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Abstract

Aim of this note is to give a simple and direct proof of the existence and uniqueness of
the solution to the problem of electrostatics when the source (namely, the applied current
density) is a dipole. The result is obtained by using the classical duality method.

Keywords: electrostatics problem, dipole source, weak solution, duality method
2010 MSC: 35J25, 35R06, 35Q60, 78A30

1. Introduction

The Maxwell equations read

curl H− ε∂E
∂t

= σE + Je

curl E + µ∂H
∂t

= 0

div(µH) = 0 ,

where E and H are the electric and magnetic fields, respectively, Je is the applied current
density, ε is the electric permittivity, µ is the magnetic permeability and σ is the electric
conductivity.

By disregarding the terms with the time derivative one obtains the static model

curl H = σE + Je
curl E = 0
div(µH) = 0 .

Note that a consequence of the first equation is that div(σE + Je) = 0.
If the domain D where the problem is considered is simply-connected, one can introduce

a scalar electric potential u such that E = − gradu in D; it satisfies the electrostatics
problem

div(σ gradu) = div Je in D .

For many physical problems the conductivity σ vanishes outside a region Ω (a con-
ductor), completely contained in D (one can think that D \ Ω is a domain filled by air).
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Moreover, it happens that also the applied current density vanishes outside Ω. Let us recall
that, due to the properties of the div operator, the equation div(σ gradu − Je) = 0 in D
can be always rewritten as div[(σ gradu− Je)|Ω] = 0 in Ω, div[(σ gradu− Je)|D\Ω] = 0 in

D \Ω and (σ gradu−Je)|Ω ·n = (σ gradu−Je)|D\Ω ·n on the interface ∂Ω. Therefore, the
assumption that σ and Je are supported in Ω has the consequence that the electrostatics
problem reads {

div(σ gradu) = div Je in Ω
(σ gradu) · n = 0 on ∂Ω .

(1)

Electroencephalography (EEG) is a non-invasive technique for detecting the brain ac-
tivity from the measure of the electric field (or of its potential) on the head surface; in
mathematical terms, an inverse problem in which one wants to determine the source, that
has generated the electric field, by measuring the boundary value of the electric potential.

An interesting case is when the source is a dipole, namely, Je = p0δx0 , where p0 6= 0,
x0 ∈ Ω and δx0 denotes the Dirac delta distribution centered at x0; for instance, this is
a mathematical model for an epileptic focus in human brain (see, e.g., Sarvas [1], He and
Romanov [2], Ammari et al. [3], Albanese and Monk [4], Wolters et al. [5], Lew et al. [6]).

Let us also recall that in the brain the conductivity σ is non-constant, and even non-
isotropic (see, e.g., Marin et al. [7]). Therefore, a reasonable model has to assume that σ
is a symmetric and positive definite matrix, with non-constant entries σlm, l,m = 1, 2, 3.

In this case even the forward problem, that is the solution of (1) with the assigned
Je = p0δx0 , is a non-standard mathematical problem. Usually it is solved by means of the
so-called subtraction method (see Awada et al. [8], Wolters et al. [5], Lew et al. [6]); it
consists in writing the electric potential u as u = K + w, where K is the solution to

div(σ0 gradK) = div(p0δx0) ,

σ0 being the constant matrix σ(x0), and then looking for the solution w to{
div(σ gradw) = − div[(σ − σ0) gradK] in Ω
(σ gradw) · n = −(σ gradK) · n on ∂Ω .

(2)

It can be proved (see Wolters et al. [5], Lew et al. [6]) that K is a smooth function for
x 6= x0, and has a singularity like |x − x0|−2 for x ≈ x0. Therefore the Neumann datum
−σ gradK · n is smooth; on the contrary, the right hand side − div[(σ − σ0) gradK] has
a singularity like |x− x0|−3 (provided that σ is Lipschitz continuous), hence it is not even
locally summable. To overcome this difficulty, a suitable assumption on σ has to be made
(see (3)).

