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1. Introduction

Let us consider a bounded connected open set Ω ⊂ R
3, with boundary ∂Ω.

The unit outward normal vector on ∂Ω will be denoted by n. We assume that
Ω is split into two parts, Ω = ΩC ∪ ΩI , where ΩC (a non-homogeneous non-
isotropic conductor) and ΩI (a perfect insulator) are open disjoint subsets, such
that ΩC ⊂ Ω. For the sake of simplicity, we also suppose that ΩI is connected
(the general case can be treated in a similar way, focusing on each connected
component of ΩI , but some modifications are needed when the boundary of a
connected component of ΩI has empty intersection with ∂Ω).

We denote by Γ := ∂ΩI ∩ ∂ΩC the interface between the two subdomains;
note that, in the present situation, ∂ΩC = Γ and ∂ΩI = ∂Ω ∪ Γ. Moreover, we
indicate by Γj , j = 1, . . . , pΓ, the connected components of Γ, and by (∂Ω)t, t =
0, 1, . . . , p∂Ω, the connected components of ∂Ω (in particular, we have denoted
by (∂Ω)0 the external one).

In this paper we study the time-harmonic eddy-current problem, in which
the displacement current term ∂D

∂t is neglected, and the electric field E , the
magnetic field H and the applied current density Je are of the form

E(t,x) = Re[E(x) exp(iωt)]
H(t,x) = Re[H(x) exp(iωt)]
Je(t,x) = Re[Je(x) exp(iωt)] ,

where ω 6= 0 is a given angular frequency (see, e.g., Bossavit [7], p. 219).
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The constitutive relation B = µH (where µ is the magnetic permeability
coefficient) is assumed to hold, as well as the (generalized) Ohm’s law J =
σE + Je (where σ is the electric conductivity).

The magnetic permeability µ is assumed to be a symmetric matrix, uni-
formly positive definite in Ω, with entries in L∞(Ω). Since ΩI is a perfect
insulator, we require that σ|ΩI

≡ 0; moreover, as ΩC is a non-homogeneous
non-isotropic conductor, σ|ΩC

is assumed to be a symmetric matrix, uniformly
positive definite in ΩC , with entries in L∞(ΩC). Moreover, the dielectric coeffi-
cient εI , which enters the problem when one has to determine the electric field
in ΩI , is assumed to be a symmetric matrix, uniformly positive definite in ΩI ,
with entries in L∞(ΩI). Finally, the applied current density Je is not assumed
to vanish in ΩC , so that also the skin effect in current driven massive conductors
can be modelled.

Concerning the boundary condition, we will consider in the magnetic bound-
ary value problem, modelling a cavity within an infinitely permeable iron:
namely, H × n, representing the tangential component of the magnetic field,
is assumed to vanish on ∂Ω. The case of the electric boundary value problem,
in which E × n, representing the tangential component of the electric field, is
assumed to vanish on ∂Ω, can be treated following a similar approach, but in
the sequel we will not dwell on it (its general description can be found, e.g., in
Alonso Rodŕıguez, Fernandes and Valli [3]).

We will make the following assumptions on the geometry of Ω:

(H1)
either ∂Ω ∈ C1,1, or else Ω is a Lipschitz polyhedron;
the same assumption holds for ΩC and ΩI .

As a consequence, it can be proved (see e.g., Foias and Temam [15], Picard
[20], Amrouche, Bernardi, Dauge and Girault [4], Fernandes and Gilardi [14],
Hiptmair [17]) that the space of harmonic vector fields

HµI (∂Ω; Γ) := {vI ∈ (L2(ΩI))
3 | rotvI = 0, div(µIvI) = 0,

vI × n = 0 on ∂Ω, µIvI · nI = 0 on Γ}

has a finite dimension, larger than p∂Ω, say p∂Ω + nΓ, and that the space of
harmonic vector fields

HεI (Γ; ∂Ω) := {vI ∈ (L2(ΩI))
3 | rotvI = 0, div(εIvI) = 0,

vI × nI = 0 on Γ, εIvI · n = 0 on ∂Ω}

has a finite dimension, larger than pΓ − 1, say pΓ − 1 + n∂Ω. Moreover

(1.1)

there exist nΓ “cuts” Ξl, which are the interior of two-dimensional,
mutually disjoint, compact and connected Lipschitz manifolds Ξl

with boundary ∂Ξl, such that Ξl ⊂ ΩI and ∂Ξl ⊂ Γ, and such

that in the open set Ω̂I := ΩI \ ∪lΞl, assumed to be connected,
every curl-free vector field with vanishing tangential component on
∂Ω has a global potential;
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(1.2)

there exist n∂Ω “cuts” Σk, which are the interior of two-dimensional,
mutually disjoint, compact and connected Lipschitz manifolds Σk

with boundary ∂Σk, such that Σk ⊂ ΩI and ∂Σk ⊂ ∂Ω, and such

that in the open set Ω̃I := ΩI \ ∪kΣk, assumed to be connected,
every curl-free vector field with vanishing tangential component on
Γ has a global potential.

In particular, nΓ is the number of singular (or non-bounding) cycles in ΩI

of first type, namely those cycles on Γ that cannot be represented as ∂S \ γγγ, S
being a surface contained in ΩI and γγγ a cycle, possibly empty, contained in ∂Ω.
Similarly, n∂Ω is the number of singular cycles in ΩI of second type, namely,
those cycles on ∂Ω that cannot be represented as ∂S \ γγγ, S being a surface
contained in ΩI and γγγ a cycle, possibly empty, contained in Γ.

Let us assume that the current density Je ∈ (L2(Ω))3 satisfies the (neces-
sary) conditions

(H2)

divJe,I = 0 in ΩI , Je,I · n = 0 on ∂Ω∫
Γj

Je,I · nI = 0 ∀ j = 1, . . . , pΓ − 1∫
ΩI

Je,I · πππk,I = 0 ∀ k = 1, . . . , n∂Ω ,

where πππk,I are basis functions of the space HεI (Γ; ∂Ω) that are not gradients.
As it will be shown in Section 4, condition (H2)3 is equivalent to setting the
total applied current through Σk to zero. This is necessary in view of Ampère
law, since H× n vanishes on ∂Ω, hence on ∂Σk.

(For the ease of the reader, in (H2) and in the sequel we are always denoting
the duality pairings as surface integrals; see Bossavit [7], Dautray and Lions [12],
Girault and Raviart [16] for more details on these aspects related to functional
analysis and to linear spaces of functions.)

In Alonso Rodŕıguez, Fernandes and Valli [3] it has been proved that the
complete system of equations describing the eddy-current problem in terms of
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the magnetic field H and the electric field EC is:

(1.3)





rotEC + iωµCHC = 0 in ΩC

rotHC − σEC = Je,C in ΩC

rotHI = Je,I in ΩI

div(µIHI) = 0 in ΩI

∫
(∂Ω)t

µIHI · n = 0 ∀ t = 1, . . . , p∂Ω

∫
ΩI
iωµIHI · ρρρl,I +

∫
Γ
(EC × nC) · ρρρl,I = 0 ∀ l = 1, . . . , nΓ

HI × n = 0 on ∂Ω

µIHI · nI + µCHC · nC = 0 on Γ

HI × nI + HC × nC = 0 on Γ ,

where nC = −nI is the unit outward normal vector on ∂ΩC = Γ, we have set
EC := E|ΩC

(and similarly for ΩI and any other restriction of function), and
ρρρl,I are the basis functions of the space of harmonic fields HµI (∂Ω; Γ) that are
not gradients. In particular, in Alonso Rodŕıguez, Fernandes and Valli [3] it
has been proved that, under the assumptions (H1)-(H2), problem (1.3) has a
unique solution.

