Ze - curl Vg + ch iwﬁCZC VO
+ fQI iwpy grad 7 - grad X7 + iw[A*n7, 07] (13)
= — ch o Lcurl H.c -curlvg — fQ iwp,CHe(; Vo
— Jo, iwnHe p - (grad X7 + 3202 0] aPar)
+ ch U_lJe,C - curl v,

where the test functions have to satisfy

'n/QI

gradx?xn+29iapz,]xn200n 002,

- " o
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Scalar potential formulation (cont’d)

fand moreover the matching condition on I’ T
nQI
Zc X ne +gradyr X ny + Z NP X 01 =0
a=1

is still imposed (also for v, x7, 67).

At the finite dimensional level the constraint on 02 can be
Imposed by means of a Lagrange multiplier [Bermudez,
Rodriguez and Salgado (2002)].

o |
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Scalar potential formulation (cont’d)

# For implementation it is necessary to determine the

f "cutting" surfaces of the non-bounding cycles (their T
knowledge Is necessary for constructing the basis
functions p7, ; or the interpolants AL).

This can be easy in many situations, but for a general
topological domain it can be computationally expensive:
here below you see the "cutting"” surface when Q¢ is the
trifoil knot (thanks to J.J. van Wijk).

o |
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Scalar potential formulation (cont’d)

# For implementation it is necessary to determine the

f "cutting" surfaces of the non-bounding cycles (their T
knowledge Is necessary for constructing the basis
functions p7, ; or the interpolants AL).

This can be easy in many situations, but for a general
topological domain it can be computationally expensive:
here below you see the "cutting"” surface when Q¢ is the
trifoil knot (thanks to J.J. van Wijk).

f™ =

|
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Scalar potential formulation (cont’d)

-

Instead, if 2 Is a torus, we have the "cutting" surface A:
o2

-

Some algorithms have been proposed to the aim of
constructing "cutting"” surfaces: see Kotiuga (1987, 1988,
1989), Leonard and Rodger (1989) and the book by Gross

and Kotiuga (2004).
L ga ( ) J
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Scalar potential formulation (cont’d)

f o A formulation in terms of E¢, ¢7 and nj Is also possible.T
From the Ampere equation in Q¢, multiplying by z¢,
Integrating in Q) and integrating by parts one finds

fQCHC'CU”%"'anC X Hc-%—fQCUEc-%
— fQCJe,C"%-

Using the Faraday equation for expressing Hq- and
recalling that no x Ho = ng x Hy on I, it holds

Jo, (pc! cunEg - curlzg + iwoE¢ - Z¢)
+iwaH[ X Ne - Zo = —iwaCJe,(; ‘7O .

o |
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Scalar potential formulation (cont’d)

-

On the other hand, multiplying the Faraday equation in 2,
by a test function v; such that curlvy = 0 In Q; and recalling
that E; x n; = —E¢& x no on I, by integration by parts one
has

iw/ ;J,IH[-V_[:—/ Cur|E['V_[:—/E0><n0-V_[.
Qr Qr r

Setting

-

Vi(G) :={vr € H(curl; Q) | curlvy = Gin Q},

we are thus looking for E¢c € H(curl;Q)¢) and Hy € Vi(J. 1)
such that

o |
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Scalar potential formulation (cont’d)

- N

fQC(ual curlE¢ - curlzg + iwoE¢ - Z0)
—iw [pZg x ng - Hp = —iw [o_Je o Z0 (14)
—iwaEC X nC-V_]+w2fQI purHr - vy =0,
where zc € H(curl; Q2¢) and vy € V(0).

Using in (14) the orthogonal decompositions of Hr — H, ;
and v; one finds

IC((ECJ#??T'?) (ZC XI?HI))
:—iwa Jec - Zc+iw [ Her-Zo X no (15)

—w? fo, mHer - (grad X7 + 32,2 07 0% 1)

o J

Eddy current problems in the time-harmonic regime — p.68/150



Scalar potential formulation (cont’d)

- where the sesquilinear form (-, ), that can be proved to be |
continuous and coercive, is given by

/C((Ec,w?m?) (zc, X7, 67))
= fQ LeurEc - curlzg + iwoEq - Zo)
—w fr grad 7 + >, N7 .aPe.1)  ZC X D¢
— W fr grad X[ + Zml 0% apa ;) -Ec xn¢
H-w? Jq, i orad iy - grad X
WQ[A*np 07] .
Note that the interaction between E~ and H; is driven in a

weak way by boundary integrals, and no strong matching
conditon on I" has to be imposed: non-matching meshes

Lcan be employed! J
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Scalar potential formulation (cont’d)

-

f # Domain decomposition approaches can be devised. Let
us specify it for the formulation in terms of E¢, 17 and

7
Given €94 on T, find the solutions to

[ div(puygrady?) = —div(uHe )  inQg

prgrad i - ny = —iw™ div, e %ld (16)
—pHer-ny onl
|\ prorady; -n=—u/H, - n on 0f)
(A*n7 - Jrep ep PE,I - fQI py grad gy - PE,I (17)

_fQI “IHe,I'p;J V3= 1,...,nQI

o J
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Scalar potential formulation (cont’d)

|7 ( curl(ua1 curl E¢) + iwoEc = —iwd. ¢ in Q¢ T
\ (ual curlE¢) X ng = iwgrady7 X ny (18)
\ —I—MZHQI nlapalxn[+sze]><n] onI",

finally set
e%ew = (1 — 5) old +o0Ecxng onTl (19)

and iterate until convergence (6 > 0 is an acceleration
parameter). At convergence one has ep” = E¢c x ng on T,

the right tangential value of the electric field on I".

