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Stokes–Darcy coupling

The coupling of the Stokes system and the Darcy equation
has been recently considered as a model for the filtration of
fluids through porous media (percolation of water from a
basin through the ground).
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Stokes–Darcy coupling

The coupling of the Stokes system and the Darcy equation
has been recently considered as a model for the filtration of
fluids through porous media (percolation of water from a
basin through the ground).

Let us start describing the coupled problem. We denote by

ΩS the fluid region, and by ΩD the ground region. Moreover,

Γ := ΩS ∩ ΩD will be the interface between ΩS and ΩD.
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Stokes–Darcy coupling (cont.)

The Stokes system is given by

(1)

{

−ν∆u + ∇p = f in ΩS

div u = 0 in ΩS ,

where u is the velocity field, p is the pressure, ν > 0 is the
kinematic viscosity and f is a given force field.
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Stokes–Darcy coupling (cont.)

The Stokes system is given by

(1)

{

−ν∆u + ∇p = f in ΩS

div u = 0 in ΩS ,

where u is the velocity field, p is the pressure, ν > 0 is the
kinematic viscosity and f is a given force field.
The Darcy equation is given by

(2) − div

(

K

N
∇ϕ

)

= 0 in ΩD ,

where ϕ is the piezometric head, K is the hydraulic conduc-

tivity tensor and N > 0 is the volumetric porosity.
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Stokes–Darcy coupling (cont.)

For simplicity, as boundary conditions let us assume that:

(3)
u = 0 on ∂ΩS \ Γ

ϕ = 0 on ∂ΩD \ Γ .
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Stokes–Darcy coupling (cont.)

For simplicity, as boundary conditions let us assume that:

(3)
u = 0 on ∂ΩS \ Γ

ϕ = 0 on ∂ΩD \ Γ .

The interface conditions [matching of the normal velocity
and of the normal stress] are:

(4)
u · n = −K

N∇ϕ · n on Γ

T(u, p) · n = −gϕn on Γ

where g is the gravity acceleration, and the fluid stress tensor

is given by Tij(u, p) := ν(Diuj +Djui)− pδij. Here n denotes

the unit normal vector on Γ, pointing from ΩS into ΩD.
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Well-posedness and iterative solution algorithms

It can be proved that the coupled problem (1)–(4) has a
unique solution [Discacciati and Quarteroni, ENUMATH
2001; Layton, Schieweck and Yotov, SINUM 2003].
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Well-posedness and iterative solution algorithms

It can be proved that the coupled problem (1)–(4) has a
unique solution [Discacciati and Quarteroni, ENUMATH
2001; Layton, Schieweck and Yotov, SINUM 2003].

We are interested in devising an efficient solution algorithm
that uses as building blocks a Stokes solver and an elliptic
solver. To do this, it is natural to introduce iterative
algorithms.
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Well-posedness and iterative solution algorithms

It can be proved that the coupled problem (1)–(4) has a
unique solution [Discacciati and Quarteroni, ENUMATH
2001; Layton, Schieweck and Yotov, SINUM 2003].

We are interested in devising an efficient solution algorithm
that uses as building blocks a Stokes solver and an elliptic
solver. To do this, it is natural to introduce iterative
algorithms.

Let us present some of the iterative algorithms that have

been proposed for the solution of (1)–(4).
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Dirichlet/Neumann algorithm

Dirichlet/Neumann: given ϕ0 on Γ, for m ≥ 0
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Dirichlet/Neumann algorithm

Dirichlet/Neumann: given ϕ0 on Γ, for m ≥ 0

solve the Stokes problem with

T(um, pm) · n = −gϕm
n on Γ
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Dirichlet/Neumann algorithm

Dirichlet/Neumann: given ϕ0 on Γ, for m ≥ 0

solve the Stokes problem with

T(um, pm) · n = −gϕm
n on Γ

solve the Darcy problem with

K

N
∇ϕm+1/2 · n = −u

m · n on Γ
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Dirichlet/Neumann algorithm

Dirichlet/Neumann: given ϕ0 on Γ, for m ≥ 0

solve the Stokes problem with

T(um, pm) · n = −gϕm
n on Γ

solve the Darcy problem with

K

N
∇ϕm+1/2 · n = −u

m · n on Γ

pose on Γ

ϕm+1 := θϕm+1/2 + (1 − θ)ϕm ,

where θ > 0 is an acceleration parameter.
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Dirichlet/Neumann algorithm (cont.)