In the following, we are going to consider problem (1.3) in terms of the
Coulomb gauged vector potential formulation. We will prove that this formu-
lation is well-posed, namely, there exists a solution for it and this solution is
unique.

Let us note that the problem of uniqueness has been already considered and
solved by many authors (see, e.g., Bı́ró and Preis [6] and the references therein),
at least when the domains Ω and ΩC have a simple geometry. Moreover, still
for the case of simple geometry and assuming that the eddy-current problem
has been solved in terms of the fields EC and H, Fernandes [13] has determined
the correct gauging conditions for the existence and uniqueness of the vector
magnetic potential A and the scalar electric potential VC .

In this paper, instead, we mainly focus on the problem of existence of
these potentials in general geometry, obtaining the uniqueness as a consequence
of the positivity of the energy functional; moreover, we will derive from this
result the stability and the convergence of the finite element approximation by
nodal elements. To our knowledge, similar results have been proved only for the
formulation using the modified vector potential A

∗
C (equivalent to the electric

field EC) in ΩC , combined with the scalar magnetic potential ψI in ΩI (see
Tsukerman [21], Alonso and Valli [2]).

In the last Section we present some numerical results that illustrate the
performances of the approximation algorithm based on nodal finite elements. It
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will be shown that the efficiency of the method is improved introducing in the
finite element space some constraints that, though not needed at the discrete
level, are indeed necessary for the well-posedness of the infinite dimensional
problem.

2. The (AC , VC) − AI formulation

In this case we are looking for a magnetic vector potential A and a scalar
electric potential VC such that

(2.1) EC = −iωAC − iω gradVC , µCHC = rotAC , µIHI = rotAI .

In this way one has rotEC = −iω rotAC = −iωµCHC , and therefore the
Faraday equation in ΩC is satisfied. Moreover, µIHI is a solenoidal field in ΩI

and has a vanishing flux through any closed surface in ΩI .
The matching conditions for µH · n can be expressed as

AI × nI + AC × nC = 0 on Γ ,

as taking the tangential divergence of this relation one finds

rotAI · nI + rotAC · nC = 0 on Γ .

As a consequence, we have µH = rotA in the whole Ω.
In order to have a unique vector potential A, it is necessary to impose some

gauge conditions: here we are considering the Coulomb gauge divA = 0 in Ω,
with A ·n = 0 on ∂Ω. Therefore, we are also implicitly requiring the additional
matching condition AI · nI + AC · nC = 0 on Γ.

In a general geometric situation, this can be not enough for determining
a unique vector potential A in Ω. In fact, there exist non-trivial irrotational,
solenoidal and tangential vector fields, namely, the elements of the finite dimen-
sional space of harmonic fields

(2.2) H(m; Ω) := {v ∈ (L2(Ω))3 | rotv = 0, divv = 0,v · n = 0 on ∂Ω} .

Let us denote by n∗
∂Ω the dimension of this vector space. As before, it can

be proved that

(2.3)

there exist n∗
∂Ω “cuts” Σ∗

z , which are the interior of two-dimensional,
mutually disjoint, compact and connected Lipschitz manifolds Σ∗

z

with boundary ∂Σ∗
z, such that Σ∗

z ⊂ Ω and ∂Σ∗
z ⊂ ∂Ω, and such

that in the open set Ω̃ := Ω \ ∪zΣ
∗
z , assumed to be connected,

every curl-free vector has a global potential.

In other words, each surface Σ∗
z, z = 1, . . . , n∗

∂Ω, “cuts” a cycle on ∂Ω that
is not bounding a surface contained in Ω.
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In this context, we are in a position to make precise the additional condi-
tions that we are going to require. Coming back to the family of n∂Ω “cuts” Σk

introduced in (1.2), we assume that

(H3)

the family of “cuts” Σ∗
z is coincident with

the family of “cuts” Σk for z, k = 1, . . . , n∂Ω

(in particular, Σ∗
z ⊂ ΩI for each z = 1, . . . , n∂Ω),

whereas Σ∗
z ∩ ΩC 6= ∅ for each z = n∂Ω + 1, . . . , n∗

∂Ω.
As a consequence, we have n∂Ω ≤ n∗

∂Ω.

When n∂Ω = n∗
∂Ω, this is telling us that we can choose the “cuts” in Ω

associated to the vector space H(m; Ω) without intersecting ΩC . Conversely,
when n∂Ω < n∗

∂Ω some of the “cuts” have to intersect the conductor ΩC (for
example, this happens when Ω and ΩC are two coaxial tori, for which n∂Ω = 0
and n∗

∂Ω = 1).
We are going to prove that the number of the needed additional conditions

to be imposed to the vector field A is n∂Ω. For a while, let us describe these
conditions in the abstract form

Gk(A) = 0 ∀ k = 1, . . . , n∂Ω ,

where Gz(·), z = 1, . . . , n∗
∂Ω, are a suitable set of linear functionals that we will

make precise in the sequel (see (4.9) and (4.10)).
Since we would like to find a unique solution (AC , VC) −AI , we have also

to impose a suitable condition to VC , for instance

∫

ΩC,j

VC|ΩC,j
= 0 ,

where ΩC,j , j = 1, . . . , pΓ, are the connected components of ΩC .
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In conclusion, taking into account (1.3), we are left with the problem

(2.4)





rot(µ−1
C rotAC) + iωσAC + iωσ gradVC = Je,C in ΩC

rot(µ−1
I rotAI) = Je,I in ΩI

∫
ΩC,j

VC|ΩC,j
= 0 ∀ j = 1, . . . , pΓ

divAC = 0 in ΩC

divAI = 0 in ΩI

Gk(A) = 0 ∀ k = 1, . . . , n∂Ω

AI · n = 0 on ∂Ω

(µ−1
I rotAI) × n = 0 on ∂Ω

AI · nI + AC · nC = 0 on Γ

AI × nI + AC × nC = 0 on Γ

(µ−1
I rotAI) × nI + (µ−1

C rotAC) × nC = 0 on Γ .

As it is well known (see, e.g., Morisue [19]), the Coulomb gauge condition
divA = 0 in Ω can be incorporated in the Ampère equation. Introducing the
constant µ∗ > 0, representing a suitable average in Ω of the entries of the matrix
µ, one considers





rot(µ−1
C rotAC) − µ−1

∗ graddivAC + iωσAC + iωσ gradVC = Je,C in ΩC

rot(µ−1
I rotAI) − µ−1

∗ graddivAI = Je,I in ΩI

div(iωσAC + iωσ gradVC) = divJe,C in ΩC

(iωσAC + iωσ gradVC) · nC = Je,C · nC + Je,I · nI on Γ ,

the last two conditions being necessary as the modification in the first two does
not assure now that the electric field EC = −iωAC − iω gradVC satisfies the
necessary conditions div(σEC) = − divJe,C in ΩC and σEC ·nC = −Je,C ·nC −
Je,I · nI on Γ.

