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Introduction

Aim of this talk is the analysis of the following three problems and

of their mutual relations:

(a) finding finite element potentials, namely, solving by means of
finite elements the problems grady = H, curl A = B,
divv = G;

(b) finding suitable basis functions for the spaces of curl-free or
divergence-free finite elements;

(c) based on (a) and (b), devising simple finite element schemes
for the solution of the curl-div system, which reads

curlu=B in Q

divu=G in Q (1)
uxn=a (oru-n=>b) ondQ.
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Finite element potentials

First results

Determining the necessary and sufficient conditions for assuring
that a function defined in a bounded domain Q C R3 is the
gradient of a scalar potential, or the curl of a vector potential, or
the divergence of a vector field is one of the most classical problem
of vector analysis.

The answer is well-known, and shows an interesting interplay of

differential calculus and topology (see, e.g., Cantarella et al.
(2002)).
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Finite element potentials

First results (cont'd)

@ a vector field is the gradient of a scalar potential if and only if
it is curl free and its line integral is vanishing on all the closed
curves that furnish a basis of the first homology group of Q;

@ a vector field is the curl of a vector potential if and only if it is
divergence free and its flux is vanishing across all the closed
surfaces that furnish a basis of the second homology group of
Q, or, equivalently, across (all but one) the connected
components of 0€2;

@ each scalar function is the divergence of a vector field.
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Finite element potentials

First results (cont'd)

However, this theoretical result only clarifies when the answer is
positive, and does not say how to determine an explicit and
efficient procedure for constructing finite element potentials.

Our approach is based on (simple) tools from algebraic topology
and graph theory. We suppose to have:
@ a basis g, n=1,...,g, of the first homology group of Q;
@ a basiso,, n=1,...,g, of the first homology group of
R3\ Q;
@ a spanning tree Sy of the graph given by the nodes and the
edges of the mesh 7.

[Note: an easy way for constructing o, and &, is presented in
Hiptmair and Ostrowski (2002); the determination of a spanning
tree is a standard procedure in graph theory.]
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Finite element potentials

First results (cont'd)

Let us also introduce the finite element spaces we will use:

@ the space Lj of continuous piecewise-linear elements, with
dimension n,, the number of vertices in 7p;

@ the space NV, of Nédélec edge elements of degree 1, with
dimension n., the number of edges in Tp;

@ the space RT} of Raviart-Thomas elements of degree 1, with
dimension n¢, the number of faces in 7Tp;

@ the space PCj, of (discontinuous) piecewise-constant
elements, with dimension n;, the number of tetrahedra in 7.
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Finite element potentials

The grad problem

We want to solve grad v, = Hj, in the finite element context. This
is an easy problem, and the only reason for considering it is that it
is useful for understanding better the procedures needed for the
other two problems.

The “right” finite elements are: 1, € Ly a piecewise-linear nodal
element, H, € Nj, a lowest order Nédélec edge element, and we

only have to impose that the line integral of grad v, and Hy, on
each edge of the mesh T}, is the same.

The fundamental theorem of calculus says that

Yh(vp) — ¥n(va) Z/g"adwh'TZ/Hh'T (2)

for an edge e = [va, vp|. Hence the linear system associated to
grad ¢, = Hj, has exactly two non-zero values per row.
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Finite element potentials

The grad problem (cont'd)

Starting from a root v, of the spanning tree Sy, where, for the
sake of uniqueness, we impose 1,(vi) = 0, for an edge
e’ = [vi, V] € Sp we compute

un(@) = n(w) + [ Wy

e
since Sy, is a spanning tree, going on in this way we can visit all the
nodes of 7.

The spanning tree is therefore a tool for selecting the rows for
which, using the additional equation 1,(vi) = 0, one can eliminate
the unknowns one after the other.

We have thus found a nodal element v, such that its gradient has
line integral on all the edges of the spanning tree equal to that of
H;. Then is easy to show that the same is true for all the other
edges.
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Finite element potentials

The grad problem (cont'd)

In other words, we have given a constructive way for solving the

problem
grady, =H, inQ
{ Dn(v) = 0. (3)

Since it can be easily proved that n. > n, — 1+ g (the n. edges of
the graph are more than the n, — 1 edges in the spanning tree plus
g edges, one for each homological cycle), this is a full rank
overdetermined system with ne + 1 equations and n, unknowns.

Problems with a similar structure will appear in the sequel.
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Finite element potentials

The curl problem

We want to solve curl A, = By, in the finite element context.

The "right” finite elements are: Ay € N}, a lowest order Nédélec
edge element, B, € RT), a lowest order Raviart—Thomas face
element, and we only have to impose that the flux of curl A;, and
B}, on each face of the mesh 7}, is the same.

The Stokes theorem assures that

/Ah.7-+/ Ah-7'+/ Ah'T:/CurlAh’Vf:/Bh'Vf7 (4)
e €2 € f f

where Of = e; U ex U e3, hence the linear system associated to
curl A, = B, has exactly three non-zero values for each row.
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Finite element potentials

The curl problem (cont'd)

With respect to the preceding case:

@ three unknowns per row instead of two.
Therefore, in order to devise an efficient elimination algorithm, it is
useful to fix the value of other unknowns.