[The name Dirichlet/Neumann is somehow arbitrary:
indeed, we are solving two Neumann problems.
However, for the velocity field (u|ΩS

,−∇ϕ|ΩD
) the step in ΩS

is a Neumann step, whereas the step in ΩD is a Dirichlet
step (for the normal component...).]
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Dirichlet/Neumann algorithm (cont.)

[The name Dirichlet/Neumann is somehow arbitrary:
indeed, we are solving two Neumann problems.
However, for the velocity field (u|ΩS

,−∇ϕ|ΩD
) the step in ΩS

is a Neumann step, whereas the step in ΩD is a Dirichlet
step (for the normal component...).]

The algorithm is convergent (for a suitable choice of θ)
[Discacciati and Quarteroni, Comput. Visual. Sci. 2004].
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Dirichlet/Neumann algorithm (cont.)

[The name Dirichlet/Neumann is somehow arbitrary:
indeed, we are solving two Neumann problems.
However, for the velocity field (u|ΩS

,−∇ϕ|ΩD
) the step in ΩS

is a Neumann step, whereas the step in ΩD is a Dirichlet
step (for the normal component...).]

The algorithm is convergent (for a suitable choice of θ)
[Discacciati and Quarteroni, Comput. Visual. Sci. 2004].

However:

for a finite element approximation, the convergence is
independent of the mesh parameter h, but depends
heavily on the viscosity ν and the conductivity K
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Robin/Robin algorithm 1

Sequential Robin/Robin: given η0 on Γ, for m ≥ 0
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Robin/Robin algorithm 1

Sequential Robin/Robin: given η0 on Γ, for m ≥ 0

solve the Darcy problem with

−γD
K

N
∇ϕm+1 · n + gϕm+1 = ηm on Γ
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Robin/Robin algorithm 1

Sequential Robin/Robin: given η0 on Γ, for m ≥ 0

solve the Darcy problem with

−γD
K

N
∇ϕm+1 · n + gϕm+1 = ηm on Γ

solve the Stokes problem with

n · T(um+1, pm+1) · n + γSu
m+1 · n

= −gϕm+1 − γS
K
N∇ϕm+1 · n on Γ

τ · T(um+1, pm+1) · n = 0 on Γ
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Robin/Robin algorithm 1

Sequential Robin/Robin: given η0 on Γ, for m ≥ 0

solve the Darcy problem with

−γD
K

N
∇ϕm+1 · n + gϕm+1 = ηm on Γ

solve the Stokes problem with

n · T(um+1, pm+1) · n + γSu
m+1 · n

= −gϕm+1 − γS
K
N∇ϕm+1 · n on Γ

τ · T(um+1, pm+1) · n = 0 on Γ

pose on Γ

ηm+1 := −n · T(um+1, pm+1) · n + γDu
m+1 · n .
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Robin/Robin algorithm 1 (cont.)

Here γS > 0 and γD > 0 are suitable acceleration
parameters, and τ is a unit tangent vector on Γ.
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Robin/Robin algorithm 1 (cont.)

Here γS > 0 and γD > 0 are suitable acceleration
parameters, and τ is a unit tangent vector on Γ.

The algorithm is proved to be convergent (at least for
γS = γD) [Discacciati, PhD Thesis, EPFL 2004].
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Robin/Robin algorithm 1 (cont.)

Here γS > 0 and γD > 0 are suitable acceleration
parameters, and τ is a unit tangent vector on Γ.

The algorithm is proved to be convergent (at least for
γS = γD) [Discacciati, PhD Thesis, EPFL 2004].

Moreover:

A parallel iterative approach for the Stokes–Darcy coupling – p.9/20



Robin/Robin algorithm 1 (cont.)