Before going on let us make clear some notations. We denote by C∞0 (Ω) the space
of infinitely differentiable functions with support strictly contained in Ω; by Ck(Ω) (re-
spectively, Ck(Ω)), k = 0, 1, 2, . . ., the space of functions with k-order derivatives that
are continuous in Ω (respectively, in Ω)); by Hk(Ω), k = 0, 1, 2, . . ., the Sobolev space of
(measurable) functions with k-order distributional derivatives that are square-summable
in Ω (we also write L2(Ω) instead of H0(Ω)); by W k,p(Ω), k = 0, 1, 2, . . ., 1 ≤ p ≤ ∞,
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p 6= 2, the space of (measurable) functions with k-order distributional derivatives that are
either p-summable (when p <∞) or essentially bounded (when p =∞) in Ω (we also write
Lp(Ω) instead of W 0,p(Ω)); finally, by H1

0 (Ω) we indicate the space of functions belonging
to H1(Ω) and having the trace vanishing on ∂Ω.

The assumptions in Wolters et al. [5], Lew et al. [6] are that σ is a symmetric and pos-
itive definite matrix, with entries σlm belonging to L∞(Ω) for l,m = 1, 2, 3, and moreover
that the homogeneity condition is satisfied. This condition reads:

there exists r0 > 0 such that σ(x) is a constant matrix for each x ∈ Br0(x0), (3)

where Br0(x0) := {x ∈ Ω | |x− x0| < r0}. In such a way the singularity of the right hand
side − div[(σ − σ0) gradK] disappears, and therefore these assumptions permit to write
problem (2) in a variational form, where the right hand side turns out to be a linear and
continuous functional in the Sobolev space H1(Ω). Lax–Milgram lemma then gives that
the solution w exists and is unique in H1(Ω).

With our approach, that is based on the so-called duality method (see, e.g., Vǐsik
and Sobolev [9], Lions [10], Stampacchia [11]), we are able in particular to weaken the
assumption on the conductivity, only requiring that σ is a symmetric and positive definite
matrix, with entries σlm belonging to L∞(Ω) for l,m = 1, 2, 3, and moreover that

there exists r0 > 0 such that σlm ∈ W 2,∞(Br0(x0)) for l,m = 1, 2, 3 . (4)

An even weaker assumption is presented in (10).

2. The weak problem

The formal expression of the problem reads{
div(σ gradu) = div(p0δx0) in Ω

(σ gradu) · n = 0 on ∂Ω .
(5)

Clearly, the solution u is defined up to an additive constant.
We want to give a weak formulation of problem (5). Introduce the linear space

X := {ϕ ∈ H1(Ω) |ϕ ∈ C1(Br∗(x0)), div(σ gradϕ) ∈ H1
0 (Ω), (σ gradϕ) · n = 0 on ∂Ω} ,

where n denotes the unit outward normal vector on ∂Ω and 0 < r∗ < r0 is a fixed number.
We proceed formally: multiplying the first equation in (5) by ϕ ∈ X, integrating in Ω and
integrating by parts we readily find∫

Ω
div(σ gradu)ϕ = −

∫
Ω

(σ gradu) · gradϕ+
∫
∂Ω

(σ gradu) · nϕ
=
∫

Ω
u div(σ gradϕ)−

∫
∂Ω
u (σ gradφ) · n +

∫
∂Ω

(σ gradu) · nϕ
=
∫

Ω
u div(σ gradϕ)∫

Ω
div(p0δx0)ϕ = −

∫
Ω
p0 · gradϕ δx0 = −p0 · gradϕ(x0) ,
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having taken into account the boundary conditions satisfied by u and ϕ. Since we know that
div(σ gradϕ) ∈ H1

0 (Ω), the term
∫

Ω
u div(σ gradϕ) has a meaning also for u ∈ H−1(Ω), the

dual space of H1
0 (Ω), and has to be expressed as a duality pairing, say, 〈u, div(σ gradϕ)〉.

Let us denote by η̂ a smooth function, vanishing on ∂Ω and strictly positive in Ω, and
such that

∫
Ω
η̂ = 1 (in particular, η̂ ∈ H1

0 (Ω)). A condition which filters out additive
constants, and therefore is suitable for assuring uniqueness of the solution u, is for instance
〈u, η̂〉 = 0.

We are now in a position to describe the weak formulation of (5) that we consider:

find u ∈ H−1(Ω) :

{
〈u, div(σ gradϕ)〉 = −p0 · gradϕ(x0) ∀ ϕ ∈ X
〈u, η̂〉 = 0 .

(6)

3. Existence and uniqueness

This section is devoted to the proof of the existence and uniqueness of the solution u of
problem (6). From now on Ω ⊂ R3 will be an open connected bounded set with Lipschitz
continuous boundary ∂Ω.

