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Abstract

The time-harmonic eddy current problem with either voltage or current intensity excitation
is considered. We propose and analyze a new finite element approximation of the problem,
based on a weak formulation where the main unknowns are the electric field in the conductor, a
scalar magnetic potential in the insulator and, for the voltage excitation problem, the current
intensity. The finite element approximation uses edge elements for the electric field and nodal
elements for the scalar magnetic potential, and an optimal error estimate is proved. Some
numerical results illustrating the performance of the method are also presented.

1 Introduction

This paper deals with a new formulation and finite element approximation of the time-harmonic
eddy current model in a bounded domain with non-local boundary conditions. This problem arises
when the full field equations are coupled with circuits. On the common interface between the two
models, the boundary data for the domain where the eddy current model is considered are either
input current intensities or voltages. (See, e.g., [11], [15], [18], [19].)

The computational domain will be a simply-connected bounded open set Q C R3, with a
connected and Lipschitz boundary 9Q. It is split into two Lipschitz subdomains, a conducting
region Q¢ and a non-conducting region Qp = Q\Q¢; the latter is assumed to be non-empty and
connected. The conducting region Q¢ is assumed to be simply-connected, and it is not strictly
contained in Q, i.e., 902 N INc # B. (For a more general geometrical situation, see Remark 3.2.)
We shall denote the interface between the two regions by I', and the different parts of the boundary
0N by I'c =00NINc and I'p = INNINp. Moreover, we will suppose that I'c = T'g ULy, where
I'g and T'; are two disjoint and connected surfaces on I'c (‘electric ports’). Therefore, with these
notations, we have 0Q¢c =T'g UT; UT, 0Qp =T'p UT (see Figure 1).

The equations of the eddy-current problem consist of Faraday’s law

curlE = —iwpH in Q, (1)
and Ampere’s law
curlH=0¢E+J in(, (2)

where E and H denote the electric and the magnetic field, respectively, J is a generator current
and w # 0 is a given angular frequency. The magnetic permeability p is assumed to be a sym-
metric tensor, uniformly positive definite in 2. Concerning the electric conductivity o, the same
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Figure 1: The computational domain

assumption holds for g, while 0|, = 0 as Qp is a non-conducting medium. Equations (1)-(2)
do not completely determine the electric field in 2p and it is necessary to demand the condition

diV (EE|QD) = 0, (3)

where € is the electric permeability, assumed to be a symmetric tensor, uniformly positive definite
in QD.

Concerning the boundary conditions, we want to model the electromagnetic fields in the case
of an electric current passing along the ‘cylinder’ ¢, and impose this electric current as a certain
given intensity on I'j, or as a potential difference between I'g and T';. So, following [11] we impose
the following boundary conditions

pH-n=0 on 09, (4)
Ecxng=0 on I'c=Tguly, (5)
EED'I’IDZO on FD, (6)

where Eg and Hg denote E g  and H|qg respectively, S = C, D, and nc and np denote the unit
outward normal vectors to Q2o and 2p, respectively. When considering the boundary of the whole
domain §2 the unit outward normal vector is denoted by n.

Moreover we impose either the current intensity traversing I s

/ curlHe -ne =1, (7)
ry

or a potential difference. In this respect, since pgH -n = 0 on 09, then div,(E x n) = 0 and, since
0%} is simply connected, there exists a surface potential v such that E x n = gradv x n on 9.
Due to (5) the function v must be constant on each connected component I'g and T' ;. Moreover,
since v is defined up to a constant, we can take it equal to zero on I'g. The voltage V' € C will be
the constant value on I'; of the surface electric potential v that is null on I'g:

E xn=gradv xn on dQ with vjp, =V and vp, = 0. (8)

Remark 1.1 The set of boundary conditions (4)—(6) allows us to assign either the current inten-
sity or the voltage. This is not the case for other boundary conditions such as

Exn=0 ondf2 9)

or
Ecxneg=0 on I'e=TguUly,
EED ‘Np =0 on FD, (10)
Hp xnp=0 on Ip.



In fact, the solution of the eddy current problem (1)—(3) with boundary conditions (9) or (10) is
unique (see [5]); if J = 0 it is the null solution. m|

System (1)—(7), and its finite element approximation has been studied in [9]. The problem is
formulated in terms of the magnetic field and the input current intensity is imposed by means
of Lagrange multipliers. In [10] and in [20] the problem is described in terms of a current vector
potential and a magnetic scalar potential, using the so-called T — Ty — ¢ formulation. We want
also to mention the paper [8], where both problems of voltage and current excitation have been
studied in terms of the electric field, but in a computational domain which reduces to the only
conductor Q¢.

This paper deals with a new finite element approximation of system (1)—(6) either with as-
signed current intensity or assigned voltage. A weak formulation of the problem (1)—(6) is given
considering as main unknowns the electric field in the conductor and the magnetic field in the
insulator. The latter is decomposed as the sum of the gradient of a function in H'(Qp) plus a
harmonic field. When the input current intensity is given, this harmonic field is univocally de-
termined, hence the unknowns of the problem reduce to the electric field in the conductor and
a scalar magnetic potential in the insulator. On the other hand, when the voltage is given the
unknowns of the problem are the electric field in the conductor, a scalar magnetic potential in
the insulator and the current intensity. For the finite element approximation, the harmonic field
is replaced by the generalized gradient of a piecewise linear function that has a jump of height 1
across a particular surface in Qp.

The plan of the paper is as follows: Section 2 is devoted to notation and to recall the orthog-
onal decomposition of (L?(Qp))? that is a key point for the formulation of the problem in the
insulator. In Section 3 we obtain the weak formulation of the voltage excitation problem and the
current excitation problem. In Section 4 we prove the existence and uniqueness of solution of
both problems. In Section 5, we introduce the finite element discretization and obtain the error
estimates. Finally, in Section 6 we report some numerical results for two different problems: a
test case with a known analytical solution and an application to a metallurgical furnace.