Here γS > 0 and γD > 0 are suitable acceleration
parameters, and τ is a unit tangent vector on Γ.

The algorithm is proved to be convergent (at least for
γS = γD) [Discacciati, PhD Thesis, EPFL 2004].

Moreover:

it can be interpreted as an alternating direction
algorithm (which is useful for tuning the parameters γS

and γD
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Robin/Robin algorithm 1 (cont.)

Here γS > 0 and γD > 0 are suitable acceleration
parameters, and τ is a unit tangent vector on Γ.

The algorithm is proved to be convergent (at least for
γS = γD) [Discacciati, PhD Thesis, EPFL 2004].

Moreover:

it can be interpreted as an alternating direction
algorithm (which is useful for tuning the parameters γS

and γD

for a finite element approximation, the convergence is
independent of the mesh parameter h, and, for suitable
choices of γS and γD, in the numerical computations it
looks also independent of the viscosity ν and the
conductivity K
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Robin/Robin algorithm 2

The preceding Robin/Robin algorithm is sequential. Our
aim now is to find an efficient parallel algorithm.
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Robin/Robin algorithm 2

The preceding Robin/Robin algorithm is sequential. Our
aim now is to find an efficient parallel algorithm.

The leading idea comes from the Neumann/Neumann
algorithm (but it cannot be applied straightforwardly: lack of
regularity!).
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Robin/Robin algorithm 2

The preceding Robin/Robin algorithm is sequential. Our
aim now is to find an efficient parallel algorithm.

The leading idea comes from the Neumann/Neumann
algorithm (but it cannot be applied straightforwardly: lack of
regularity!).

Recalling that the Neumann/Neumann algorithm for the

Laplace operator is indeed given by a couple of Dirichlet

solvers, followed by a couple of (homogeneous) Neumann

solvers, which play the role of correctors, we propose a dou-

ble parallel Robin/Robin algorithm.
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Robin/Robin algorithm 2 (cont.)

Parallel Robin/Robin: given η0 on Γ, for m ≥ 0
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Robin/Robin algorithm 2 (cont.)

Parallel Robin/Robin: given η0 on Γ, for m ≥ 0

solve in parallel the Stokes problem and the Darcy
problem with

(5)

n · T(um+1, pm+1) · n − γ1u
m+1 · n = ηm

= −gϕm+1 + γ1
K
N∇ϕm+1 · n on Γ

τ · T(um+1, pm+1) · n = 0 on Γ

A parallel iterative approach for the Stokes–Darcy coupling – p.11/20



Robin/Robin algorithm 2 (cont.)

Parallel Robin/Robin: given η0 on Γ, for m ≥ 0

solve in parallel the Stokes problem and the Darcy
problem with

(5)

n · T(um+1, pm+1) · n − γ1u
m+1 · n = ηm

= −gϕm+1 + γ1
K
N∇ϕm+1 · n on Γ

τ · T(um+1, pm+1) · n = 0 on Γ
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Robin/Robin algorithm 2 (cont.)

Parallel Robin/Robin: given η0 on Γ, for m ≥ 0

solve in parallel the Stokes problem and the Darcy
problem with

(5)

n · T(um+1, pm+1) · n − γ1u
m+1 · n = ηm

= −gϕm+1 + γ1
K
N∇ϕm+1 · n on Γ

τ · T(um+1, pm+1) · n = 0 on Γ

pose

(6) σm+1 := u
m+1 · n +

K

N
∇ϕm+1 · n
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Robin/Robin algorithm 2 (cont.)

solve in parallel the homogeneous (f = 0) Stokes
problem and the Darcy problem with

(7)

n · T(ωm+1, πm+1) · n + γ2ω
m+1 · n = γ2σ

m+1

= gχm+1 − γ2
K
N∇χm+1 · n on Γ

τ · T(ωm+1, πm+1) · n = 0 on Γ
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Robin/Robin algorithm 2 (cont.)

solve in parallel the homogeneous (f = 0) Stokes
problem and the Darcy problem with

(7)