Theorem 3.1. There exists a solution u to (6). Moreover, u ∈ Lq(Ω) for each q with
1 ≤ q < 3

2
.

Proof. We use an approximation argument. Let us denote by δk a sequence of functions such
that δk ∈ C∞0 (Br∗(x0)), δk ≥ 0,

∫
Ω
δk = 1 and

∫
Ω
δk ξ → ξ(x0) for each ξ ∈ C0(Br∗(x0)).

We consider the solution uk ∈ H1(Ω) of the Neumann problem
div(σ graduk) = div(p0δk) in Ω
(σ graduk) · n = 0 on ∂Ω∫

Ω
uk η̂ = 0 .

The existence and uniqueness of uk is assured as
∫

Ω
div(p0δk) =

∫
∂Ω

p0 · n δk = 0, hence
the compatibility condition is satisfied. In particular, by integrating by parts we see that
uk satisfies ∫

Ω

uk div(σ gradϕ) = −
∫

Ω

p0 · gradϕ δk ∀ ϕ ∈ X .

Take now ψ ∈ H1
0 (Ω): we want to find an uniform estimate of 〈uk, ψ〉. Consider the

solution ϕ̂ of the Neumann problem div(σ grad ϕ̂) = ψ −
( ∫

Ω
ψ
)
η̂ in Ω

(σ grad ϕ̂) · n = 0 on ∂Ω∫
Ω
ϕ̂ = 0 .

(7)

Since
∫

Ω

[
ψ −

( ∫
Ω
ψ
)
η̂
]

=
∫

Ω
ψ −

( ∫
Ω
ψ
) ∫

Ω
η̂ = 0, we have a unique solution ϕ̂ ∈ H1(Ω).

On the other hand, we have
[
ψ −

( ∫
Ω
ψ
)
η̂
]
∈ H1

0 (Ω) and the regularity results for elliptic
problems (see, e.g., Evans [12], Sect. 6.3.1) yield ϕ̂ ∈ H3(Br∗(x0)). The Sobolev immersion

4



theorem (see, e.g., Evans [12], Sect. 5.6.3) also gives ϕ̂ ∈ C1(Br∗(x0)), hence ϕ̂ ∈ X.
Moreover, ‖ϕ̂‖C1(Br∗ (x0)) ≤ c0‖ψ‖H1(Ω), where c0 depends on σ, η̂, r∗, but not on ψ.

We are now in a position to obtain the needed estimate. We have

|〈uk, ψ〉| =
∣∣ ∫

Ω
uk ψ

∣∣ =
∣∣ ∫

Ω
uk
[
ψ −

( ∫
Ω
ψ
)
η̂
]∣∣

=
∣∣ ∫

Ω
uk div(σ grad ϕ̂)

∣∣ =
∣∣− ∫

Ω
p0 · grad ϕ̂ δk

∣∣
≤ |p0| ‖ grad ϕ̂‖C0(Br∗ (x0))

∫
Ω
δk ≤ c0 |p0|‖ψ‖H1(Ω) .

In other words,

‖uk‖H−1(Ω) := sup
ψ∈H1

0 (Ω)

|〈uk, ψ〉|
‖ψ‖H1(Ω)

≤ c0 |p0| .

We can thus select a subsequence (still denoted by uk) which converges in H−1(Ω) to
u ∈ H−1(Ω). In particular, for each ϕ ∈ X∫

Ω
uk div(σ gradϕ) = 〈uk, div(σ gradϕ)〉 → 〈u, div(σ gradϕ)〉

−
∫

Ω
p0 · gradϕ δk → −p0 · gradϕ(x0) .

Finally,

0 =

∫
Ω

uk η̂ = 〈uk, η̂〉 → 〈u, η̂〉 ,

and u is a solution to (6).
By the Sobolev immersion theorem we also know that W 2,p(Br∗(x0)) ⊂ C1(Br∗(x0))

for p > 3. Moreover, if we assume that ψ ∈ Lp(Ω), the regularity results for elliptic prob-
lems assure that the solution ϕ̂ of (7) belongs to W 2,p(Br∗(x0)) and that ‖ϕ̂‖C1(Br∗ (x0)) ≤
ĉ0‖ψ‖Lp(Ω) (here it is enough to assume that the conductivity belongs to W 1,∞(Br0(x0));
see, e.g., Gilbarg and Trudinger [13], Sect. 9.5). Repeating the argument above we find∣∣ ∫

Ω
uk ψ

∣∣ =
∣∣− ∫

Ω
p0 · grad ϕ̂ δk

∣∣ ≤ |p0| ‖ grad ϕ̂‖C0(Br∗ (x0)) ≤ ĉ0 |p0|‖ψ‖Lp(Ω) .