The best situation should occur when the number of the new
equations agrees with the dimension of the kernel of the curl
operator.

Since this kernel is given by the gradients of nodal elements plus
the space generated by the basis of the first de Rham cohomology
group of Q, we see that its dimension is equal to n, — 1 + g.
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Finite element potentials

The curl problem (cont'd)

Having this in mind, we are led to the problem
curl Ah = Bh in Q

fanAh-ds:pn VYn=1,...,8 (5)
JoAr-T=0 Ve ES,

for arbitrarily given constants p,.

Since the number of edges €’ in Sy is n, — 1, (5)3 can be seen as a
“filter” for gradients. On the other hand, homology and
cohomology are in duality, hence (5)2 can be seen as a “filter” for
cohomology fields.

This is a full rank overdetermined system, with nf +g+n, — 1
equations and ne unknowns [recall that the Euler—Poincaré formula
says that nf+ g+ n, — 1 = ne + ns + p]. It is not difficult to prove
that it has a unique solution.
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Finite element potentials

Webb—Forghani algorithm

Webb and Forghani (1989) proposed this solution algorithm:

Algorithm

© take a face f for which at least one edge unknown has not yet
been assigned

@ if exactly one edge unknown is not determined, compute its
value from the Stokes relation (4)

@ if two or three edge unknowns are not determined, pass to
another face.

This is a simple elimination procedure for solving the linear system
at hand, and it is quite efficient, as the computational cost is
linearly dependent on the number of unknowns.
The weak point is that:
@ it can stop without having determined all the edge unknowns
(even in simple topological situations!)
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Finite element potentials

An explicit formula for the vector potential

e Cure: devise an explicit formula for the solution to (5).

(We are able to do that if B, -n =0 on 09, a quite natural
condition in the most interesting physical situations, and for a
suitable choice of the constants pj.)

The explicit formula permits to restart the algorithm in case it
stops (but it is better not using it for all the degrees of freedom, as
it would be more expensive than the Webb—Forghani algorithm).
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Finite element potentials

The div problem

We want to solve divvy = Gy, in the finite element context.

The "right” finite elements are: v, € RT), a lowest order
Raviart—-Thomas face element, G, € PCj, a piecewise-constant
element, and we have only to impose that the integral of divwvy,
and of Gj on each element of the mesh 7}, is the same.

The Gauss theorem says that

ffth'Vf—i-f&Vh'Uf—i-ffth'I/f—f—fﬂVh-Vf
:deiVVh:fK Gh,

where 0K = f; U f, U f3 U f, hence the linear system associated to
divvy, = G has exactly four unknowns per row.

(6)
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Finite element potentials

The div problem (cont'd)

For having well-posedness of the system, we want to add equations
by fixing the value of some unknowns. Similarly to what done
before we start by analyzing the dimension of the kernel of the
divergence operator.

This kernel is given by the curl of the Nédélec elements plus the
space generated by the basis of the second de Rham cohomology
group of Q.

If we denote by (0%2)o, ..., (09), the connected components of
012, we know that the dimension of the second de Rham
cohomology group of Q is equal to p.
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Finite element potentials

The div problem (cont'd)

On the other hand, it is easy to check that the dimension of the
space of the curl of the Nédélec elements is equal to the number of
the edges minus the dimension of the kernel of the curl operator:
hence, it is equal to ne — n, +1 — g.
By the Euler—Poincaré formula we have
ny—ne+nf—n=1—-g+p,

hence the dimension of the space of the curl of the Nédélec
elements can be rewritten as nf — ny — p.
In conclusion, besides the topological conditions

f(aQ),Vh'":Cf , r=1,...,p,

that are a filter for the cohomology fields, we could add
ng — ny — p equations.
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Finite element potentials

A dual graph

To do that, let us note that an internal face connects two
tetrahedra, while a boundary face connects a tetrahedron and a
connected component of 9.

We can therefore consider the following (connected) dual graph
Gp: the dual vertices are W = T U X, where the elements of T are
the tetrahedra of the mesh and the elements of ¥ are the p+ 1
connected components of J%; the set of dual arcs is F, the set of
the faces of the mesh.
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Finite element potentials

A dual graph (cont'd)

The number of dual vertices is equal to n; + p + 1, hence a
spanning tree My, of G, has n; + p dual arcs (and consequently its
cotree has nf — n; — p dual arcs).

Therefore the linear system
diVVh = Gh in Q

f(aQ),"h'"ZCr Vr=1,...,p (7)
Jevn-ve=0  YfgM,

is a square linear system of ns equations and unknowns.

It can be shown that this system has a unique solution.
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Finite element potentials

Well-posedness of (7)

The procedure is constructive, similar to the elimination procedure
used for the grad problem but now going along the dual spanning
tree, starting from the leaves. (Let us recall that a leaf of a
spanning tree My, is a vertex of W that has only one arc of M,
incident to it.)