+ n · T(ωm+1, πm+1) · n + γ2ω
m+1 · n = γ2σ

m+1

= + gχm+1 − γ2
K
N∇χm+1 · n on Γ

τ · T(ωm+1, πm+1) · n = 0 on Γ
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Robin/Robin algorithm 2 (cont.)

solve in parallel the homogeneous (f = 0) Stokes
problem and the Darcy problem with

(7)

n · T(ωm+1, πm+1) · n + γ2ω
m+1 · n = γ2σ

m+1

= gχm+1 − γ2
K
N∇χm+1 · n on Γ

τ · T(ωm+1, πm+1) · n = 0 on Γ

pose on Γ

(8) ηm+1 := ηm − θ
(

n · T(ωm+1, πm+1) · n + gχm+1
)

,

where γ1 > 0, γ2 > 0 and θ > 0 are acceleration
parameters.
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Consistency of the Robin/Robin algorithm 2

Let us show that the algorithm is consistent, namely, at
convergence we have the solution.
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Consistency of the Robin/Robin algorithm 2

Let us show that the algorithm is consistent, namely, at
convergence we have the solution.
At convergence, from (8) it holds

T(ω∞, π∞) · n = −gχ∞ n ,

therefore normal stresses of the corrections are matching.
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Consistency of the Robin/Robin algorithm 2

Let us show that the algorithm is consistent, namely, at
convergence we have the solution.
At convergence, from (8) it holds

T(ω∞, π∞) · n = −gχ∞ n ,

therefore normal stresses of the corrections are matching.
On the other hand, from (7) normal velocities of the
corrections are jumping

ω
∞ · n +

K

N
∇χ∞ · n =

2g

γ2

χ∞ .
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Consistency of the Robin/Robin algorithm 2 (cont.)

But this jump gives an additional positive term in the energy
of the problem, namely, one obtains

∫

ΩS

2ν
∑

ij

|Diω
∞
j |2 +

∫

ΩD

g

N
K∇χ∞ · ∇χ∞

+

∫

Γ

2g2

γ2

|χ∞|2 = 0 .
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Consistency of the Robin/Robin algorithm 2 (cont.)

But this jump gives an additional positive term in the energy
of the problem, namely, one obtains

∫

ΩS

2ν
∑

ij

|Diω
∞
j |2 +

∫

ΩD

g

N
K∇χ∞ · ∇χ∞

+

∫

Γ

2g2

γ2

|χ∞|2 = 0 .

Hence, ω
∞ = 0 and χ∞ = 0, and consequently σ∞ = 0.
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Consistency of the Robin/Robin algorithm 2 (cont.)

Finally:

from (6), σ∞ is the jump of the normal velocities,
therefore they are matching:

u
∞ · n = −

K

N
∇ϕ∞ · n
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Consistency of the Robin/Robin algorithm 2 (cont.)

Finally:

from (6), σ∞ is the jump of the normal velocities,
therefore they are matching:

u
∞ · n = −

K

N
∇ϕ∞ · n

from the Robin interface condition (5), if the normal
velocities are matching also the normal stresses are
matching:

T(u∞, p∞) · n = −gϕ∞
n
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Consistency of the Robin/Robin algorithm 2 (cont.)

Finally:

from (6), σ∞ is the jump of the normal velocities,
therefore they are matching:

u
∞ · n = −

K

N
∇ϕ∞ · n

from the Robin interface condition (5), if the normal
velocities are matching also the normal stresses are
matching:

T(u∞, p∞) · n = −gϕ∞
n

We have found the right solution!
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Convergence of the Robin/Robin algorithm 2

The parallel Robin/Robin algorithm can be rewritten as a
preconditioned Richardson scheme:

ηm+1 = ηm + θ(KS +KD)[ψ − (HS +HD)ηm] ,

for a suitable right hand side ψ.
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Convergence of the Robin/Robin algorithm 2

The parallel Robin/Robin algorithm can be rewritten as a
preconditioned Richardson scheme:

ηm+1 = ηm + θ(KS +KD)[ψ − (HS +HD)ηm] ,

for a suitable right hand side ψ.

The operators KS, KD, HS and HD are the main building

blocks of the algorithm, and are defined as follows.
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Convergence of the Robin/Robin algorithm 2 (cont.)