This iteration-by-subdomain procedure has shown good
convergence properties (convergence rate independent of
Lthe mesh size [Alonso and V. (1997)]). J
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Pros and cons

f ® Pros. T

K

>

few degrees of freedom,
"positive definite" algebraic problem.

®» Cons.

>

need of computing in advance a vector potential of
the current density;

some difficulties coming from the topology of the
computational domain, in particular of the conductor
[construction of the "cutting"” surfaces];

cancellation errors?

|
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Voltage or current excitation

~ In a geometrical situation like the following o

I'y
I'p

(1]

I'p

we can study the eddy current problem under voltage or
current intensity excitation.

[Alonso Rodriguez, V. and Vazquez Hernandez, (2009);

also Bir0, Preis, Buchgraber and Ticar (2004), Bermudez,
LRodrl’guez and Salgado (2005).] J
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Voltage or current excitation (cont’d)

-

fIt IS assumed that J. = 0, and the boundary conditions must
beExn=0onl'guUl'yj,uH-n=0andeE-n=0o0onT1p
[for other types of boundary conditions the problem has no
solution].

Proof. Multiply the Faraday equation by H, integrate in €2
and integrate by parts: it holds

0 = [qeunE-H+ [ iwpH-H
:fQE-curlﬁ+finuH-ﬁ+faQnXE-ﬁ-

Remembering that curl H; = 0 in 2; and replacing curl Hp
with oE, one has the Poynting Theorem (energy balance)

o |
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Voltage or current excitation (cont’d)

f fQCO'EC'E—C +finuH-ﬁ:—faQn><E-ﬁ. T

The term on 011 is clearly vanishing for the electric and the
magnetic boundary conditions (or for a mixed
electric—magnetic boundary condition). ]

For the proposed boundary conditions, instead, since
div; (E x n) = —wpuH - n = 0 on 0f2, one has

E xn=gadW xn onof},

and therefore

— [ognxE-H =— [, Hxn-grad W
= [oq div-(H x n) W

L = [sqcunH-nW =Wy, [ culHc - n, J
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Voltage or current excitation (cont’d)

fas curl Hy = 0 In Q7, and we have denoted by W, the T

(constant) value of the potential W on the electric portI';
(Whereas W, = 0).

# In this case a degree of freedom is indeed still free
(either the voltage W, that will be denoted by V', or

else the current intensity frJ cul Heo - nin Q¢, that will
be denoted by /).

o |
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Voltage or current excitation (cont’d)

fFor formulating the voltage or current excitation problem Wej
come back to the usual orthogonal decomposition result
vy = grad X7 + Qpr7 (20)

valid for a vector field v; satisfying curlvy = 0. The harmonic
field p7 can be chosen such that [, p} - dr = 1; therefore

Q= f@rJ vy - dT.
In particular, from the Stokes Theorem one has

]o:/ curlHo - ng = Hq - -dr = H; - -dr.
I'; ol ; ol ;

hence

N H; = grad ¢ + Iopj . (21) |
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Voltage or current excitation (cont’d)

o -

We can provide a "coupled" variational formulation, in terms
of E~ In Q¢ and of H; In ;.

Proceeding as done before for the formulation in terms of
Ec, ¢¥7 and n7, we find

Ja., potcur Eg - curl Zg + iw Ja, oEc - Z¢

22
—iwfrﬁxnC-H[:O ( )

z'w/ uIHI-gradX_7+/ECxnc-gradx_}k-:O (23)
Qr I

and
iw/Q quI-p7+/Ecxnc-p}k~=V, (24)
I I

|
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Voltage or current excitation (cont’d)

s N

fFDE[xn]-pﬁszDgradWxn]-/ﬁ
= Jp, dive(p7 xnp) W +V [0 p}-dT
= Jp curlp; -y WV =V,

Using (21) in (22), (23) and (24) one has

fQ curIEC curlzc+zwa ocEc - Z¢o

\ (25)
— W fF zc X n¢ - grad Y —iwly [rZg x ng - pj =0

—iw/EanC-gradX_?+w2/ prgrad i - grad x5 =0 (26)
I Qr

Qr

L —iw@/r Ec xn¢ - p;+w’loQ [ prpf-p;=—iwVQ . (27)J
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Voltage or current excitation (cont’d)

f.p If V' IS given, one solves (25), (26), (27) and determines T
Ec, 7 and Iy (hence He and Hy).

# |f Iy Is given, one solves (25), (26) and determines E.
and )7 (hence Hy and Hy); then from (27) one can also

compute V.

Both problems are well-posed, namely, they have a unigque
solution, since the associated sesquilinear form is coercive
(thus one can apply the Lax—Milgram Lemma).

As before, it is simple to propose an approximation method
based on finite elements, of "edge" type for E- Iin Q) and of
(scalar) nodal type for ¢7 in 2;. Convergence Is assured by

the Céa Lemma.
| J
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Voltage or current excitation (cont’d)

Note: the physical interpretation of equation (27) is that T

—/Ec-dT—l—iw/u[H[-nE:V,
Y —

e

where v = 0=nNT"is oriented fromI'; to ', and nz IS

directed in such a way that ~ is clockwise oriented with
respect to it.