2 Notation and preliminaries

As usual, we denote by H*(Q)), s > 0, the Sobolev space of (classes of equivalence) of real or
complex functions belonging to L?(Q2) together with all their distributional derivatives of order
less than or equal to s. It is well known that the trace space of H!(Q) over 92 is the Sobolev
space H'/2(99). The space H~/2(9Q) denotes the dual space of H'/2(9Q).

The space H (curl; Q) (respectively H (div;(2)) indicates the set of real or complex functions
v € (L?(Q))? such that curlv € (L*(Q2))? (respectively divv € L?*(Q)). By H’(curl;Q) we
denote the set of functions belonging to H(curl; Q) with vanishing curl in Q. Given a certain
subset A C 092, we denote by Hg a(curl; Q) the space of functions v € H (curl;{2) with vanishing
tangential trace on A, namely, v x n = 0 on A. In particular Ho(curl; ) := H po(curl; Q).
Similarly we denote by H s (div;€) the space of functions v € H (div;{2) such that v - n is null
on A; in particular Ho(div; Q) = Hg aq(div; ).

We recall the trace space for H(curl;):

HY2(div,;09) := {vxn|ve H(curl;Q)}

(see, e.g., [14], [1], [12], [13]). For easy of reading, in the sequel we always express duality pairings
by (surface) integrals. In particular given ve € Ho . (curl;Q¢) and wp € H(curl;Qp)

/vc X No - Wp ::/ (vo - curlw — curlve - W) | (11)
r Qc

where w is any continuous extension of the trace of wp, defined on 9)p, to R3\§D. ‘We notice
that the right hand side of (11) does not depend on the extension w considered, since, given any



other extension, w., we have (W — w.)jaq. € Hor(curl;Qc), and thus using Proposition 3.5 in
[16], we know that

/ (ve -ecurl(w —w,) —curlve - (W —w,)) =0.
Qc

We introduce the following space of Neumann harmonic fields:
Hu(Qp) := {vp € (L*(2p))?| curlvp = 0, div(uvp) =0, uvp -np =0 on IQp} .

Since the conductor ¢ touches the boundary of the computational domain in the two contacts,
the non-conducting region €p is not simply connected; its first Betti number, that coincides with
the dimension of the space H,({2p) (see, e.g., [6]), is equal to one. Moreover, there exists one
‘cutting’ surface ¥ (the interior of a compact and connected Lipschitz manifold ¥, with boundary
0Y) such that ¥ C Qp, 0¥ C 9Qp and the open set Qp\X is simply connected. Let z denote the
solution of the following elliptic problem:

div (pgradz) =0 in Qp\X,
pgradz -np =0 on 00p \ 9%, (12)
[Z]E = 15

[mgradz-nply, =0,

where [z]x denotes the jump of z across X.. Then g := g/;a_d/z is a (basis) function of H,(Qp),

grad z denoting the extension to Qp of grad z computed in Qp\3. Moreover, we can assume that
©p is chosen such that f or, @p -t =1, where t is the tangential vector counterclockwise oriented
with respect to ngc on I';.

Figure 2: The cutting surface

Any given vector function vp € (L?(2p))? can be decomposed into the following sum (see,
e.g., [3]): )
vp = p~ curlqp +gradyp + agp,

and this decomposition is L?(u; Qp)-orthogonal, namely,

[t euntan) - gradvn <0
Qp

u(u_lcurqu) op =0, / peradyp - op =0.
Qp

Qp
Here qp € H(curl;Qp) is the solution of
curl (u~tcurlqp) = curlvp in Qp,

divgp =0 in Qp,
aqp xnp =0 on 0Qp,



(notice that this problem has a unique solution since dQp is connected) and ¥p € H'(Qp)/C is
the solution of

div (pgradvp) =div(uvp) in Qp,

pegradyp -np =pvp-np on dNp.

If curlvp = 0 then qp = 0, hence

vp = grady¥p + app, (13)

and fal“] vp -t =a.

3 Coupled E¢/Hp formulation

Our aim is to introduce and analyze a weak formulation of system (1)—(6) with assigned current
intensity or voltage, where the main unknowns are the electric field in the conductor E¢ and the
magnetic field in the insulator Hp. We assume that J € (L?(Q))? and, for the sake of simplicity,
in the sequel we also assume that Jo,, = 0. This means that Hp = gradyp + Kop with
’lﬁD € Hl(QD) and K € C.

Remark 3.1 Notice that from Stokes Theorem

I:/ curch-nc: Hc~t: HD~t:K.
'y o'y ory

This means that, when the current intensity is assigned, the main unknowns in our formulation
are in fact Ec and the magnetic scalar potential ¥ p. O

Computing the magnetic field from Faraday’s equation (1) and inserting it in Ampere’s law
(2), we obtain
curl (u_lcurl Ec) + iwocEq = —iwle.