KSσ := n · T(ω, π) · n, where ω is a solution with the
Robin datum

n · T(ω, π) · n + γ2ω · n = γ2σ on Γ

τ · T(ω, π) · n = 0 on Γ .

KS is a Robin-to-Neumann operator
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Convergence of the Robin/Robin algorithm 2 (cont.)

KSσ := n · T(ω, π) · n, where ω is a solution with the
Robin datum

n · T(ω, π) · n + γ2ω · n = γ2σ on Γ

τ · T(ω, π) · n = 0 on Γ .

KS is a Robin-to-Neumann operator

KDσ := gχ, where χ is a solution with the Robin datum

gχ− γ2
K
N∇χ · n = γ2σ on Γ .

KD is a Robin-to-Dirichlet operator
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Convergence of the Robin/Robin algorithm 2 (cont.)

HSη := u · n, where u is a solution (for f = 0) with the
Robin datum

n · T(u, p) · n − γ1u · n = η on Γ

τ · T(u, p) · n = 0 on Γ .

HS is a Robin-to-Dirichlet operator
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Convergence of the Robin/Robin algorithm 2 (cont.)

HSη := u · n, where u is a solution (for f = 0) with the
Robin datum

n · T(u, p) · n − γ1u · n = η on Γ

τ · T(u, p) · n = 0 on Γ .

HS is a Robin-to-Dirichlet operator

HDη := K
N∇ϕ · n, where ϕ is a solution with the Robin

datum
−gϕ+ γ1

K
N∇ϕ · n = η on Γ .

HD is a Robin-to-Neumann operator
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Convergence of the Robin/Robin algorithm 2 (cont.)

These operators have the following properties (in the space
L2(Γ)):
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Convergence of the Robin/Robin algorithm 2 (cont.)

These operators have the following properties (in the space
L2(Γ)):

KS is symmetric, continuous and positive definite
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Convergence of the Robin/Robin algorithm 2 (cont.)

These operators have the following properties (in the space
L2(Γ)):

KS is symmetric, continuous and positive definite

KD is symmetric, continuous and non-negative
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Convergence of the Robin/Robin algorithm 2 (cont.)

These operators have the following properties (in the space
L2(Γ)):

KS is symmetric, continuous and positive definite

KD is symmetric, continuous and non-negative

HS is symmetric, continuous and non-negative (for γ1

small enough)
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Convergence of the Robin/Robin algorithm 2 (cont.)

These operators have the following properties (in the space
L2(Γ)):

KS is symmetric, continuous and positive definite

KD is symmetric, continuous and non-negative

HS is symmetric, continuous and non-negative (for γ1

small enough)

HD is symmetric, continuous and positive definite
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Convergence of the Robin/Robin algorithm 2 (cont.)

These operators have the following properties (in the space
L2(Γ)):

KS is symmetric, continuous and positive definite

KD is symmetric, continuous and non-negative

HS is symmetric, continuous and non-negative (for γ1

small enough)

HD is symmetric, continuous and positive definite

Therefore, both the operator (HS + HD) and the precondi-

tioner (KS + KD)−1 are symmetric, continuous and positive

definite: convergence is achieved! (for a suitable choice of

the parameter θ)
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Comments

It is well-known that the Dirichlet-to-Neumann operator
is symmetric, continuous and positive definite from the
energy trace space H1/2(Γ) into ts dual; here we have
seen that:
the Robin-to-Neumann operator is symmetric,
continuous and positive definite in L2(Γ),
whereas:
the Robin-to-Dirichlet operator is symmetric, continuous
and non-negative in L2(Γ)
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Comments

It is well-known that the Dirichlet-to-Neumann operator
is symmetric, continuous and positive definite from the
energy trace space H1/2(Γ) into ts dual; here we have
seen that:
the Robin-to-Neumann operator is symmetric,
continuous and positive definite in L2(Γ),
whereas:
the Robin-to-Dirichlet operator is symmetric, continuous
and non-negative in L2(Γ)

the above results also hold for the finite element
numerical approximation, uniformly with respect to the
mesh parameter h
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