In other words, If it is possible to determine the electric field
E; In Q; satisfying the Faraday equation, it follows that

/E]-dT:V,

where v, = d=NTp is oriented from I' to ' ;: hence (27) Is

Indeed determining the voltage drop between the electric J
Lports.
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Voltage or current excitation (cont’d)

- This explains from another point of view why, when the |
source is a voltage drop or a current intensity, it is not
possible to assume the electric boundary conditions
E xn =0 on o).
In fact, in that case one would have

/E[-dT:O,

iwau[HI-ng :V+f7EC°dT:V+f7U,Y*E'dT
:V+f85E~dT,

hence from (24)

with 0= clockwise oriented with respect n=: due to the term
V the Faraday equation would be violated on =!
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Numerical results for voltage or current intensity excitation

o .

We use edge finite elements of the lowest degree (a+ b x x
In each element) for approximating E., and scalar
piecewise-linear elements for approximating ;.

The problem description is the following: the conductor )¢
and the whole domain () are two coaxial cylinders of radius
Rc and Rp, respectively, and height L. Assuming that o
and p are scalar constants, the exact solution for an
assigned current intensity I, is known (through suitable
Bessel functions), and also the basis function p7 is known,

thus from (9) one easily computes the voltage V, too.

o |
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Numerical results for voltage or current intensity excitation (cont’'d)

fWe have the following data: T
Rc = 025bm
Rp = 0.5m
L = 02bm
o = 151565.8 S/m
@ = 4m X 10~ Him
w = 21 x d0radls

and

Iy =10*A or V =0.08979 + 0.14680;

L[the voltage corresponds to the current intensity I, = 10* A].

|
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Numerical results for voltage or current intensity excitation (cont’'d)

fThe relative errors (for E¢ in H (curl; Q) and for Hy in
L*(Qy)) with respect to the number of degrees of freedom

are given by:
Elements | DoF R e ey
2304 1684 | 0.2341 | 0.1693 | 0.0312
18432 11240 | 0.1132 | 0.0847 | 0.0089
62208 || 35580 | 0.0750 | 0.0567 | 0.0048
147456 || 81616 | 0.0561 | 0.0425 | 0.0018
Elements | DoF R e er,
2304 1685 | 0.2336 | 0.1685 | 0.0274
18432 11241 | 0.1132 | 0.0847 | 0.0085
62208 || 35581 | 0.0750 | 0.0566 | 0.0041
o 147456 | 81617 | 0.0561 | 0.0425 | 0.0024

Eddy curren

-

|
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Numerical results for voltage or current intensity excitation (cont’'d)

. N

On a graph: for assigned current intensity

Relative errors
H
o

_3|| —e— Rel. error EC ~ -

__ Rel. error HD ~

| —*— Rel. error V

I y =Ch
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Numerical results for voltage or current intensity excitation (cont’d)

. N

or assigned voltage

10°

10 3

Relative errors
H
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Numerical results for voltage or current intensity excitation (cont’'d)

fA more realistic problem, considered by Bermudez, T
Rodriguez and Salgado (2005), is that of a cylindrical
electric furnace with three electrodes ELSA [dimensions:
furnace height 2 m; furnace diameter 8.88 m; electrode
height 1.25 m; electrode diameter 1 m; distance of the
center of the electrode from the wall 3 mj.

The three electrodes ELSA are constituted by a graphite
core of 0.4 m of diameter, and by an outer part of
Sdderberg paste. The electric current enters the electrodes
through horizontal copper bars of rectangular section (0.07
m x 0.25 m), connecting the top of the electrode with the
external boundary.

Data: ¢ = 10% S/m for graphite, o = 10* S/m for Soderberg
paste, o = 5 x 109 S/m for copper, = 4w x 10~7 H/m,

Lw = 27 x 50 rad/s, Iy = 7 x 10* A for each electrode. J
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Numerical results for voltage or current intensity excitation (cont’d)

| N

The value of the magnetic "potential” in the insulator: the
magnetic field is the gradient of the represented function
L(not taking into account the jump surfaces). J
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Numerical results for voltage or current intensity excitation (cont’d)

- N

P (A 2]
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The magnitude of the current density ¢E~ on a horizontal
section of one electrode. J

Eddy current problems in the time-harmonic regime — p.90/150



Numerical results for voltage or current intensity excitation (cont’d)

| .

Pl [Ame 2]

| el D00
1. 200e +000
B.000e+005

4.000e+005
0, (M D000

The magnitude of the current density ¢E~ on a vertical
section of one electrode. J
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Vector potential formulation

-

Again, for the sake of definiteness let us consider the
electric boundary condition.

-

Motivated by the fact that the magnetic induction B = uH is
divergence-free in €2, a classical approach to the Maxwell
equations and to eddy current problems is that based on
the introduction of a vector magnetic potential A such that
curl A = pH. Often, this is also accompanied by the use of a
scalar electric potential V¢ In the conductor €2, satisfying
wAo +grad Vo = —E¢.

This approach opens the problem of determining correct
gauge conditions assuring the unigueness of A and V
(these conditions can be necessary when considering
numerical approximation, in order to avoid that the discrete

Lproblem becomes singular). J
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Vector potential formulation (cont’d)

fLet us describe the problem: one looks for a magnetic T
vector potential A and a scalar electric potential V~ such
that

Ec=—iwAg—gradVeo , puH =curl A . (28)

We see at once that curl E¢ = —iwcurl Ag = —iwpu-He, thus
the Faraday equation in Q- Is satisfied. Moreover, uH is

equal to curl A In €, therefore it Is a solenoidal vector field in
Q).