For each we € Ho 1 (curl;Q¢), by integration by parts one finds

/ pteurl Eq - curl we + iw/
Q¢

o'Ec-Wc—/uflcurlEcxnc-Wc:—iw/ Jo-we.
Q¢ r ¢

2o

From Faraday’s equation and the matching condition
He xng+Hp xnp=0 onl
one has that
u_lcurlEc Xxng =1wHp xnp onl,
therefore,

/ ;flcurl E¢ - curlwe + iw/
Qc

O'Ec-Wc—iw/Wanc-HDZ—iw/ Jo-we. (14)
Qc T ¢

20

On the other hand, multiplying Faraday’s equation by a test function vp = grad ¢p with
ép € H'(Qp), by integration by parts one has

iw/ pHp - grad¢p = —/ curl Ep - grad ¢, :/ Ep xnp -grad ¢p, .
Qp Qp oQp

Denoting by ¢ any extension of ¢p in H*(£2), we have
fBQD Ep x np -grad ¢p

= [,oExn-: grada—l-lr Ep x np -grad ¢ — Jro Ec xne - grad ¢
=— [ Ec xn¢ - gradép



because div,(E x n) =0 on 90 and E¢c X ng = 0 on I'c. Hence

iw/ pHp - grad ¢, = — / Ec x n¢ - grad ¢, . (15)
Qp r

In a similar way, taking as test function g one obtains

iw/ /LHD-QD:—/ curlED~gD:/ Ep xnp-op-
Qp Qp oQp

Denoting by @ any extension of g in H(curl; ), we have

/ EDan-QD:/ E><n-g+/ED><nD-gD.
oD o0 r

Using that E x n = gradv x n on 02 we have

/Exn-g:/ gradvxn-g:—/ gxn-gradvz/ curlg-nv.
a0 a9 a9 a0

Since curlg =0 in Qp, v =V on I'y and v =0 on I'g we obtain, using Stokes” Theorem on I';,

that
/ curlg-nv:V/ curlg~nc:V/ op t=V.
o0 Ty ary

iw/ /LHD~QD:V—/E0><I‘10~QD. (16)
Qp r

Hence

As we noticed before, Hp € Ho(curl ;Q2p) can be decomposed as Hp = grad¢)p + I where
Yp € HY(Qp) and I € C is the current intensity. Moreover, as we have already remarked, this
decomposition of H’(curl; Qp) is L?(u; Qp)-orthogonal in the sense that

/Q p(gradep + Kop) - (grad ¢ +@9D):/Q pgradop - grad ¢p + KQ ., hep-ep
D D D

for all pp and ¢p € H'(2p) and K and Q € C. Hence, from (14), (15) and (16), multiplying
these two last equations by —iw, we have that Ec and Hp = gradvyp + Igp are such that for
each wo € H r, (curl; Q¢) and for each ¢p € H'(Qp) and Q € C it holds

ch (n~tcurl E¢ - curl We + iwoEc - We)

—iw fF Wc_X ne - gradyp — iw[fr Wc_x nc-op = —ww ch Jo - we (17)
—iw [ Ec x ne -grad¢p +w? [, peradyp - graddp =0
—iwQ [ Ec xnc-ep +w’IQ [, mep-ep = —iwV@.

When the voltage V is given and the current intensity I is unknown, these three equations
determine E¢, ¥p and I. On the other hand, when the current intensity I is given, the first two
equations are enough to determine the two unknowns of the problem Ex and ¢p. The voltage V'
can be computed using the third equation.

In conclusion we have the following formulations:

Voltage excitation problem

Find (Ec,wD,I) S HQJC(CU.I‘I;Qc) X Hl(QD)/(C x C :

ch (p~teurl E¢ - curl We + iwoEc - W)
—iwaWC X ne - gradyp — iwaFWC Xnec-0p = —Z'waC Jo-we

—iw [ Ec x n¢ - grad ¢ + w? Jo, peradyp -grad ¢p =0 (18)

—iwVQ

—iwafr Ec xn¢-ep +W2I@fszD Krep-02p

for all (we, ¢p,Q) € Hor.(curl;Qc) x HY(Qp)/C x C.



Current excitation problem

Find (Ec,’lﬁp) S Ho)rc(curl;Qc) X Hl(QD)/(C :

‘[QC (pteurlEc - curl We + iwoE¢ - We) — iw [, We X ne - grad¢p
= _iwfﬂc Jo-we +iwaFWC Xne - 0p

(19)
—iw [ Ec x n¢ - grad ¢ + w? Jo, peradyp -grad¢p =0
for all (we, ¢p) € Hor.(curl;Qc) x HY(Qp)/C.
If (E¢,vp) is the solution of the current excitation problem then
V:/Ecxnc-gDJriwI/ Kep-ep- (20)
r Qp

Remark 3.2 These two formulations can be adapted in an easy way to the case of a connected
but not simply-connected conductor Q¢ with two electric ports 0Q2c N0 = I'g UT' ;. In this

Ly \ —Te

Figure 3: A non simply-connected conductor

case the space H,,(Q2p) has dimension p := 51 (Q2p) > 1, where 51(Qp) stands for the first Betti
number of (2p, or, equivalently, for the dimension of the first homology group, a topological
invariant measuring the number of non-bounding homologically independent cycles in 2p. Recall
that in Qp it is possible to find p mutually disjoint, orientable two-dimensional surfaces such that
Qp \ (X1 U---UX,) has trivial first homology group. Denote by z; a function in H'(Qp \ )
constructed as in (12). Let us set @p j := g/r;(/izk. Then {@p1,---,0p,} is a basis of H,(2p).
Moreover, 71, ...7p, the non-bounding homologically independent cycles in {2p, can be choosen
such that v, = 81“*07 g+ where I't, , is an orientable two-dimensional surface contained in Qc, and
sz Opi-t =0;, k, 1€ {1,...,p}.