The complete (AC , VC) − AI formulation that we are going to consider is
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therefore

(2.5)





rot(µ−1
C rotAC) − µ−1

∗ graddivAC

+iωσAC + iωσ gradVC = Je,C in ΩC

rot(µ−1
I rotAI) − µ−1

∗ graddivAI = Je,I in ΩI

div(iωσAC + iωσ gradVC) = divJe,C in ΩC

(iωσAC + iωσ gradVC) · nC

= Je,C · nC + Je,I · nI on Γ

∫
ΩC,j

VC|ΩC,j
= 0 ∀ j = 1, . . . , pΓ

Gk(A) = 0 ∀ k = 1, . . . , n∂Ω

AI · n = 0 on ∂Ω

(µ−1
I rotAI) × n = 0 on ∂Ω

divAI − divAC = 0 on Γ

AI · nI + AC · nC = 0 on Γ

AI × nI + AC × nC = 0 on Γ

(µ−1
I rotAI) × nI + (µ−1

C rotAC) × nC = 0 on Γ .

The interface condition divAI = divAC on Γ is necessary to assure that,
for a solution to (2.5), one has divA = 0 in the whole Ω, and therefore one can
recover from (2.5) the original system (2.4). In fact, we can prove

Lemma 2.1. For any solution (AC , VC)-AI to (2.5) one has divA = 0 in
Ω, therefore (AC , VC)-AI is indeed a solution to (2.4).

Proof. First of all we see that, from (2.5)10, one sees that the divergence of
A is well defined in the whole Ω, and it holds divA = divAI in ΩI and divA =
divAC in ΩC . Moreover, taking the divergence of the (2.5)1 and using (2.5)3
we have −∆divAC = 0 in ΩC . Recalling that the current density J satisfies by
assumption divJe,I = 0 in ΩI , from (2.5)2 one obtains also −∆divAI = 0 in
ΩI . On the other hand, using (2.5)4, on the interface Γ we have

−µ−1
∗ graddivAC · nC = −Je,I · nI − rot(µ−1

C rotAC) · nC

= −Je,I · nI − divτ [(µ−1
C rotAC) × nC ] ,

and also

−µ−1
∗ graddivAI · nI = Je,I · nI − rot(µ−1

I rotAI) · nI

= Je,I · nI − divτ [(µ−1
I rotAI) × nI ] ,
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therefore from (2.5)12

graddivAC · nC + graddivAI · nI = 0 on Γ .

This last condition, together with the interface condition (2.5)9, furnishes that
divA is a harmonic function in the whole Ω. Moreover, using (2.5)8, on the
boundary ∂Ω we have

−µ−1
∗ graddivA · n = Je,I · n− rot(µ−1

I rotAI) · n
= Je,I · n− divτ [(µ−1

I rotAI) × n] = 0 ,

as the current density satisfies by assumption Je,I · n = 0 on ∂Ω. As a conse-
quence, we find that divA is a constant in Ω, and this constant must be 0 by
(2.5)7.

Note that, if (AC , VC) − AI is any solution of problem (2.4), then the
corresponding HI and EC obtained through (2.1) satisfy

∫

ΩI

iωµIHI · ρρρl,I +

∫

Γ

(EC × nC) · ρρρl,I = 0 ∀ l = 1, . . . , nΓ ,

as proved in Alonso Rodŕıguez, Fernandes and Valli [3]. Therefore, any solution
to (2.4) gives, through (2.1), the solution to the eddy-current problem (1.3).

3. The (AC , VC) − AI weak formulation

We are now interested in finding a suitable weak formulation of (2.5). Tak-
ing a test function v ∈ H(rot; Ω)∩H(div; Ω) with v · n = 0 on ∂Ω, multiplying
(2.5)1 by vC (the complex conjugate of vC), (2.5)2 by vI and integrating in ΩC

and ΩI , respectively, we obtain by integration by parts
∫
ΩC

(µ−1
C rotAC · rotvC + µ−1

∗ divAC divvC + iωσAC · vC + iωσ gradVC · vC)

−
∫
Γ[(µ−1

C rotAC) × nC ] · vC − µ−1
∗

∫
Γ vC · nC divAC

=
∫
ΩC

Je,C · vC

∫
ΩI

(µ−1
I rotAI · rotvI + µ−1

∗ divAI divvI)

−
∫
Γ
[(µ−1

I rotAI) × nI ] · vI − µ−1
∗

∫
Γ
vI · nI divAI

=
∫
ΩI

Je,I · vI ,

having used (2.5)7 and (2.5)8.
Since nC × (vC × nC) = nI × (vI × nI) on Γ and vC · nC + vI · nI = 0 on

Γ, by adding these equations and taking into account the interface conditions
(2.5)9 and (2.5)12 one has

(3.1)

∫
ΩC

(µ−1
C rotAC · rotvC + µ−1

∗ divAC divvC)

+
∫
ΩC

(iωσAC · vC + iωσ gradVC · vC)

+
∫
ΩI

(µ−1
I rotAI · rotvI + µ−1

∗ divAI divvI)

=
∫
ΩC

Je,C · vC +
∫
ΩI

Je,I · vI .
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Let us now multiply (2.5)3 by φC and integrate in ΩC : by integration by
parts we find

(3.2)

∫
ΩC

(iωσAC · gradφC + iωσ gradVC · gradφC)

=
∫
ΩC

Je,C · gradφC +
∫
Γ Je,I · nI φC ,

having used (2.5)4.
Introducing the energy functional

(3.3)

A[(A, VC), (v, φC)]
:=

∫
Ω(µ−1 rotA · rotv + µ−1

∗ divA divv)
+

∫
ΩC

(iωσAC · vC + iωσ gradVC · vC)

+
∫
ΩC

(iωσAC · gradφC + iωσ gradVC · gradφC) ,

we have finally rewritten (2.5) as

(3.4)

find (A, VC) ∈ W ×H1
♯ (ΩC) :

A[(A, VC), (v, φC )]

=
∫
Ω

Je · v +
∫
ΩC

Je,C · gradφC +
∫
Γ
Je,I · nI φC

∀ (v, φC) ∈W ×H1
♯ (ΩC) ,

where

(3.5)
W := {v ∈ H(rot; Ω) ∩H(div; Ω) | v · n = 0 on ∂Ω,

Gk(v) = 0 ∀ k = 1, . . . , n∂Ω} ,

and

(3.6) H1
♯ (ΩC) :=

{
φC ∈ H1(ΩC) |

∫

ΩC,j

φC|ΩC,j
= 0 ∀ j = 1, . . . , pΓ

}
.

4. From the weak to the strong formulation

Before starting the proof that the weak problem (3.4) has a unique solution
(for that, see Section 5), it is useful to show that a solution to (3.4) is indeed a
solution to (2.5).