Hence we have obtained that

‖uk‖Lq(Ω) := sup
ψ∈Lp(Ω)

|
∫

Ω
uk ψ|

‖ψ‖Lp(Ω)

≤ ĉ0 |p0|

for q such that 1
q

+ 1
p

= 1 (in particular, from p > 3 we have q < 3
2
). Passing to the limit

with respect to k it is proved that u ∈ Lq(Ω). �

Theorem 3.2. The solution u to (6) is unique.

Proof. Let u be any solution to (6). For each ψ ∈ H1
0 (Ω), consider the solution ϕ̂ of (7).

Using it in (6) we find

|〈u, ψ〉| = |〈u, ψ −
( ∫

Ω
ψ
)
η̂〉| = |〈u, div(σ grad ϕ̂)〉| = | − p0 · grad ϕ̂(x0)|

≤ |p0| ‖ grad ϕ̂‖C0(Br∗ (x0)) ≤ c0 |p0|‖ψ‖H1(Ω) ,

hence ‖u‖H−1(Ω) ≤ c0 |p0|, and uniqueness follows. �
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Remark 3.3. The approach we have presented is not based on the Hilbert structure of
the Sobolev spaces Hk(Ω), but on duality. Therefore, renouncing to the choice of the
summability exponent p = 2, one realizes that it is also possible to consider the problem

find up ∈ Lp
∗
(Ω) :

{∫
Ω
up div(σ gradϕ) = −p0 · gradϕ(x0) ∀ ϕ ∈ Xp∫

Ω
upη̂ = 0 ,

(8)

where p is a fixed number satisfying 3 < p < +∞, p∗ is the Hölder dual exponent defined
by 1

p∗
+ 1

p
= 1, and

Xp := {ϕ ∈ W 1,p(Ω) |ϕ ∈ C1(Br∗(x0)), div(σ gradϕ) ∈ Lp(Ω), (σ gradϕ) · n = 0 on ∂Ω} .

Proceeding as before, one proves the existence and uniqueness of a solution to (8). Since
for 3 < s < p one has Ls

∗
(Ω) ⊂ Lp

∗
(Ω) and Xs ⊃ Xp, it is readily verified that us = up for

all finite values s, p > 3, therefore we have solved the problem

find u ∈
⋂
p>3

Lp
∗
(Ω) :


∫

Ω
u div(σ gradϕ) = −p0 · gradϕ(x0) ∀ ϕ ∈

⋃
p>3

Xp∫
Ω
u η̂ = 0 .

(9)

The Sobolev immersion H1
0 (Ω) ⊂ L6(Ω) yields L6/5(Ω) ⊂ H−1(Ω), therefore

⋂
p>3 L

p∗(Ω) ⊂
H−1(Ω). On the other hand the theory of elliptic regularity applied to div(σ gradϕ) ∈
H1

0 (Ω) gives ϕ ∈ W 1,p0(Ω) for a suitable p0 > 3, therefore X ⊂
⋃
p>3Xp. In conclusion,

the solution to (9) is the solution to (6).
It is worth noting that this Lp-approach, instead of (4), only requires that

there exists r0 > 0 such that σlm ∈ W 1,∞(Br0(x0)) for l,m = 1, 2, 3 , (10)

namely, local Lipschitz regularity of the conductivity.
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comparison for differential potential approaches and iterative solvers in finite element
method based EEG source analysis, Appl. Numer. Math. 59 (2009) 1970–1988.

[7] G. Marin, C. Guerin, S. Baillet, L. Garnero, G. Meunier, Influence of skull anisotropy
for the forward and inverse problem in EEG: Simulation studies using the FEM on
realistic head models, Human Brain Mapping 6 (1998) 250–269.

[8] K. A. Awada, D. R. Jackson, J. T. Williams, D. R. Wilton, S. B. Baumann, A. Papan-
icolaou, Computational aspects of finite element modeling in EEG source localization,
IEEE Trans. Biomed. Eng. 44 (1997) 736–751.
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