In this more general geometrical situation the L?(u;Qp)-orthogonal decomposition of the
space H(curl;Qp) still holds: any function vp € H’(curl;Qp) can be decomposed univocally
as vp = grad ¢p + &€p with ¢p € H'(Qp)/C and &€ € H,(Qp). In particular Hp = gradp +
> 1 Krop, and, as done in Remark 3.1, from Stokes Theorem

KkZ/HD-tZ/Hc-tZ/ curlHg - n, =: [,
Tk Tk Itk

where n, is the unit vector normal to I';; ;, such that t is counterclockwise oriented with respect
to n, on I't, ;.. Multiplying Faraday’s equation by the function @p; and proceeding as in the case
of a simply-connected conductor, we obtain

Z'W/ HHD'QD,z:V/ QD,l't—/ECXHC'QD,z-
Qp ary r



So E¢ and Hp = grad+p + > ,_; Ir@p; are such that for each we € Ho . (curl;Qc), ¢p €
H'(Q2p) and Q € CP? it holds

ch (n tcurl E¢ - curlwe + iwoEc - W)
—iw [ We X ng - gradvp —iw Yy I [[We Xne - ep ) = —iwaC Jo -Wo
—iw [ Ec x ng - grad ¢ + w? fQD pgradyp - gradgp =0 (21)
—iwQ, [ Ec xnc - ep +w?Q >0 I fszD H@p @D,
= —iw@lVfam op,-t,Vi=1,....p.

Clearly, if 2¢ is a non-connected set, for each connected component one has to reply the
procedure described above. If {2c has g connected components )¢ ;, j = 1,...,¢q, each one with
two electric ports, then there are ¢ different voltages V;. In fact, on 02 we have E xn = gradv xn,
and, setting 0Qc; NONQ = I'y; UT'g ;, with I';; and I'g ; disjoint and connected surfaces, we

have v, . = V' and vp,, . = V2, where V' and V? are complex constants; then the voltages are
1T, J e, i J J )

defined as V; = V' — V).
Multiplying Faraday’s equation by @p, ;, a basis function of the space H,(Q2p), by integration
by parts one has

iw/ /LHD-QDJ:/ EDan-gDyl:/ E><n~gl+/ED><nD~gDﬂl,
Qp a0p a0 r

where g, is any extension of @p, ; in H(curl;2). Moreover
JooExn-g = [jgcurlg,-nv = 39 (V} fr‘” curlg, -n¢ +V} fFE,j curl g, - nc)

_ q 1 0
= i=1 Y farl,j op; t+V; farm @p, 't)
= 2321 Vi farl,’j €@p,i- t,

since, denoting by I'; = Q¢ ; \ (T'y; UT'g ;), from Stokes Theorem we have

/ QD,l't+/ QD,l't:/
BF,],J‘ (?FE’]‘ or

So, the third equation in (21) becomes

QD)l-t:/ curlgp,; -nc=0.

j Lj

—iwQ; [ Ec xne - op; +wQ Y0 I fQD Kop - @p; = —iwQ, 23:1 Vj farw Op, -t

foreachl=1,...,p.

In the voltage excitation problem the ¢ voltages are given, and therefore the unknowns of
the problem are the electric field in the conductor, the function p appearing in the L2(u; Qp)-
orthogonal decomposition of Hp and the p intensities, whereas in the current intensity problem
the p current intensities are given and the unknowns of the problem are the electric field in the
conductor and the function 1p. The ¢ voltages can be then computed in the following way: for
each j =1,...,q,let gp ;) be a basis function of H,,(Q2p) corresponding to a non-bounding cycle

Yi(j) = O ;) such that I't, ) C Qc ;. Then

Vi = (/ €D.1(5) 't> (/ Ec xnc-op;;) + iwsz/ HOp - QD,l(j)) ;
o, r Qb

¥ k=1

and this value depends on j but not on the choice of I(j).
For the sake of simplicity in the following we limit ourselves to the case of a simply-connected
conductor. a



4 Existence and uniqueness of the solution

Let us define in Ho . (curl;Qp) x H(curl;Qp) the sesquilinear form

A((vc, up), (WC,ZD)) = fﬂc (p~teurlve - curl We + iwove - We)
+w2fQD pup -zp —iw[fFWc xng-up + [ ve X ne ‘Zp] .

and the antilinear functionals

F(Wc) = —iw ch Jo -we
Ly(zp) = —iwcoV [, pep-Zp
L](Wc) = iwaFWc Xne-0p,

where V' and I are given complex constants and ¢y = ([, mep - ep)~'. Recall that if zp €

H°(curl;Qp) it can be univocally decomposed as zp = grad ¢p + Qop with ¢p € H'(Qp)/C
and Q € C. Then Ly (zp) = —iwVQ.

It is easy to see, using the L2(u;p)-orthogonal decomposition of H° (curl;Qp) presented in
(13), that problem (18) is equivalent to the following one

Find (Ec,Hp) € Hor,(curl;Qc) x H(curl;Qp) :
A((EC,HD),(WC,ZD)) :F(Wc)—l—Lv(ZD) (22)

for all (we,zp) € Hor.(curl;Qc) x H(curl;Qp),
whereas problem (19) is equivalent to

Find (Ec,wD) S Ho)r‘c (curl;Qc) X Hl(QD)/(C :

A((Ec, gradp), (we, grad ¢p)) = F(wc) + Li(we) (23)

for all (we, ¢p) € Hor. (curl;Qc) x HY(Qp)/C.

The antilinear functionals F'(w¢) and Li(we) are clearly continuous in H(curl;{¢), whereas
Ly(zp) is continuous in H’(curl;Qp) (see (11)). Hence the existence and uniqueness of the
solution of these two problems follows from Lax-Milgram lemma once we prove that the sesquilinear
form A(-,-) is coercive. This has been proved in [4]. For the sake of completeness, here below we
present the proof.

Proposition 4.1 The sesquilinear form A(-,-) is coercive on H(curl;Qc) x H’(curl;Qp)
Proof. We have

Al(we,2), (Wez))lP = ([, n™ eurlwe - curl We +w? [, wzp - 7p)°

‘HUQ(IQC oOW(e - Wgo — 2ReprC X II-ZD)2 .