In this respect, note that the additional constraints Gk(A) = 0 for all
k = 1, . . . , n∂Ω and

∫
ΩC,j

φC|ΩC,j
= 0 for all j = 1, . . . , pΓ have not been used

in deriving (3.4). Therefore, for going back from (3.4) to (2.5) it is sufficient to
show that a solution to (3.4) satisfies the equation

(4.1) A[(A, VC), (v, φC)] =

∫

Ω

Je · v +

∫

ΩC

Je,C · gradφC +

∫

Γ

Je,I · nI φC

also for any test function (v, φC) such that v ∈ H(rot; Ω) ∩ H(div; Ω) with
v · n = 0 on ∂Ω and φC ∈ H1(ΩC), namely, without any additional constraint.
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Thus, let (A, VC) be a solution to (3.4). For any φC ∈ H1(ΩC) set

φ∗j :=
1

meas (ΩC,j)

∫

ΩC,j

φC|ΩC,j
;

clearly, the function φC − φ∗C , where φ∗C is defined as

φ∗C|ΩC,j
:= φ∗j ,

belongs to H1
♯ (ΩC). Therefore, for any (v, φC) ∈ W ×H1(ΩC) we have

A[(A, VC), (v, φC)] = A[(A, VC), (v, φC − φ∗C)]

=
∫
Ω

Je · v +
∫
ΩC

Je,C · gradφC +
∫
Γ
Je,I · nI φC

−∑pΓ

j=1 φ
∗
j

∫
Γj

Je,I · nI

=
∫
Ω

Je · v +
∫
ΩC

Je,C · gradφC +
∫
Γ
Je,I · nI φC ,

as by assumption we have
∫
Γj

Je,I · nI = 0 for each j = 1, . . . , pΓ − 1, and

moreover divJe,I = 0 in ΩI and Je,I · n = 0 on ∂Ω, so that
∫
Γj

Je,I · nI = 0 for

j = pΓ, too.
Taking v = 0, as a first result we have therefore that any solution to (3.4)

satisfies

(4.2)
div(iωσAC + iωσ gradVC) = divJe,C in ΩC

(iωσAC + iωσ gradVC) · nC = Je,C · nC + Je,I · nI on Γ .

Setting

J :=

{−iωσAC − iωσ gradVC + Je,C in ΩC

Je,I in ΩI
,

the assumptions divJe,I = 0 in ΩI and Je,I · n = 0 on ∂Ω are telling us that
divJ = 0 in Ω and J · n = 0 on ∂Ω.

For any v ∈ H(rot; Ω) ∩H(div; Ω) with v · n = 0 on ∂Ω, let us define now
by vm the harmonic field in H(m; Ω) (see (2.2)) satisfying Gz(vm) = Gz(v) for
each z = 1, . . . , n∗

∂Ω.
The vector vm is well-defined provided that the following condition holds:

(C1)
for wm ∈ H(m; Ω), the conditions Gz(wm) = 0
for each z = 1, . . . , n∗

∂Ω give wm = 0 in Ω.

We will see later on how to choose the functional Gz(·) in such a way that this
condition is satisfied.

Clearly, the difference v − vm belongs to W . Hence

(4.3)

A[(A, VC), (v, φC)]
= A[(A, VC), (v − vm, φC)] + A[(A, VC), (vm, 0)]

=
∫
Ω Je · (v − vm) +

∫
ΩC

Je,C · gradφC +
∫
Γ Je,I · nI φC

+
∫
ΩC

(iωσAC + iωσ gradVC) · vm,C

=
∫
Ω

Je · v +
∫
ΩC

Je,C · gradφC +
∫
Γ
Je,I · nI φC

−
∫
Ω J · vm .

11



Therefore, the only result that remains to be proved is

(4.4)

∫

Ω

J · vm = 0 .

Let us introduce now the real vector functions ηηηz, the basis of the space
H(m; Ω) such that Gq(ηηηz) = δqz . Clearly, ηηηz ∈ W for z = n∂Ω + 1, . . . , n∗

∂Ω.
Using these test functions (and φC = 0) we find

(4.5)

∫

Ω

J · ηηηz = 0 ∀ z = n∂Ω + 1, . . . , n∗
∂Ω .

Therefore, writing the vector field vm in term of the basis ηηηz as vm =
∑

z αzηηηz,
we have ∫

Ω

J · vm =

n∗

∂Ω∑

z=1

αz

∫

Ω

J · ηηηz =

n∂Ω∑

k=1

αk

∫

Ω

J · ηηηk .

The problem now is to show that

(4.6)

∫

Ω

J · ηηηk = 0 ∀ k = 1, . . . , n∂Ω .

We have not yet used the assumptions

∫

ΩI

Je,I · πππk,I = 0 ∀ k = 1, . . . , n∂Ω .

We know that any vector field πππk,I can be expressed as the (L2(ΩI))
3-extension

of grad pk,I , where pk,I , defined in ΩI \ Σk, is the real function solution of





div(εI gradpk,I) = 0 in ΩI \ Σk

εI grad pk,I · nI = 0 on ∂Ω \ ∂Σk

pk,I = 0 on Γ

[εI gradpk,I · nΣ]Σk
= 0

[pk,I ]Σk
= 1 ,

having denoted by [ · ]Σk
the jump across the surface Σk (see, e.g., Foias and

Temam [15]). Therefore, since divJe,I = 0 in ΩI and Je,I · n = 0 on ∂Ω,

0 =
∫
ΩI

Je,I · πππk,I =
∫
ΩI\Σk

Je,I · grad pk,I

= −
∫
ΩI\Σk

(div Je,I)pk,I +
∫

∂ΩI\∂Σk
Je,I · nI pk,I

+
∫
Σk

Je,I · nΣ [pk,I ]Σk

=
∫
Σk

Je,I · nΣ .

12



Let us remark now that another set of basis functions of H(m; Ω) is given
by πππ∗

z, the (L2(Ω))3-extension of gradp∗z, where p∗z, defined in Ω\Σ∗
z , is the real

function solution of





∆p∗z = 0 in Ω \ Σ∗
z

grad p∗z · n = 0 on ∂Ω \ ∂Σ∗
z

[grad p∗z · nΣ]Σ∗

z
= 0

[p∗z]Σ∗

z
= 1 ,

having denoted by [ · ]Σ∗

z
the jump across the surface Σ∗

z. Hence, proceeding as
before, and recalling that divJ = 0 in Ω, J · n = 0 on ∂Ω and that the “cuts”
satisfy Σk ⊂ ΩI for k = 1, . . . , n∂Ω, we find that

(4.7) 0 =

∫

Σk

Je,I · nΣ =

∫

Σk

J · nΣ =

∫

Ω

J · πππ∗
k ∀ k = 1, . . . , n∂Ω .

We can write the basis πππ∗
z in terms of the basis ηηηz:

πππ∗
q =

n∗

∂Ω∑

z=1

βqzηηηz .

Hence, using (4.5), for k = 1, . . . , n∂Ω one has

(4.8) 0 =

∫
J · πππ∗

k =

n∗

∂Ω∑

z=1

βkz

∫

Ω

J · ηηηz =

n∂Ω∑

i=1

βki

∫

Ω

J · ηηηi .

Let us assume now that the set of linear constraints Gz(·) is such that the
following condition is satisfied:

(C2)

the basis πππ∗
q can be expressed in terms of the basis ηηηz

associated to the linear functionals Gz(·) by means of
a matrix {βqz}, q, z = 1, . . . , n∗

∂Ω, such that
the n∂Ω × n∂Ω sub-matrix {βki} is non-singular.

As a consequence, from (4.8) it follows that (4.6) holds.
Therefore, we can finally conclude that, if the functionals Gz(·) verify (C1)

and (C2), then any solution to (3.4) indeed satisfies equation (4.1) for any test
function (v, φC) such that v ∈ H(rot; Ω) ∩H(div; Ω) with v · n = 0 on ∂Ω and
φC ∈ H1(ΩC), and therefore any solution of the weak problem (3.4) is a solution
of the strong problem (2.5), hence of the original problem (2.4).

Let us finish this Section by showing some examples of choices of the linear
functionals Gz(·) for which conditions (C1) and (C2) are satisfied.