The boundary condition u;H; - n = 0 on 02 Is satisfied
provided that we require A; x n = 0 on 0, as this gives
0=div;(A; xn)=curlA;-n = u;H; - n.

Also the topological conditions (7) are satisfied: in fact,

o |
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Vector potential formulation (cont’d)

f Jo, iwpiHr -} ;= Jq, iweul Ar - pg T
= iw [p(n; X Aj) - Po = W Jr(Ac xng) - Pa,1
= — Jr(Ec x ng) P Jr(grad Ve x ne) Po -

Moreover,

Jr (grad Vo x ng) - Pi 1
= fr(pZ,I x ny) - grad Vi
=— Jr divT(pZJ xny) Vo
= — Jpeurp} -n Ve =0.

Assuming that the Ampere equation is satisfied in 2~ (so
that Ec = o~ (curlHe — J. ), we have thus we proved that
Lthe topological conditions (7) hold. J
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Vector potential formulation (cont’d)

fln conclusion, we have only to require that the Ampere T
equation Is satisfied in (.
Concerning the gauge conditions, the most frequently used
Is the Coulomb gauge

dvA =0 in (2. (29)

In a general geometrical situation, this can be not enough
for determining a unique vector potential A in . In fact,
there exist non-trivial irrotational, solenoidal vector fields
with vanishing tangential component, namely, the elements

of the space of harmonic fields

H(e; Q) :={w € (L*(Q))? | curlw = 0,divw = 0,
L w x n=0o0n o}, J
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Vector potential formulation (cont’d)

fwhose dimension is given by the number of connected T
components of 9€2 minus 1 (say, as stated before, pyq).
Imposing orthogonality, namely, A L H(e; ), turns out to be
equivalent to require

A-n=20 \V/T:L...,pag. (30)
(02)r

In conclusion, we are left with the problem

/

curl(pp~tcurl A) + iwo A

+ograd Vo =J,. in{)
divA =0 in (31)
f(aQ)TA-n:O Vr=1,...,p50

\_  AXn=0 on Of) . J
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Vector potential formulation (cont’d)

-

[Clearly, V- Is determined up to an additive constant in eac
connected component Q¢ ; of Q¢, j =1,...,pr + 1.]

-

The solenoidal constraint can be imposed by adding of a
penalization term. Introducing the constant ., > 0,
representing a suitable average in €2 of the entries of the
matrix i, the Coulomb gauge condition div A = 0 in 2 can
be incorporated in the Ampere equation, which becomes

curl(pp~tcurl A) — iyt grad div A + iwo A + o grad Vi
= J. in €.

A boundary condition for div A IS now necessary, and we
Impose

L divA =0 on O0f) . J
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Vector potential formulation (cont’d)

M N

oreover one adds the two eguations

div(iwoAc + o grad V) = div], ¢ in Q¢
(iwocAc+ogadVe) -nec =Jec-neg+Jes-ng onI",

that are necessary as, due to the modification in the
Ampere equation, it is no more assured that the electric
field Ec = —iwA o — grad Vo satisfies the necessary
conditions

div(cEqg) = —div Je.C in Q¢
ockc -ng=-Jeo-neg—Jey-ny onl.

o |
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Vector potential formulation (cont’d)

-

The complete (A, Vo) formulation is therefore

’

curl(pe =t curl A) — ;! grad div A

+iwoA +ograd Vo =J,.  in ()
div(iwocAc +ograd Vo) =divd. o in Q¢
(twocAg + ograd Vi) - ng

< =Jeo-ng+Jder-ng on I’ (32)
f(aQ)rA-n:O Vr=1,...,pas0
divA =0 on 0f)

A Xn=0 on 0f) .

[For the magnetic boundary conditions see Bir6 and V.

2007).
L( )] |
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Vector potential formulation (cont’d)

flt IS Important to show that any solution to (32) satisfies T
div A = 0 In €. In fact, taking the divergence of (32); and
using (32), we have —AdivA- = 0In Q. Moreover, since
divJ.; = 01n {7, one also obtains —AdivA; =01n ;. On
the other hand, using (32)3, on the interface I we have

—p; LgraddivAg - np
= —Jer-ny— CUI’|([J,51 curlA¢) - ne
= —Je7-ny— divT[(ua1 curl Ac) X n¢,

and also

—utgraddivAr - ng
=Jer-ny— curl(ul_1 curl A7) - nj

L — JG,I . nI — dIVT[(I'l’[_l Curl AI) X nl] ) J
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Vector potential formulation (cont’d)

fMoreover, a solution to (32); satisfies on the interface I T

ng X ([1,61 curl Ag) — ,u;1 divAcone
+ ny X (p,l_l curl A[) — ,u;1 dvA;n; =0,

therefore, due to orthogonality,
ne X (us' cul Ag) +nr x (u; culAf) =0, divAg =divAg.
Hence we have obtained

graddivAc -ngo +graddivA;-ny; =0 onl',

and this last condition, together with the matching of div A
on I', furnishes that div A is a harmonic function in the
Lwhole (). Since it vanishes on 9092, it vanishes in ). J
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Vector potential weak formulation

fWe are now interested Iin finding a weak formulation of (32).T

First of all, multiplying (32); by w with w x n = 0 on 92 and
Integrating in €2, we obtain by integration by parts