Taking into account that curlzp = 0 in Qp, from the continuity estimate

1/2
Jwexnan| <ho ([ o) ([ (el + leurtwep))
r Qp Qc

and the inequality (A + B)? > A%/2 — B? we find

1/2
2

(ch UWC~Wc—2RGIWC XH-ZD)Q

> 5(Jg. oWe -WE)Q — k3 (fQD |zD|2) (IQC(|W0|2 + |curlwc|2))

N[

= %(fszc owc - We)? - 571%’“8([5113 lzp[?)?

38 () 6 ()



for each § > 0. Finally, for each 0 < v < 1/2 we also have

2
w? (IQCUWC'WC_2RQIFWC XH-ZD)
2
> 2yw? (fQCawc-Wc—2Rewac xn-ZD) ,

so that

2
Al(we, ), (we,2p))? > (72 = 2902083) ( fo,, leurl wol?)

2 2
+ (w2 — yw?d1k2) (fszD |zD|2) + yw?(0? — 26k2) (ch |WC|2)

for some positive constants v, p. and o.. The proof of the coerciveness of A(-, -) follows by taking
at first ¢ small enough and then 7 small enough. ]

Once we have obtained E¢ and Hp, the magnetic field He can be obtained directly from

Faraday’s law by setting

1

H¢ = (—iwp) ‘curl E¢,

while Ep is the solution of the following problem:

curlEp = —iwpuHp in Qp,

div (EED) =0 in QD s (24)
Epxnp=Ecxnp onl,

EED-I’ID:O OIIPD.

Proposition 4.2 System (24) has a solution, and it is unique.
Proof. Concerning the uniqueness, we notice that the space
H := {vp € (L*(2p))?|curl vp = 0, div(evp) =0,evp -np=0onT'p, vp x np = 0 on T'}

is trivial in the considered geometrical situation. In fact, given vp € H, one has curlvp = 0
in Qp\X, that is a simply connected subset. Hence there exists ¢, € H'(Qp\X) such that
grad ¢, = vp and

div (egrade,) =0 in Qp\X,

egrad, -np =0 onT'p\Jx,

e = K* onI'\ 9%, (25)
[w*]E = C* ’

l[egradv, -nply, =0,

k* and c* being constants. Since I' N Y # () the constant ¢* must be zero; therefore the unique
solution of (25) is ¥ = k* and consequently v = 0. The existence of the solution to (25) can be
proved as in [1]. O

5 Finite element approximation

The variational formulations (18) and (19) are not suitable for finite element numerical approxi-
mation. In fact, a conforming finite element approximation based directly on them requires that
op is explicitly known. An alternative approach, that overcomes this difficulty, is based on a
different decomposition of Hp.

Let ¢p be the generalized gradient of a function n € H'(Qp\X) such that [n]s = 1. Then
curl{, =0 and fBFJ ¢p-t=1, but in general ¢, & H(div;Qp). Since Qp is simply connected,
op = Cp +gradgér for some g¢» € H'(Qp). Hence Hp = gradp + Iop = gradvp + I({p +

10



grad g¢p) = grad 121\1) +I1¢p, with 12)\13 € H'(Qp) that depends on the choice of ¢ ,. This alternative
decomposition is not L?(u; Qp)-orthogonal and this has as a consequence that the corresponding
weak formulation has some additional terms. In fact the voltage excitation problem now reads

Find (E¢,v¥p,I) € Hor.(curl; Qc) x HX(Qp)/C x C :

ch (n~tcurl E¢ - curlwe + iwoEc - W)
—iwaWC X ne - grad@D — iwaFWC xne-Cp= —iwac Jo - we
. - 2 i - 2 - (26)
—iw [ Ec x n¢ - grad¢p + w fQD peradp - gradgp, +w IfQD wlp-egradé, =0

—iwQ [ Eo x e - Cp +w?Q fo, peraddp - (p +w1Q fo mlp - Cp = —iwVQ

for all (we, ¢p, Q) € Ho . (curl;Qc) x HY(Qp)/C x C,
while the current excitation problem reads

Find (Ec,4p) € Hor.(curl;Qc) x H (Qp)/C :

ch (p~tcurlE¢ - curlWe + iwoEc - We) — iw [ We X ng - grad Vb
Z—iwaCJc-Wc-i-iwaFWCXHC'CD (27)

—iw [ Ec x n¢ - grad ¢, + w? fa, perad¢p - grad g, = —w?I [ pCp -grad ¢,

for all (we,¢p) € Hor.(curl;Qc) x HY(Qp)/C.

Here below we present two different possible choices of {5 in the framework of finite element
approximation.

Let us now propose our finite element approximation schemes. We assume that Q¢ and Qp are
Lipschitz polyhedral domains, and that {7, };, and {Z,P};, are two families of tetrahedral meshes
of Q¢ and Qp, respectively. We employ the Nédélec curl-conforming edge elements of degree k,
N’é) n, to approximate the functions in H(curl;Q¢) and continuous nodal elements of degree k,
L’B)h, to approximate the functions in H(Qp). Let us also set Wgh = N’é)h NHyr,(curl; Qo).

We consider two different approaches. The first one is a conforming method where the function
¢p is chosen independently of the mesh, while in the second approach we consider a function ¢
which is mesh dependent.

Let us start from the first approach. Let us assume that the family {Z,”}) is obtained by
refining a coarse mesh 7,2. Then we can choose a set of faces of tetrahedrons in 7,2 such that
the union is a ‘cutting’ surface ¥ C Qp. Let us denote by n}, the piecewise linear function taking
value 1 at the nodes on one side of ¥, say Zi&nd 0 at all the other nodes including those on ¥,
the other side of ¥. Then we choose {p = gradn}, =: Ap (see [3]), that is independent of h.