Case 1: n∂Ω = 0.

13



This is the simplest case: no constraints have to be imposed in (2.5) (or,
equivalently, in the space W ).

A geometric example of this situation is the case in which Ω and ΩC are
two ball-like sets (n∂Ω = 0, n∗

∂Ω = 0), or two co-axial tori (n∂Ω = 0, n∗
∂Ω = 1).

Case 2: 0 < n∂Ω = n∗
∂Ω.

Also this case is simple: in fact, condition (C2) is clearly satisfied, as the
matrix {βki} is now expressing the change of basis, therefore is non-singular
for any choice of Gk(·) satisfying (C1). Concerning this condition, it is satisfied
with anyone of the following choices:

(4.9) Gk(v) =

∫

Σk

v · nΣ ; Gk(v) =

∫

Ω

v · πππ∗
k ; Gk(v) =

∫

Ω

v ·ΨΨΨ∗
k .

Here ΨΨΨ∗
k is the (L2(Ω))3-extension of gradψ∗

k, where ψ∗
k is any (continuous and

piecewise regular) real function, multivalued on Σ∗
k, that satisfies [ψ∗

k]Σ∗

k
= 1.

Using the fact that both πππ∗
k and ΨΨΨ∗

k are the extensions of the gradient of a
function having jump equal to 1 on Σ∗

k, it is easily seen that, for a divergence
free and tangential vector field, the three constraints above are the same, and
all of them express the orthogonality to H(m; Ω). Therefore, the solution A

to (3.4) will be the same for any choice of Gk(·); the only difference is, when
approximating the solution by means of finite elements, the algebraic structure
of the stiffness matrix associated to (3.4).

A geometric example of this situation is the case in which Ω is a torus and
ΩC is a ball-like set (n∂Ω = 1, n∗

∂Ω = 1).

Case 3: 0 < n∂Ω < n∗
∂Ω.

This case seems to be more difficult to treat. In fact, condition (C2) is not
easy to be verified. We propose three alternative choices of the linear functionals
Gz(·) for which the associated basis functions ηηηz are exactly the basis functions
πππ∗

z, so that (C2) is clearly satisfied. To be clear, let us introduce the matrix
{γqz} given by γqz :=

∫
Ω
πππ∗

q · πππ∗
z, and denote by {θqz} its inverse matrix. For

z = 1, . . . , n∗
∂Ω, we propose one of the three functionals:

(4.10)
Gz(v) :=

∑n∗

∂Ω

p=1 θzp

∫
Σ∗

p
v · nΣ ; Gz(v) :=

∑n∗

∂Ω

p=1 θzp

∫
Ω

v · πππ∗
p ;

Gz(v) :=
∑n∗

∂Ω

p=1 θzp

∫
Ω

v ·ΨΨΨ∗
p .

As we have already noted, the functionals above are the same for a divergence
free and tangential vector field. Therefore, we check that the associated basis
functions are πππ∗

z only for the second one; indeed, we find

Gz(πππ
∗
q) =

n∗

∂Ω∑

p=1

θzp

∫

Ω

πππ∗
q · πππ∗

p =

n∗

∂Ω∑

p=1

θzpγpq = δqz .

Moreover, if wm ∈ H(m; Ω), we can write wm =
∑

q αqπππ
∗
q , therefore

Gz(wm) =

n∗

∂Ω∑

q=1

αqGz(πππ
∗
q) = αz ,
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hence condition (C1) is satisfied.
A geometric example of this situation is the case in which Ω is a double

torus and ΩC is a torus, co-axial to one of the two handles of Ω (n∂Ω = 1,
n∗

∂Ω = 2).

5. Existence and uniqueness of the solution to the weak
formulation

The proof of existence and uniqueness is different in the three cases devised
at the end of Section 4. Let us recall that here and in the sequel we assume
that the functionals Gz(·) are as in (4.9) or (4.10).

Case 2 (or Case 1 with 0 = n∂Ω = n∗
∂Ω).

In these cases, the existence and uniqueness result derives from the Lax–
Milgram lemma (see, e.g., Bossavit [7], p. 313; Dautray and Lions [12], Volume 2,
Chapter VI, Section 3, Theorem 7 and Remark 8). Since W ×H1

♯ (ΩC) is clearly
a Hilbert space with respect to the natural scalar product, and the sesquilinear
form A[·, ·] is continuous in (W ×H1

♯ (ΩC)) × (W ×H1
♯ (ΩC)), we have only to

check that the right hand side in (3.4) is a continuous (antilinear) functional in
W × H1

♯ (ΩC) and that A[·, ·] is coercive in (W × H1
♯ (ΩC)) × (W × H1

♯ (ΩC)),
namely, that there exists a constant κ0 > 0 such that for each (v, φC) ∈ W ×
H1

♯ (ΩC)

(5.1)
|A[(v, φC ), (v, φC)]| ≥ κ0

( ∫
Ω
(|v|2 + | rotv|2 + | divv|2)

+
∫
ΩC

(|φC |2 + | gradφC |2)
)
.

In the right hand side of (3.4) the only term to check is the third one. We
have

(5.2)

∣∣∣
∫
Γ
Je,I · nI φC

∣∣∣ ≤ C1||Je,I · nI ||H−1/2(Γ)||φC ||H1/2(Γ)

≤ C2||Je,I ||L2(ΩI )||φC ||H1(ΩC) ,

having used the trace theorems fromH(div; ΩI) ontoH−1/2(Γ) and fromH1(ΩC)
onto H1/2(Γ) (see, for instance, Girault and Raviart [16], Chapter I, Theorems
2.5 and 1.5, respectively).

Concerning (5.1), we have:

A[(v, φC ), (v, φC)] =
∫
Ω(µ−1 rotv · rotv + µ−1

∗ | divv|2)
+iω

∫
ΩC

(σvC · vC + σ gradφC · gradφC

+σ gradφC · vC + σvC · gradφC) .

Since
σ gradφC · vC + σvC · gradφC = 2Re (σ gradφC · vC) ,
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we have

(5.3)

|A[(v, φC ), (v, φC)]|2

=
( ∫

Ω(µ−1 rotv · rotv + µ−1
∗ | divv|2)

)2

+ω2
( ∫

ΩC
[σvC · vC + σ gradφC · gradφC

+2Re (σ gradφC · vC)]
)2

.

On the other hand, given a couple of real numbers a and b we have

a2 = (a+ b− b)2 ≤ 2(a+ b)2 + 2b2 ,

therefore

(a+ b)2 ≥ 1

2
a2 − b2 ,

and also
(a+ b)2 ≥ 2ρ(a+ b)2 ≥ ρa2 − 2ρb2

for each 0 < ρ ≤ 1/2.
Hence

(5.4)

ω2
( ∫

ΩC
[σvC · vC + σ gradφC · gradφC + 2Re (σ gradφC · vC)]

)2

≥ ω2ρ
( ∫

ΩC
(σvC · vC + σ gradφC · gradφC)

)2

−8ω2ρ
∣∣∣
∫
ΩC

σ gradφC · vC

∣∣∣
2

≥ ω2ρ
( ∫

ΩC
σvC · vC

)2

+ ω2ρ
( ∫

ΩC
σ gradφC · gradφC

)2

−ω2ρ
2

( ∫
ΩC

σ gradφC · gradφC

)2

− 32ω2ρ
( ∫

ΩC
σvC · vC

)2

≥ ω2ρ
2 σ2

min

( ∫
ΩC

| gradφC |2
)2

− 31ω2ρσ2
max

( ∫
ΩC

|vC |2
)2

,

where σmax and σmin are the maximum and minimum eigenvalue of σ(x) in
ΩC , respectively, and in the second step of the proof we have used the Cauchy–
Schwarz inequality and the estimate |ab| ≤ 1

16a
2 + 4b2.