Jo(p teurl A - curlw + p; Hdiv A diviw)
+ fQC(z’waA(; -W¢ +ograd Ve - Wo)
= JoJde- W,

having used (32)s.
Let us now multiply (32), by iw='Q~ and integrate in Q¢ by
Integration by parts and using (32)3 we find

fQC(—aAC .grad Q¢ + iw to grad Vi - grad Q¢)
\— — w1 ch Jec-grad Qe +iw™ [ Jer-nyQc . J
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Vector potential weak formulation (cont’d)

hntroducing the sesquilinear form T

Al(A, V), (W, Qc)]
= [o(p " eurl A - curlw + p; Hdiv A diviw)

+ Jo (lwoAc - W + o grad Vo - W0) (33)
— Jo.. oA - grad Q¢
iw™ [q, ograd Ve - grad Qc
we have finally rewritten (32) as

Find (A, V) € Wﬁ X Hﬂl(ﬂc) such that
A[(A Vo), (w = JoJe o
w1 fQC e,C grad QC T Zw_l fF Je,[ -ny Q¢

\_ for all (w,Q¢c) € Wy x Hﬁl(ﬂc) 7 J
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Vector potential weak formulation (cont’d)

fwhere T

Wy = {w € Hy(curl; 2) N H (div; ) |
f(amrw-n:() Vr=1,...,ps0},

and
pr+1

H}(Qc) - H H'(Qc;)/C

[Q2¢c ; are the connected components of ¢.]

# The sesquilinear form A|-, -] Is continuous and coercive
[we will see this result later on...], therefore existence
and uniqueness of the solution Is assured by the

~ Lax-Milgram lemma. o
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Vector potential: from the weak to the strong formulation

To complete the argument, it is necessary to show that a T
solution of the weak problem is in fact a solution of the eddy
current problem.

# This is not a trivial fact, as the functional spaces W, and
Hﬁl(QC) contain some constraints.

The first step is to show that (34) is satisfied for any

w € Hy(curl; Q) N H(div;Q), Qc € HY(Qp).

First note that (34) does not change if we add to ¢ a
(different) constant in Q¢ ;. In fact, the necessary conditions
onJ.raredvJ.;=01InQ;and J.;LH;, and the latter can

be rewritten as frj Jer-nr=0foreachj=1,...,pr +1and
f(m)r Jer-n=0foreachr=1,...,psq. Hence a solution
L(A, Vo) of (34) satisfies it also for each Q- € HY(Q¢). J
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Vector potential: from the weak to the strong formulation (cont’d)

o N

Taking w = 0, a first general result is that any solution to
(34) satisfies

div(iwoAc + ograd Vo) = divd, ¢ In Q¢
(in'AC—I—O'gradVC)-nC:JG,C-nC—I—JG’I-n[ onl'.

Therefore, setting

7. —iwoAgc —ogradVo +J. o in¢
o Jejj in (7,

we have proved that divJ = 0 in €.

o |
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Vector potential: from the weak to the strong formulation (cont’d)

- N

For any w € Hoy(curl; Q) N H(div; 2) we can define by w. the
harmonic field in H(e; (2) satisfying [ 50y We - n = [0, W-n

forallr=1,..., psn. Clearly, the difference w — w, belongs
to W;. Hence

Al(A, Ve), (w, Qc)]
= A[(A, VC) (W —we, Qc)] + Al(A, Vo), (We, 0)]
= JoJe (W—We) +iw™" o, Jec - grad Qc
+iw™ [pJer-nrQc
+ o (iwoAc + o grad Vi) - We o
= JoJde - WHiw™ [ Jec-gradQc
+iw ™! fF Jer- n; Qc — fQJ - We .

o |
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Vector potential: from the weak to the strong formulation (cont’d)

- Therefore, the only result that remains to be proved is o

[3w=0.
Q

The basis functions of H(e; (2) are given by grad w,
r=1,...,pan, Where w! Is the (real-valued) solution to

(Awf=0 inQ
¢ wr=0 on (092) \ (092),
L wy =1 on (09), ,

and we have
JoJ -gradw; = — [,divIwi+ [, -nw;

L :f(c‘?Q)rJ'n:f(aQ)rJe,I'H:O. J
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Vector potential: from the weak to the strong formulation (cont’d)

-

Taking now in (34) a test function w € (C5°(2))°, by
Integration by parts we find at once that

curl(pe =t curl A) — ;! grad div A
+iwoA +ogradVo =J, in().