The finite element approximation of the voltage excitation problem reads

Find (Ec,n, ¥p., In) € W, x L%, /C x C

C((Ec,hﬂZD,h, I),(We,h, épn, Q) = —iw fQC Jo -Weon —iwV@ (28)
for all (we,n, dp,n, Q) € W(kj,h X L’B)h/(c x C,

where C(-,-) is the sesquilinear form, defined in Hq r (curl;Q¢c) x H(Qp)/C x C, associated to

11



problem (26), namely,

C((VCa YD, K)a (W07 (bDa Q) =
ch (n~teurlve - curl We + iwove - W)

+w? [, peradyp - grad ¢ +W2K@fQD BAD - AD
—iw[ [ We x ne - gradep + [ ve x ne - grad ép |
—iw[KfFWC Xng - AD —l—@fr Vo X nge - )\D]
WK [o peradép -Ap +Q [ peradep - Ap).

Analogously, the finite element approximation of the current excitation problem reads

Find (Ec,,¥ps) € WE, x Lk, /C

A((Bcp, grad ¥p 1), (We,n, grad ¢p.n)) B (29)
= —iwac Jo-Wo +iwl [ Wo xne - Ap — w2IfQD pAp - grad ¢ p,

for all (wen, ¢p.n) € We,, x L, ,/C.

From the coerciveness of A(-, -) it is easy to obtain the following result:
Proposition 5.1 The sesquilinear form C(-,-) is coercive in Hor. (curl;Qc) x H'(Qp)/C x C.

Proof. We notice that

C((we,9p,Q), (W, ¢p,Q)) A((we, grad¢p + QAp), (we, grad ¢p + QAp))

> a(”WCHil(curl iQc) + ngad¢D + QADH?LQ(QD))S)7

since A(-,-) is coercive on H(curl;Q¢) x H(curl;Qp). Moreover we know that o, = Ap +
grad g*?, and we also have fﬂp peradep - 0p = 0 for each ¢p € HY(Qp). Since from the
assumptions on p there exists two positive constants p, and p* such that ,LL*HVDH?L2(QD))3 <
Jo, #VD -V < VD L2y for all vp € (L2(Qp))?, it follows that

lgrad ¢p + QAp |12, = llerad (¢p — Qo*P) + QepllF iz,

> 2 Jo, # [grad (6p — Q9*7) + Qep] - [grad (6p — Q9*”) + Qep]
== (fQ perad (¢p — QgrP) - grad (6p — Q9*?) + 1QI* [, mep - QD)
2 H_(ngad(éf’D - Qg™ )||%L2(QD))3 + |Q|2H9D”%L2(QD))3) .

*

* %

Using that Hf-f—gH%Lz(QD))g >(1- )||f||2L2(QD e+ (1= )||gH(L2 (ap)) for each 6 > 0, we obtain

llgrad ¢p + Q)\DH(Lz(QD )?
2 (1= 0)lgrad o lipaa )y + (1= 3)QPllgrad ™7 [fpa e + 1= 1QPllen e (20))?
= (1~ §)lgrad 6 e e + £ [(1— 3)larad g2 By s + l@p Py ] IQF-

t"’;

Choosing § such that

lgrad g*? (1220, s
||gradg>‘D ||%L2(QD))3 + ||QD||%L2(QD))3

<d<1,

we have for some positive constant C'
lgrad p + QA1 2(ap ) = Clllgrad ¢plltra i,y +1Q),

so the coerciveness of C(-,-) follows. i
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The optimality of the discrete solution of both problems is a consequence of Cea’s Lemma: for
the voltage excitation problem we have

|lEc — Ec,nllH(cur1:00) + llgrad ¥p — grad ¥p |l (2(p ) + I — I
< Oinf(wc,h,7¢D,}L)€wé',hXLkD,h (HEC - chh”H(Cu“;QC) + |lgrad¢p — grad ¢D,hH(L2(QD))3) ’

and for the current excitation problem we find

|Ec — Ec,nllH(curl:00) + llgrad¥p — grad ¥p nll (12 (0p))?
< Cinf(wcyh,ﬁ]),h)Gwé-,hXLkD,h (HEC - WC,h”H(curl;Qc) + nga'de - grad¢D7hH(L2(QD))3) '

Therefore, by standard density results, we obtain the convergence of the approximation for both
problems. As usual, the precise order of convergence is related to the regularity of the solution

(Ec,¢p).

In the second approach the function ¢, depends on h because it is the generalized gradient of
a piecewise linear function np ; with a jump one on a discrete ‘cutting’ surface Xj, that depends on
the mesh {7,”};,. This choice will be denoted by ¢, = )\],5. Notice that now we are not assuming
that {Z,;”}) is obtained by refining 7;2. This approach is similar to the one analyzed in [9] for
the current excitation problem.

The sesquilinear form associated to Problem (26) now depends on h

Ch((V07 YD, K)a (WCa ¢Da Q)) =
ch (n~teurlve - curl We + iwove - W)
+w? fQD pgradpp - grad ¢ + w?KQ fQD_u)\}E, AL

—iw[fr We xne - gradep + Jrve xng - grad ¢ |

—iw[KfFWC X nc - )\}b + Q&Vc X ne - )\}b]

+w?[K [, peradép - A+ Q Jo, meradep - PYAR
However Cp,((ve, ¢p, K), (We, 6p, Q) = A((ve, grad op + KAL), (we, grad op + QAL)). Hence
the finite element approximation of the voltage excitation problem with this second approach reads

Find (EC,]'U/(Z)\D,]'UI]'L) S Wé‘,h X L’B)h/(C xC :

A((Ecp, graddp g, + InAD), (Wen, grad ¢p p + QAB)) = —iw JooJo - Fon —iwV@Q  (30)

for all (Wc,h7¢D,h; Q) S Wé,h X LIB,h/C x C.