Using the Poincaré inequality (see, for instance, Dautray and Lions [12],
Volume 2, Chapter IV, Section 7, Proposition 2), one can also conclude that
there exists a constant K1 > 0 such that

(5.5)

∫
ΩC

| gradφC |2 =
∑pΓ

j=1

∫
ΩC,j

| gradφC|ΩC,j
|2

≥ K1

∑pΓ

j=1

∫
ΩC,j

(| gradφC|ΩC,j
|2 + |φC|ΩC,j

|2)
= K1

∫
ΩC

(| gradφC |2 + |φC |2) .

Moreover, and this is the point in which Case 2 (or Case 1 with 0 = n∂Ω =
n∗

∂Ω) differs from the other cases, there exists a constant K2 > 0 such that for
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any function v ∈W one has

(5.6)

( ∫
Ω(µ−1 rotv · rotv + µ−1

∗ | divv|2)
)2

≥
( ∫

Ω
(µ−1

max| rotv|2 + µ−1
∗ | divv|2)

)2

≥ K2
2

( ∫
Ω(| rotv|2 + | divv|2 + |v|2)

)2

,

where µmax is the maximum eigenvalue of µ(x) in Ω (see, for instance, Girault
and Raviart [16], Chapter I, Lemma 3.6; the proof can be easily extended to the
present geometric situation, by proceeding as in Alonso and Valli [1], Lemma
3.3, and noting that, for a divergence free and tangential vector field and for
Gk(·) defined as in (4.9), the conditions Gk(v) = 0 for k = 1, . . . , n∂Ω = n∗

∂Ω are
equivalent to the orthogonality to H(m; Ω)).

Choosing ρ such that 31ω2σ2
maxρ < K2

2 and 0 < ρ ≤ 1/2, from (5.3)–(5.6)
we find at once (5.1).

(Estimate (5.1) has been claimed by Bossavit [8], [9], who considered the
Coulomb gauged and the Lorenz gauged vector potential formulations of the
eddy-current problem, respectively; however, his proof does not seem to be
complete, and it is valid only for small value of ω. Indeed, for completing the
proof it seems necessary to take into account the crucial estimate (5.6).)

Case 3 (or Case 1 with 0 = n∂Ω < n∗
∂Ω).

In this case coerciveness of A[·, ·] in (W × H1
♯ (ΩC)) × (W × H1

♯ (ΩC)) is
questionable, though we find that A[(v, φC ), (v, φC)] = 0 implies v = 0 and
φC = 0, or, in other words, that |A[(v, φC), (v, φC )]| > 0 for (v, φC) 6= (0, 0).

This can be done as follows: assuming that A[(v, φC ), (v, φC)] = 0, from
(5.3) we have that rotv = 0 and divv = 0 in Ω, therefore v ∈ H(m; Ω). Writing
v in term of the basis functions of H(m; Ω), taking into account the definition
of Gk(·) in (4.10) and that Gk(v) = 0 for k = 1, . . . , n∂Ω, we also have

0 = Gk(v) = Gk

( n∗

∂Ω∑

z=1

αzπππ
∗
z

)
=

n∗

∂Ω∑

p=1

θkp

∫

Ω

n∗

∂Ω∑

z=1

αzπππ
∗
z · πππ∗

p

=

n∗

∂Ω∑

z,p=1

αzθkpγpz = αk , k = 1, . . . , n∂Ω .

From (5.3) we also find vC + gradφC = 0 in ΩC , namely,

n∗

∂Ω∑

z=n∂Ω+1

αzπππ
∗
z,C + gradφC = 0 .

Taking the line integral of vC+gradφC = 0 along the singular cycle contained in
ΩC and associated to the cutting surface Σ∗

q , q = n∂Ω +1, . . . , n∗
∂Ω, we find that

the coefficient αq is vanishing, therefore v = 0 in Ω and consequently φC = 0
in ΩC .
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This is the proof of the uniqueness of the solution. Very likely, the proof of
the existence can follow by the Fredholm alternative theory, or by passing to a
saddle point formulation for expressing the constraints Gk(A) = 0; however, we
will not dwell on it in the sequel.

Remark 5.1. It should be noted that, even if the constraints Gk(A) = 0
for k = 1, . . . , n∂Ω are not imposed, from A[(A, VC), (A, VC)] = 0 and (5.3)
we always obtain A ∈ H(m; Ω) and AC + gradVC = 0 in ΩC . Therefore,
B = rotA = 0 in Ω and EC = −iω(AC + gradVC) = 0 in ΩC , and the
uniqueness of the magnetic and electric fields is in any case verified.

In other words, the constraints Gk(A) = 0 seem not having any role in de-
termining the right physical solution. This is true, but, since they are needed for
well-posedness, they can have a role in the efficiency of the numerical algorithm
used for approximation.

Indeed, as reported in Remark 6.1, it will be clear that for the finite el-
ement approximation well-posedness is satisfied even without imposing these
constraints. However, the numerical computations presented in Section 7 are
showing that in fact the efficiency of the numerical algorithm is better when the
constraints are satisfied.

6. Numerical approximation

In this Section we present the finite element numerical approximation of
problem (3.4). In the sequel we assume that Ω, ΩC and ΩI are Lipschitz poly-
hedra, and that TI,h and TC,h are two regular families of triangulations of ΩI

and ΩC , respectively. For the sake of simplicity, we suppose that each element
K of TI,h and TC,h is a tetrahedron; however, the results below also hold for
hexahedral elements (and for second order hexahedral “serendipity” elements).
We also assume that these triangulations match on Γ, so that they furnish a
family of triangulations Th of Ω.

Let Pr, r ≥ 1, be the space of polynomials of degree less than or equal to
r. We will employ the discrete spaces given by nodal finite elements:

(6.1)
W r

h := {vh ∈ (C0(Ω))3 | vh|K ∈ (Pr)
3 ∀ K ∈ Th , vh · n = 0 on ∂Ω,

Gk(vh) = 0 ∀ k = 1, . . . , n∂Ω} ,

and

(6.2)
Xs

C,h :=
{
φC,h ∈ C0(ΩC) | φC,h|K ∈ Ps ∀ K ∈ TC,h,

∫
ΩC,j

φC,h|ΩC,j
= 0 ∀ j = 1, . . . , pΓ

}
.

Clearly, for each r ≥ 1 and s ≥ 1 we have W r
h ⊂ W and Xs

C,h ⊂ H1
♯ (ΩC),

therefore we are considering a conforming finite element approximation.

18



As usual, the discrete problem is given by

(6.3)

find (Ah, VC,h) ∈W r
h ×Xs

C,h :

A[(Ah, VC,h), (vh, φC,h)] =
∫
Ω

Je · vh +
∫
ΩC

Je,C · gradφC,h

+
∫
Γ
Je,I · nI φC,h

∀ (vh, φC,h) ∈W r
h ×Xs

C,h .

Case 2 (or Case 1 with 0 = n∂Ω = n∗
∂Ω).