Repeating the same argument for w € Hy(curl; 2) N H (div; 2)
gives div A = 0 on 052, and therefore a weak solution (A, V)
to (34) is a solution to the strong problem (32).

o |
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Vector potential formulation: existence and unigueness

o N

The proof of existence and uniqueness derives from the

Lax—Milgram lemma.
We have only to check that the sesquilinear form A[-, -] is

coercive in Wy x Hﬁl(Qc), namely, that there exists a

constant xo > 0 such that for each (w,Q¢) € Wy x H'(Q¢)
with fQCj QC’]Qj =0,9=1,...,pr+1, It holds

‘A[(W7Q0)7 (WaQC)”
> /ﬁ&()(fQ(‘W‘Q + |curlw|? + | divw|?) (35)

+ Jo.. (IQc|” + | grad QCP)) .

o |
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Vector potential formulation: existence and uniqueness @nt’d)

-

First of all, we can easily obtain

-

Al(w Qc) (W Qc)]

— fQ Leurlw - curlw 4 p | divw|?) o
w™! fQC (iwwe + grad Q¢) - (—iwWe + grad Qc) -

Then, observe that, given a couple of real numbers « and b,
foreach 0 < 6 < 11t holds

2ab| < da® + 5 1%

o |
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Vector potential formulation: existence and uniqueness @nt’d)

L N

ence one has

wl™ fq, o (iwwe + grad Q¢) - (—iwWe + grad Q¢)
> ‘W‘_lamin fQCH grad QC”Q T WQ‘WC‘Q
+2Re(iwwe - grad Q¢ )]
> w| omin (1 — ) Ja,, | grad Qc|?
—|w|omin(1 — )0~ fQC 'wel?,

where o4, 1S an uniform lower bound in Q- of the minimum
eigenvalues of o(x).

o |
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Vector potential formulation: existence and uniqueness @nt’d)

-

The Poincaré inequality gives that

-

1
Joo larad Qol* = 32000 [, arad Qg
1
> K Zpﬁ Jae |9radQcyQC * +1Qciac, %)
= K1 [o,.(|orad Qc* + 1Qc?)

[recall that [, Qciac, =0,7=1,...,pr +1].
Moreover, the Pomcare like inequality yields

o (L eurw - curl W + p7 | divwl?)
> [ (max | curt w2 + it div w|?)
> Ky [o(|curtw]? + | divw|* + |w|?) |

o |
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Vector potential formulation: existence and uniqueness @nt’d)

-

where umax 1S @ uniform upper bound in €2 of the maximum
eigenvalues of u(x) [recall that, for a divergence-free vector

field, the conditions f(c‘m)r w-n=0forallr=1,..., pyq are

equivalent to the orthogonality to H(e; 2)].
Choosing (1 — §) so small that oy, |w|(1 — §) < K24, we find
at once (35).

-

o |
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Vector potential formulation: numerical approximation

f # Numerical approximation is performed by means of T
nodal finite elements, for all the components of A and
for V.

Via Céa lemma we have
(Jo(IA = AuP + [ curl(A — Ay)[> + |div(A — Ap)P)

)\ 1/2
+ Jo lorad(Ve = Vo)1)
< Co(fQ(\A — wp|* + [curl(A — wp,) | + | div(A — wy) %)

N\ 1/2
+ Joo lorad(Vo = Qen)?)

for each choice of w;, and Q¢ (the former satisfying the
Lconstraints f(m)r wy-n=0forallr=1,..., psq). J
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Vector potential formulation: numerical approximation(c ont’d)

- N

# Itis not possible to choose w;, = I, A, the interpolant of
the solution A, as the constraints f(m)r wp, - n = 0 have

to be satisfied for all r =1, ..., psq.
However, it is possible to construct a discrete function

wj, such that

A —wpllw < Cl|A =T,A|w,

where W = H (curl; 2) N H(div; 2). Therefore,
convergence Is assured provided that A is smooth
enough.

o |
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Vector potential formulation: numerical approximation(c ont’d)

f # The regularity of A is a delicate point! In fact, it has to T
be noted that the regularity of A is not assured if €2 has
reentrant corners or edges, namely, if it Is a non-convex
polyhedron (see Costabel and Dauge (2000), Costabel,
Nicaise and Dauge (2003)). More important, in that
case the space H!(Q) := (H'(Q))? N Hy(curl; Q) turns out
to be a proper closed subspace of Hy(curl; 2) N H (div; 2)
(H!(Q2) and Hy(curl; Q) N H(div; Q) coincide if and only if
() Is convex).

Hence the nodal finite element approximate solution
A, € H!(Q) cannot approach an exact solution
A € Hy(curl; Q) N H(div; Q) with A ¢ H'(Q), and
convergence in W = H(curl; Q) N H(div; 2) Is lost: this IS
a general problem for the nodal finite element
L approximation of Maxwell equations. J
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Vector potential formulation: numerical approximation(c ont’d)

-

# Summing up: the nodal finite element approximation is

-

convergent either if the solution is regular (and this
Information could be available even for a non-convex
polyhedron €2) or else if the domain 2 Is a convex
polyhedron, as in this case the space of smooth normal
vector fields is dense in H!(Q) = Hy(curl; Q) N H(div; ),
and one can apply Céa lemma in the standard way.

Let us also note that the assumption that €2 is convex is
not a severe restriction, as in most real-life applications
0€) arises from a somehow arbitrary truncation of the
whole space. Hence, reentrant corners and edges of (2
can be easily avoided.

|
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Vector potential formulation: numerical approximation(c ont’d)

- N

# Itis worth noting that a cure for the lack of convergence
of nodal finite element approximations in the presence
of re-entrant corners and edges has been proposed by
Costabel and Dauge (2002). They introduce a special
weight in the grad div penalization term, thus permitting
to use standard nodal finite elements in a numerically
efficient way.