Let us consider now the error estimate. Let us set Hp j := grad 12)\1)1}1 + Ih)\% € Ho(curl ;Qp).
From (26) and (30), we have the following equation for the error:

A((Ec — Ecn, Hp — Hp ), (Won, grad ép s + QAD)) =0
for all we p, € W’é)h, op,h € L’B)h and @ € C. Hence
IEc — EcnllHcurtioc) + Hp — Hpall(20p))

= |Ec — Ecnll m(eur o) + Hp — grad¥p n — IAb | (2(0p))2
< Clnf(Wc,h,ZD,h)GWé,hXZ’B’h (”EC - WcﬁhHH(curl iQc) + HHD - ZD7h||(L2(QD))3) 3

where
ZIB,h = gradL%_’h @ span {AD}.
An error estimate for the intensity is obtained by noticing that, from (13),

/ u(HD—HD,m-gD:(I—Ih)/ wep - op.
Qp

Qp
Hence
|l —In| < Cl[Hp — Hpall(z2(0p))? »

* -1
where C = Z_*”QDH(LQ(QD))S'

13



Remark 5.1 It is worth noting that a suitable choice of the discrete function zpj is easily
performed. In fact, let us denote by NkD7 ,, the space of Nédélec curl-conforming edge elements of
degree k in ’ThD, and IIp j the interpolation operator. If Hp is so regular that IIp ,Hp is well
defined, then Tp ,Hp € Z%, ,. In fact, curl (Tp yHp—IA}) = 0 and [, (TIp,Hp—IAp)-t =

0. Consequently IIp ,Hp — IAY = gradpp for some ¢p € H'(Qp). Since Ip ,Hp — IN}, €
N’B)h, from Lemma 5.3, Chapter III in [17], ¢p g is a polynomial of degree k for each K € Tp p,
therefore ¢p € LkD,h'

As a consequence, from standard interpolation estimates, for a regular solution (Ec,Hp) it is
straightforward to specify the order of convergence of the approximation method.

If one has no information about the regularity of the solution, by a density argument it is
possible to prove the convergence of the finite element scheme provided that the permeability
coefficient p is regular enough in Qp (say, a constant as in the usual physical case) or if the family
of meshes {Z,”},, is obtained by refining a coarse mesh 7,%.

In fact, when p is constant we know that the harmonic field gp is regular enough to define the
interpolation IIp pop (see [6], [2]). Since Hp = grad¢p + Igp, a density argument applied to
1p permits to conclude the proof. In the other case, first we note that, as seen in Proposition 5.1,
we can write g, = grad g*P + Ap. Then, knowing that {T,P}), is a refinement of 7,2, it follows
Ap € NkD,h' Therefore, as proved above, since curl Ap = 0in Qp we have Ap =IlIp ,Ap € Z’B)h,
and a density argument for ¢p + g*P gives the result. O

For the current excitation problem the finite element approach reads

Find (Ec,n, ¥ps) € Wh, x Lk, /C

A((Ec,n, gradip n), (Woon, grad ép 1)) B (31)
= —iw [o, Jo - Won +iwl [pWon x ne - Ap —w?I o pX} - gradgp ),

for all (wep, ép,n) € W, x Lk, , /C.

Recall that Hp = grad ¢p + IA" for some ¥p € H'(Qp) (that in fact depends on h). Setting
Hp , = gradp p + IA% from (27) and (31) we have the following equation for the error

A((Ec —Ecn, Hp —Hp n), (Wo,n, grad ép p))
= A((EC — EC,h; gradd)D — gradeyh), (WC,h; grad¢D7h)) =0

for each (We p, ¢p.p) € Wgh X L’B)h/(c. Therefore, the coerciveness of A(-,-) gives

[Ec = EcnllH(curtso0) + Hp — Hp w20y
= |Ec — Ec.nllH(curti00) + llgradyp — grad ¥p nll(L20p))s
< C(|Ec — wenll Hieur 00) + llgradvp — grad ép a2 (ap))?)

for each (We p, dp.p) € Wéh X L’B_’h. Therefore

HEC - EC,hHH(curl;Qc) + ”HD - HD7h||(L2(QD))3

< Cinf(Wc,h,ZD,h)EWé,h,XZ}B,;L(I) HEC - WC,hHH(curl Qo) + HHD - ZDJL”(LZ(QD))S) )

where
Zk, (1) := grad L}, , + IX], .

The convergence of the approximation scheme can be proved following the arguments presented
in Remark 5.1 (the only difference is that now we work with the space Zlft),h(I) instead of Z’B)h,
and this fact gives no problem to the procedure).

Once we have obtained E¢ ;, and JD,h we can compute

Vh ::/Ecﬁhxnc-)\%+iw/ [LHDyh-A}[L).
r Qp
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This quantity is an approximation of the voltage, that, from (16), can be written as

V:/Ecxnc~gD+iw/ pHp - op .
r Qp

In fact, let us introduce the auxiliary quantity

‘7h ::/Ecyhxnc-g[,—l—iw/ NHD,h'QD-
r Qp
We easily have

[V = Vil < CL|Ec — Ecnllmeurt 00y + 1Hp — Hp all(12(p))s) -

On the other hand, taking we , = 0 in (31), it is easy to see that

Vi, = / Ec,n X ne (grad ¢p p, + )\}B) + iw/ pHp ), - (grad ¢p p + )\},5)
r ¢

2p

for all ¢p 5 € L’B)h. Thus

Vi = Vil < Cs (1Bl mreurt:ac) + Hp sl z2@o))) len — (grad ép.n + b2 @n))s »

for all ¢p 5 € L%_’h. Therefore

[V —Vil < Ci(IEc — Ecnllm(eurt;o0) + Hp — Hp all(22(05))3)
+C: (|Eonll meurt;oc) + Hp ol (z2@p))s inf Jlep = zp.nllz2@n)?
ZD hEZD,h,(l)
< (Cl + C2ZD,h,€iI211£3,h( ) lep — ZD,hH(L2(QD))3)
X (|Ec — EcnllH(curt;00) + Hbp — Hp il (z2(00))2)
+C (|Ec || E#(curt:00) + Hb |l (22(00))2) inf : lep — zp.ull(z2(p))s -

ZD,}LEZkD)h(l

If the permeability coefficient p is a constant in Qp or if the family of meshes {7,”}}, is a refinement
of a coarse mesh Th? , the convergence can be proved as in Remark 5.1,

6 Numerical results

The finite element method presented above has been implemented in MATLAB, using Nédélec edge
elements of first order for the electric field in the conductor, and scalar Lagrangian P; elements
for the magnetic potential in the insulator.