Since the sesquilinear form A[·, ·] is continuous and coercive, we have that
the discrete solution exists and is unique; moreover, via Céa lemma for each
vh ∈ W r

h and φC,h ∈ Xs
C,h we have

κ0

( ∫
Ω(|A − Ah|2 + | rot(A − Ah)|2 + | div(A− Ah)|2)

+
∫
ΩC

(|VC − VC,h|2 + | grad(VC − VC,h)|2)
)1/2

≤ C0

( ∫
Ω(|A − vh|2 + | rot(A − vh)|2 + | div(A − vh)|2)

+
∫
ΩC

(|VC − φC,h|2 + | grad(VC − φC,h)|2)
)1/2

,

where C0 > 0 is the continuity constant of A[·, ·]. Therefore, provided that the
solutions A and VC are regular enough, by means of well-known interpolation
results we find the error estimate

(6.4)

( ∫
Ω(|A − Ah|2 + | rot(A − Ah)|2 + | div(A − Ah)|2)

+
∫
ΩC

(|VC − VC,h|2 + | grad(VC − VC,h)|2)
)1/2

≤ Chmin(r,s) .

(As it is known, the regularity of A and VC is not assured if Ω and ΩC have
reentrant corners, see Costabel and Dauge [10], Costabel, Dauge and Nicaise
[11].)

Case 3 (or Case 1 with 0 = n∂Ω < n∗
∂Ω).

In this case, we limit ourselves to the proof of the existence and uniqueness
of the solution, without giving an error estimate. Since the problem is finite
dimensional, the proof of uniqueness is enough.

Thus, let us consider a solution (Ah, VC,h) to (6.3) with a vanishing right
hand side. As in the infinite dimensional case, from (5.3) we find that Ah ∈
H(m; Ω) and Ah,C + gradVC,h = 0 in ΩC .

Since the harmonic fields in H(m; Ω) are C∞ vector functions in Ω, we
deduce that the piecewise polynomial Ah is indeed a global polynomial (Pr)

3

in Ω. Consequently, rotAh is a global polynomial (Pr−1)
3 in Ω, and there

it is vanishing. Thus we have rotAh = 0 in R
3, and Ah = gradU in R

3.
In particular, Ah = gradU|Ω in Ω, and the conditions divA = 0 in Ω and
Ah ·n = 0 on ∂Ω tell us that U|Ω is a harmonic function with vanishing normal
derivative on the boundary, therefore is a constant. In conclusion, Ah = 0 in Ω
and therefore VC,h = 0 in ΩC .
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Remark 6.1. It is worth noting that at the discrete level, in all the
geometrical cases 1, 2 and 3, one could consider the problem in the unconstrained
space (V ×H1

♯ (ΩC) × (V ×H1
♯ (ΩC), where

V := {v ∈ H(rot; Ω) ∩H(div; Ω) | v · n = 0 on ∂Ω} ,

still obtaining existence and uniqueness.
In fact, if the right hand side of the discrete equation is vanishing, from (5.3)

one always finds Ah ∈ H(m; Ω) and Ah,C + gradVC,h = 0 in ΩC . Therefore,
proceeding as before, one shows that Ah = gradU|Ω in Ω, and the uniqueness
of the discrete solution again follows.

A natural question therefore arises: from the computational point of view,
the constrained discrete approximation in the space W is more efficient than the
unconstrained one in the space V ? One argument in favour of the constrained
formulation is that, at least in the case n∂Ω = n∗

∂Ω, we are able to prove an
error estimate, therefore convergence is assured.

In the next Section we are going to present some numerical results that are
confirming this assertion.

7. Numerical results

We consider the numerical approximation of problem (3.4) in Case 2, with
n∂Ω = n∗

∂Ω = 1 (Ω is a torus and ΩC is a ball-like set).
We are using second order hexaedral “serendipity” elements, with 20 nodes

(8 at the vertices and 12 at the midpoints of each edge), for all the components
of Ah and for Vh.

The values of the physical coefficients have been assumed as follows: µ =
µ∗ = µ0 = 4 ∗ π ∗ 10−7 H/m, σ = 5.7 ∗ 107 S/m, ω = 2 ∗π ∗ f = 100 ∗ π s−1, i.e.,
f = 50 Hz.

The CG iterations are stopped when the norm of the residual (normalized
by the norm of the right hand side) is under a given tolerance. For the first two
examples below, this tolerance is 10−10, while for the third example is 10−6.

In the first example, the (half of the) computational domain is described
in Figure 1. The conductor ΩC is green, the cutting surface Σ1 is yellow and
the coil (the support of Je,I) is red. We remark that all the results presented
in this paper still hold true even if the basis of the eddy current domain ΩC is
touching the boundary ∂Ω as in Figure 1.

The difference between the constrained and the unconstrained finite element
spaces resides only in one degree of freedom, the one associated to the “cut”
Σ1, cutting the equator of the torus Ω. More precisely, in the constrained case
we are assuming that trial and test functions satisfy

∫
Σ1

vh · nΣ = 0. This
can be done very easily; in fact, let us denote by φφφi the basis function of the
unconstrained finite element space and set ci :=

∫
Σ1

φφφi · nΣ. If ci = 0 for each
index i, there is nothing to do, as the unconstrained and the constrained space
are coincident. Conversely, if for some index, say i = 1, one has c1 6= 0, for

20



i ≥ 2 define φ̂φφi := φφφi − ci

c1
φφφ1. These functions are easily proved to be the basis

functions of the constrained space.
The current density is given by Je,C = 0 and Je,I = Je,Ieφ, where eφ is the

azymuthal unit vector in the cylindrical system centered at the point (100,0,0)
(see Figure 1), and

Je,I =





106 A/m2 if 60 < r < 80 , 60 < z < 80
−106 A/m2 if 60 < r < 80 , 20 < z < 40
0 otherwise .
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Figure 1: The first computational domain.

We have computed the solution for seven meshes, the coarsest one with 290
elements, the finest one with 99470 elements. With respect to the grid size, the
seven meshes correspond to the choices h, h/2, ..., h/7.

For finding a reference solution, we have solved the problem by means of
edge elements on the finest grid: this solution is called Aedge, VC,edge. For this
computation, we have used the so-called quadratic 36-edge elements proposed
by Kameari [18], writing the problem in terms of an ungauged magnetic vector
potential and an electric scalar potential, namely, using the energy functional in
(3.3) but dropping away the term containing the divergence (see also Bı́ró [5]).

In Table 1, for each of the meshes described above, we present the error
between the computed solution Ah, VC,h and the reference solution. More
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precisely, we set

eJ :=

√∫
ΩC

|JC,h − JC,edge|2
√∫

ΩC
|JC,edge|2

, eB :=

√∫
Ω
|Bh − Bedge|2

√∫
Ω
|Bedge|2

,

where JC,edge := −iωσ(AC,edge+gradVC,edge), Bedge := rotAedge, and similarly
for Jh and Bh. We also indicate the number of conjugate gradient iterations
needed to compute the approximate solution. The computations are repeated
twice, at first for the unconstrained approximate solution (namely, we have not
imposed that the flux of the vector potential is vanishing on the cutting surface),
and then for the constrained approximate solution. Clearly, in the latter case
we have one degree of freedom less.