# In numerical implementation, imposing the boundary
condition A;, x n = 0 on 99} is clearly straightforward if
the boundary of the computational domain €2 is formed
by planar surfaces, parallel to the reference planes.

o |
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Vector potential formulation: numerical approximation(c ont’d)

f # |[f that is not the case, for each node p on 912 introduce T
a local system of coordinates with one axis aligned with
n,, a suitable average of the normals to the surface
elements containing p, and express, through a rotation,
the vector A, with respect to that system: the condition
A x n, = 01s then trivially imposed (see Rodger and
Eastham (1985)).

# Another possible approach, which avoids the
arbitrariness inherent in the averaging process of the
normals at corner points, is described by Bossavit
(1999). Itis based on imposing A;, x n = 0 at the center
of the element faces on 02 the drawback Is that it
results in a constrained problem, requiring the
Introduction of as many Lagrange multipliers as the

L (double of the) number of surface elements on o).
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Vector potential formulation: numerical approximation(c ont’d)

- N

# Ungauged formulation have been also proposed (see
Ren (1996), Kameari and Koganezawa (1997), Bird
(1999)): edge elements are employed for the
approximation of the potential A, without requiring that
the gauge condition div A = 0 in €2 is satisfied.

Clearly, in this way the resulting linear system is
singular: however, in many cases the right-hand sides
turn out to be compatible, so that suitable iterative
algebraic solvers can still be convergent.

[Warning: lack of a complete theory...]

o |

Eddy current problems in the time-harmonic regime — p.121/150



Numerical results

-

fThe numerical results we present here have been obtained
In Biré and V. (2007), for the magnetic boundary conditions
(€2 Is a torus and €. Is a ball-like set).
The employed finite elements are second order hexahedral
“serendipity" elements, with 20 nodes (8 at the vertices and
12 at the midpoints of each edge), for all the components of
A, and for V},.
The values of the physical coefficients have been assumed
as follows: 1 = u, = 47 x 1077 H/m, o0 = 5.7 x 107 S/m,
w=2r x f =100x rad/s, I.e., f = 50 Hz.
The half of the domain is described here below. The colls
(the support of J. ;) are red, while the conductor Q¢ Is

green; the yellow “cutting” surface > is also drawn.

o |
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Numerical results (cont’d)

100

100

Z
Il _x

LThe computational domain [one half]. J
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Numerical results (cont’'d)

. N

he current density Iis given by J.c =0 and J. 1 = J. rey,
where e, Is the azymuthal unit vector in the cylindrical

system centered at the point (100,0,0), oriented
counterclockwise, and

109 A/m? if 60 < r < 80, 60 < z < 80
Jer=14 —10°Am*  if60 <r <80, 20 < z < 40
0 otherwise .

In the two figures below some details of the computed
solution are presented: the magnitude of the computed flux
density B in the first figure, the magnitude of the computed
current density Jo := —iwoc A~ — o grad V- In the second

Lfigure. J
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Numerical results (cont’d)

B o
max|B| [107 T]

11.95I

8.965

— o) 5.977H

2.988F

O.OOOI

LThe magnitude of the flux density B. J
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Numerical results (cont’d)

max|J| [103 A/m?] \

462.9
347.1
231.4
118.7
_ 0.000
Y\JZ/,)( .
The magnitude of the current density J
\_JC = —woAc — ograd V.
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Pros and cons

f ® Pros T

o Standard nodal finite elements for all the unknowns;

s no difficulty with the topology of the conducting
domain;

» "positive definite" algebraic problem.
® Cons

» many degrees of freedom;

s lack of convergence for re-entrant corners of the
computational domain.

o |
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A FEM-BEM approach

-

fAnother Interesting approach is based on a coupled
formulation: variational in -, by means of potential theory
N (7.

In this framework, it is reasonable to consider Q; := R?\ Q.
Moreover, for the sake of simplicity let us require that Q¢ Is
a simply-connected open set with a connected boundary.

Finally, it Is assumed that the applied current density J. Is

vanishing in €7, and that the magnetic permeability p; and
the electric permittivity €; are positive constants in €7, say
1o > 0 and e > 0.

o |
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A FEM—-BEM approach (cont’d)

-

eddy current problem thus reads

y

curlE¢ + iwprHe =0
culHe —oEc =J. ¢
curlHy =0

q div(uoHp) =0
poHe -ne + poHy -ny =0
Heoxng+H;y xn;=0
H, (x) = O(|x| )

In terms of the magnetic field H and the electric field E. the

-

in Q¢

in Q¢

in (7

in (36)
on I’

on I’

as |x| — oo .

|

Eddy current problems in the time-harmonic regime — p.129/150



A FEM—-BEM approach (cont’d)

-

[If needed, the electric field E; can be computed after
having determined H; and E. in (36), by solving

y

cul B = —wpoH7 in (7
div(egEr) =0 in (7

{ E;ryxn;y=—-E¢g Xneg on I
fF 8()E[ -1 = 0

(B0 =0(x")  aslx| oo ]

o |
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A FEM—-BEM approach (cont’d)

. N

or obtaining a formulation which is stable with respect to
the frequency w, it is better to look for a vector magnetic
potential A, a scalar electric potential V- and a scalar
magnetic potential vy such that

poHe =culAg , Eg = —twAg —gradVeo , Hy =gradyy .
[See Pillsbury (1983), Rodger and Eastham (1983), Emson

and Simkin (1983).]