The method has been tested by solving a problem with a known analytical solution. Since
this problem has been already presented in [7], we just give a brief description of it, and refer the
reader to the quoted paper for details.

The conducting domain ¢ and the whole domain €2 are two coaxial cylinders of radii R¢ and
Rp, respectively, with height L. An alternating current of intensity I(¢) = I cos(wt) is traversing
the conductor in the axial direction. Supposing that the physical parameters o and p are constant
scalars, the solution of the problem in cylindrical coordinates is given by

v Lo(yr) .
Ec(r,0,2) — . in Qc,
C(T, ,Z) mRoo Il(’YRc) e m $¢
I TIi(yr) )
H 0 = —_— Q
c(r,0,z) S Re TR & e
I
Hp(r,0,z) = 5 €0 in Qp,
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where Zy and Z; denote the modified Bessel functions of the first kind and order 0 and 1, re-
spectively, and v = \/iwpo. Moreover, for this particular geometry it holds o, = 5= eg, so
HD = IQD.
Once the fields and the function g are known, the value of V' is computed from the expression
(20) to obtain
yLI Zo(vRc) LI Rp

= 2roRc Ti(hRe) | Paor M Re

For our particular case we have used the following geometry and data

Re = 025 m,

Rp = 0.5m,

L = 025m,

o = 151565.8 (Qm)*,
p = 471077 Hm*,
w = 50 x 27 rad/s,

and either assigned current intensity or voltage,
I=10*A, or V =0.08979+ 0.146801,

where the value of V has been computed for an intensity of 10 A.

To test the order of convergence, the problem has been solved in four successively refined
meshes, for either assigned intensity or voltage. We notice that the only approach implemented
in our program is that in which the function A% depends on the mesh, namely, problems (30)
and (31). We present in Tables 1 and 2 the relative errors of our numerical solutions against the
analytical solution, that have been set as follows:

P ”EC - EC7h||H(cur1;Qc) oo — |V - Vh|
E= V=
HECHH(curl;Qc) |V|
[Hp — Hp nll(z2(p))? |1 — I
€H = ) er = .
IlHpll(L2(0p))s 11|

Finally, Figures 4 and 5 show the plots in a log-log scale of the relative errors versus the degrees of
freedom. A linear dependence on the mesh size is obtained for the errors of electric and magnetic
fields, either for assigned intensity or voltage. This dependence turns out to be more than linear
for the errors of voltage and intensity.

Elements DoF e ey ey
2304 1684 | 0.2341 | 0.1693 | 0.0312
18432 11240 | 0.1132 | 0.0847 | 0.0089
62208 35580 | 0.0750 | 0.0567 | 0.0048
147456 81616 | 0.0561 | 0.0425 | 0.0018

Table 1: Relative errors for assigned intensity.

Elements DoF e ey er
2304 1685 | 0.2336 | 0.1685 | 0.0274
18432 11241 | 0.1132 | 0.0847 | 0.0085
62208 35581 | 0.0750 | 0.0566 | 0.0041

147456 81617 | 0.0561 | 0.0425 | 0.0024

Table 2: Relative errors for assigned voltage.
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Figure 4: Relative error versus number of d.o.f. (assigned intensity).
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Figure 5: Relative error versus number of d.o.f. (assigned voltage).

The method has been also applied to a more realistic problem which was presented in [9]. In
this case the domain is a cylindrical electric furnace with three ELSA electrodes equally distanced.
The dimensions of the furnace are the following: furnace height: 2 m.; furnace diameter: 8.88 m.;
electrodes height: 1.25 m.; electrodes diameter: 1 m.; distance from the center of the electrodes
to the wall: 3 m.

The three ELSA electrodes inside the furnace are formed by a graphite core of 0.4 m. of di-
ameter, and an outer part of Soderberg paste. The electric current enters the electrodes through
horizontal copper bars of rectangular section (0.07 m. x 0.25 m.), connecting the top of the elec-
trode with the external boundary.

For the simulation we have considered the angular frequency w = 50 x 27 rad/s, and the
electric conductivities ¢ = 105(Qm)~! for graphite, o = 10*(Qm)~! for Séderberg paste, and
o =15x105(Qm)~! for copper. We have imposed an intensity of I; = 7 x 104 for each electrode,
using the approach that has been explained at the end of Section 3 for the case of a non-connected
conductor. With the same notation used there, the boundaries I'g ; correspond to the contacts of
the copper bars on the boundary of the furnace, and I' 5 ; to the bottom of the electrodes.

In Figure 6 we present the modulus of the magnetic potential, i.e., |7ZD,h + Z?:l Iinp jnls
where np ; » are the piecewise linear functions with a jump of height 1 on the ‘cutting’ surfaces
Yjn. In Figures 7 and 8 the modulus of the current density J;, = o0Ec ;, on a horizontal and a
vertical section of one electrode is shown.
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Figure 6: Magnetic potential in the dielectric.
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