Elements DoF Iterations eJ Rate eB Rate

3,939 108 1.602 10−1 - 7.812 10−2 -
290

3,938 97 1.602 10−1 - 7.812 10−2 -
31,337 206 5.634 10−2 1.50 2.125 10−2 1.88

2,320
31,336 185 5.659 10−2 1.50 2.125 10−2 1.88
105,571 325 2.786 10−2 1.74 1.015 10−2 1.82

7,830
105,570 294 2.783 10−2 1.74 1.015 10−2 1.82
250,017 448 1.605 10−2 1.92 7.228 10−3 1.16

18,560
250,016 419 1.602 10−2 1.92 7.225 10−3 1.16
488,051 597 1.054 10−2 1.88 5.286 10−3 1.40

36,250
488,050 540 1.052 10−2 1.88 5.284 10−3 1.40
843,049 739 7.603 10−3 1.77 4.729 10−3 0.61

62,640
843,048 666 7.588 10−3 1.78 4.727 10−3 0.61

1,338,387 885 5.959 10−3 1.58 4.221 10−3 0.72
99,470

1,338,386 793 5.948 10−3 1.58 4.219 10−3 0.73

Table 1: Relatives errors eJ and eB for the first example.

It can be seen that the CG iterations are always approximately 10% fewer
when computing the constrained solution, while the accuracy is quite similar in
both cases. The rate of convergence is very often more than linear but it is less
than quadratic (recall, however, that we are not comparing the approximate
solutions with the exact solution, but with the edge element solution on the
finest grid). Concerning the rate of convergence, more interesting results are
presented in the other two examples below.

In Figures 2 and 3 we present some details of the computed solution for
the finest mesh, and these pictures show a good agreement with the expected
physical behaviour of the solution.
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Figure 2: Magnitude of the computed flux density B.

The second example is based on the smooth exact solution

A =

{
rot(0, 0, exp(r2/Q)) where Q < 0
0 otherwise

gradVC =

{
gradexp(r2/Q) where Q < 0
0 otherwise ,

where
Q := (x− x0)

2 + (y − y0)
2 + (z − z0)

2 − r2 ,

and (x0, y0, z0) ∈ Ω, r > 0 can be chosen freely. Clearly, if we pose the ball
{Q < 0} in ΩI , as we are going to do, we have VC = 0 and EC = 0. In
particular, in this case the coil is the ball {Q < 0}.

Considering the same domain Ω (and ΩC , ΩI) as before, we choose (x0, y0, z0) =
(60/

√
2 + 100, 60/

√
2, 60) and r = 19. In Table 2 we present the error between

the computed solution Ah, VC,h and the exact solution, setting

êE :=

√∫

ΩC

|EC,h|2 , eB :=

√∫
Ω |Bh − Bexact|2
√∫

Ω |Bexact|2
.

This time we start from a coarse mesh of size h constituted by 150 elements,
and then we take h/3, h/5, h/7 and h/9. The computations are repeated three
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Figure 3: Magnitude of the computed current density JC := −iωσ(AC +
gradVC).

times: for the unconstrained algorithm, for the constrained algorithm, and for
the edge element approximation. The results are reported in Table 2.

This second example shows again that the CG iterations for the constrained
algorithm are less than in the other two cases; moreover, the accuracy of the
constrained algorithm is much better than that of the unconstrained algorithm.
In particular, when using the unconstrained approximation the absolute error
for the electric field is not at all satisfactory even on the finest grid. Therefore,
the advantage of the constrained algorithm is evident from this example.

The edge element approximation is the most accurate for what concerns the
electric field, but is similar to that of the constrained algorithm for the magnetic
field (in this case, however, both of them are still far from being satisfactory;
this is due to the fact that the coil is quite small, and even on the finest mesh
it is not represented in a good way).

The convergence is not always monotone with respect to h (for some other
computations we have verified even larger oscillations in the errors). However,
it looks asymptotically quadratic for the electric field, though only linear for
the magnetic field (whereas the theoretical estimate is quadratic, see (6.4)): in
fact, passing from the coarsest to the finest mesh the global rate of convergence
for the electric field is 1.54 for the unconstrained algorithm and 2.27 for the
constrained one, while for the magnetic field it is 0.63 and 0.67, respectively. In
this respect, we note that a better order of convergence is achieved in the next
example.

The third example is related to the exact solution of the form we described
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Elements DoF Iterations êE Rate eB Rate

2,080 67 6.061 101 - 1.955 100 -
150 2,079 59 7.485 100 - 1.680 100 -

1,640 57 9,556 10−2 - 9,898 10−1 -
55,192 199 1.434 102 -0.78 3.105 100 -0.42

4,050 55,191 181 1.727 100 1.33 9.784 10−1 0.49
43,164 195 1,123 10−2 1.95 7,753 10−1 0.22
254,536 357 1.022 101 5.16 7.898 10−1 2.67

18,750 254,535 319 3.893 10−1 2.91 6.343 10−1 0.84
198,640 346 2,014 10−3 3.36 6,125 10−1 0.46
697,264 553 3.488 100 3.19 5.743 10−1 0.94

51,450 697,263 459 1.840 10−1 2.22 4.870 10−1 0.78
543,620 490 1,121 10−3 1.73 4,787 10−1 0.73

1,480,528 674 2.022 100 2.16 4.815 10−1 0.70
109,350 1,480,527 591 5.053 10−2 5.14 3.856 10−1 0.93

1,153,656 635 1,512 10−3 -1.18 3,916 10−1 0.79

Table 2: Absolute error êE and relative error eB for the second example.

before, but for a different domain, described in Figures 4, 5, 6.
As indicated in these figures, this time we choose (x0, y0, z0) = (0, 0, 0),

r = 0.29. The main difference with respect to the preceding situation is that
now the coil is larger (and the eddy current region is smaller), so that the
numerical approximation does not need very fine meshes for being satisfactory.
We start from a coarse mesh of size h constituted by 66 elements, and then we
take h/2, h/4, h/8 and h/16. As before, the computations are repeated three
times: for the unconstrained algorithm, for the constrained algorithm, and for
the edge element approximation. The results are presented in Table 3.

In this last case, the accuracy of the unconstrained and constrained ap-
proximations is similar, and is good enough (however, the edge element approx-
imation for the electric field is still the best one). The rate of convergence now
looks to be asymptotically quadratic also for the magnetic field approximation.
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Elements DoF Iterations êE Rate eB Rate

927 46 6.524 101 - 7.595 10−1 -
66 926 41 6.424 101 - 7,676 10−1 -

789 25 1,697 100 - 8,298 10−1 -
6,922 74 1,654 101 1.98 1,064 100 -0.49

528 6,921 63 1,071 101 2.58 9,372 10−1 -0.29
5,539 62 1,109 100 0.61 7,707 10−1 0.11
53,322 135 7,186 100 1.20 6.489 10−1 0.71

4,224 53,321 117 6,649 100 0.69 6,207 10−1 0.59
41,373 137 4,380 10−1 1.34 4,910 10−1 0.65
418,162 256 1,415 10−1 5.67 2,222 10−1 1.54

33,792 418,161 227 1,415 10−1 5.55 2,222 10−1 1.48
319,513 283 2,803 10−2 3.97 2,503 10−1 0.97

3,311,202 401 2,244 10−2 2.66 6,885 10−2 1.69
270,336 3,311,201 237 2,225 10−2 2.67 6,884 10−2 1.69

2,510,769 583 1,224 10−3 4.52 8,977 10−2 1.48

Table 3: Absolute error êE and relative error eB for the third example.
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