Gauging Is necessary only in Q~: we require the Coulomb
gauge dvAq- =01In Q¢, with A - nc =0 on I'. Moreover,
we also impose that

[Y1(x)] = O(x| ™) as x| — oo

o |
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A FEM—-BEM approach (cont’d)

W

e have thus obtained the problem

( curl(pg' curl Ag)

+iwoAc +ograd Vo = J. ¢ in Q¢

Ay =10 in )7
dvAo =0 in Q¢
| Ac-no=0 on I
culAg -ng + pograd iy - ny = 0 on I

(p,al culAg) X ng +gradyy x ny =0 on I’
[¥1(x)] + | grad ¥ (x)| = O(|x|™") as [x| — oo,

\

where V¢ Is determined up to an additive constant.

o |
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A FEM-BEM approach (cont’d)

[—Inserting the Coulomb gauge condition in the Ampere T
equation as a penalization term, one has

2

Curl(ua1 curl Ac) — p; ' grad div A

+iwoAc +ograd Vo = J. ¢ in Q¢
AYr =10 in {27
div(iwoAg + o grad Vi) = div]. ¢ in Q¢
(twocAc + ograd Vi) - ng

X =J.c - nc on I’ (37)
Ac-no=0 on I
culAg -ng + pograd iy - ny = 0 on I
(' curl Ag) x ne
+gradyy Xxny =0 on [’

| )+ lgrad g (x)| = O(x[)) asfx[—oo. |
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A FEM—-BEM approach (cont’d)

fSince In 2; we have to solve the Laplace equation, using T
potential theory it is possible to transform the problem for «;
Into a problem on the interface I', thus reducing in a
significative way the number of unknowns in numerical
computations.

We introduce on I' (in suitable functional spaces...) the
single layer and double layer potentials

SO0 = [ o €3S,

F47T\X—Y’

D(n)(x) := /F MTX__yy,g -n(y)nc(y)dS,

o |
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A FEM—-BEM approach (cont’d)

~ and the hypersingular integral operator o

H@X@ﬁz—wm<x: X_yg-MYmdyM%)-mﬂ@-

drlx —y

We also recall that the adjoint operator D’ reads

DO = ( [ 5148, ) nox)

dr|x —y|?

o |

Eddy current problems in the time-harmonic regime — p.135/150



A FEM—-BEM approach (cont’d)

fWe have Ay; =01In Q; and grad ¢y - ny = —i curlAc - ng onj
[, therefore from potential theory the trace ¢r := ¢y p
satisfies the bounday integral equations

%wr — D(yYr) + %S(curl Ac-ng)=0onT (38)
0

1 1
——curlA¢g -neo + —D’(curl Ac- Ilc) -+ H(@DF) =0 onl, (39)
2110 140

and ¢ ; has been replaced by its trace r.

We can now devise a weak form of this (A¢, Vo) — ¥r
formulation. From the matching condition

\_ nCxualcurIAC+nIxgrad@b[:OOﬂF J
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A FEM—-BEM approach (cont’d)

fwe find T

1 _ __
Jrne X poculAg - We = — [rng X grad ;- We
= — Jr¢reurlwe - nc,

the last equality coming from standard integration by parts
onl.

Hence, multiplying by suitable test functions (w¢, Q¢, n) with
wce -ne = 0on I, integrating in Q- and I', and integrating by
parts we end up with the following weak problem

o |
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A FEM-BEM approach (cont’d)

|7 fQC(N(_j T

+ Jo (lwoAc - W + o grad Vo - W0)

+ Jpl=3¢r — D(¥r)

+%S(curl Ac -ng)|curlwe - ng
— fQC Je,C’ - W(

ch (iwo A - grad Q¢ + o grad Vo - grad Q)
= Jo. Je,c - grad Q¢

fr[% curl AC Vg + D/(CUH AC . HC) 4+ MOH(wI’)]ﬁ _ O |

Leurl A - curlwg + po tdiv A divwe)

(40)

having used (38) for obtaining the first equation.
[See Alonso Rodriguez and V. (2009).]

o |
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A FEM—-BEM approach (cont’d)

-

The sesquilinear form at the left hand side is coercive in
[H(curl; Qc) M H()(div; Q(j)] X Hl(QC)/C X Hl/Z(F)/C,
uniformly with respect to w (the case w = 0 is admitted!).
[The crucial point is that S and ‘H are coercive; the rest

of the proof is similar to that employed for the
(A, V)-formulation.]

Existence and unigueness follow by the Lax—Milgram
lemma.

Having determined A~ and r (up to an additive
constant), then ¢y := D(yr) — ;-S(curll Ac - nc).

Numerical approximation is performed with nodal finite
elements in Q- and on I.

|
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A FEM—-BEM approach (cont’d)

- N

#® Convergence is assured provided that €~ Is a convex
polyhedron. If this is not true, one can modify the
approach, using the vector potential A on a convex set
()4 larger than ¢, keeping Ve In Q¢ and looking for ¢,
onl'y:=00y4.

o |
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Other FEM-BEM couplings

-

Bossavit and Vérite(1982, 1983) (for the magnetic field,
and using the Steklov—Poincaré operator) [numerical
code TRIFOU].

Mayergoyz, Chari and Konrad (1983) (for the electric
field, and using special basis functions near I).

Hiptmair (2002) (unknowns: E- In Q-, H x non I).

Meddahi and Selgas (2003) (unknowns: Hq In Q,
puH-nonT).

Bermudez, GOmez, Mufiz and Salgado (2007) (for
axisymmetric problems associated to the modeling of
Induction furnaces).

|
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