We can reduce the problem to the faces f € M. If w (a
tetrahedron or a connected component) is a leaf of My, then on it
there is only one face f(w) belonging to the spanning tree My,
therefore the value of the flux of v, on f(w) can be computed by
the Gauss theorem, if w is a tetrahedron or the connected
component (0Q)g, or by the equation f(BQ), Vh-n=c, if wis the
connected component (99),, r =1,...,p (recall that we know
that [ v, -vr =0 forall f & M,).
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Finite element potentials

Well-posedness of (7) (cont'd)

We can iterate this argument: if we remove from the spanning tree
My, a leaf and its corresponding incident arc, the remaining graph
is still a tree. After a finite number of steps the remaining tree

reduces to just on vertex, and the result is that ff vy, - v is known
forall f € F.
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Finite element potentials

A summary

from to | unknowns equations
grad Ly Ny ny ne+1 (> nv)
curl N, | RTy ne | nf+g+n,—1l=ne+ns+p
div RT, | PCy nf|l ng+p+ne—n,+1—g=nf

Table: Finite element potentials.
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Curl-free or divergence-free finite elements

Curl-free finite elements

The problem of describing in a suitable way curl-free finite
elements is quite easy. In fact, it is straightforward to find a basis
of the finite element space

Von = {vh € Ni|curlvy, =0 in Q, o
$ wpds=0vn=1,.g, &

as this space is coincident with grad L, (indeed, the conditions
fon vp - ds = 0 are filtering all the curl-free vector fields that are
not gradients, namely, the fields belonging to the first de Rham
cohomology group).

Thus we have only to identify and eliminate the kernel of the
gradient operator: the constants. In conclusion, a basis for Vg j is
simply given by grad®i, i=1,...,n, — 1, where <D’,'7,
i=1,...,n,, are the standard nodal basis functions of L.
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Curl-free or divergence-free finite elements

Divergence-free finite elements

A more complicated situation arises for divergence-free finite
elements. In fact, we start considering the space

Won = {vh € RTp|divv, =01in Q,
f(aQ)rvh-n:OVr:I,...,p},
and it is easy to check that Wy » = curl N, (the conditions
f(aﬂ)r vy - n = 0 are filtering all the divergence-free vector fields

that are not curls, namely, the fields belonging to the second de
Rham cohomology group).

(9)

However, the problem is that
@ the kernel of the curl operator is large: it contains the
gradients of elements in Ly, and the fields belonging to the
first de Rham cohomology group, and has dimension equal to
n,—1+g.



Curl-free or divergence-free finite elements

Divergence-free finite elements (cont'd)

Thus we need:
@ to devise a strategy for selecting ne — n, + 1 — g edges in
order that the associated edge element basis functions have
linearly independent curls.

Results in this direction were obtained by Hecht (1981), Dubois
(1990) and Scheichl (2002) for a simply-connected domain, and by
Rapetti et al. (2003) for a x-fold torus. A different approch, based
on an algebraic point of view and the use of the dual graph, is due
to Alotto and Perugia (1999).

Here we present a general procedure for the determination of a set
of locally-supported basis functions of W} 5, together with an easy
proof of its effectiveness.
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Curl-free or divergence-free finite elements

Divergence-free finite elements (cont'd)

Let us assume for a while that € is simply-connected (therefore we
have g = 0). Consider all the edges not belonging to the spanning
tree Sp, namely, belonging to the cotree Cp; their number is

ne — n, + 1. The result is:

@ A basis of Wy j is given by curlw’,;, for the indices j such that
the corresponding edges e; belong to the cotree Cp, (say,
j=1,...,ne—n,+1).
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Curl-free or divergence-free finite elements

Divergence-free finite elements (cont'd)

The proof is quite simple and reads as follows: from

ne—ny+1 ne—ny+1
0= ) ajeurlw) = curl > ayw,
J=1 J=1
ny+1

we can conclude that ZJ";I ozjw{, is a gradient, say, grad @p.
This is an element of Ny, for which all the degrees of freedom
associated to the edges belonging to the spanning tree are
vanishing. Hence ¢y, is constant, and ZJ'-’;I”VH ajwj =0. We can
thus conclude that o =0 for all j =1,...,ne — n, + 1, since
{W’h}J’.';”VJ“:l are linearly independent.
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Curl-free or divergence-free finite elements

Divergence-free finite elements (cont'd)

The general topological case needs the identification of g
additional edges to discard: a possible option is to select one edge
for each basis element o, of the first homology group of Q, having
constructed the spanning tree in such a way that all the other
edges of o, belong to it. (For definiteness, suppose these edges are
associated to the indices j = 1,..., g: the union of the spanning
tree Sj and these additional g edges was called belted tree in
Bossavit (1998), Rapetti et al. (2003).)

With this choice we have that the line integral of Z}’;;ﬂrvfrl ajw)
over o, vanishes for each n=1,..., g (all the edges contained in
on belong to the belted tree, namely, they correspond to indices
smaller than g + 1 or larger than ne — n, + 1). Therefore

ZJ'?;;LVIH ajM, is a gradient, and the argument develops as before.
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Solving the curl-div system

First case: u x n assigned on 052

The problem at hand (slightly more general than the one previously
presented) reads

curl(nuy=B  inQ
divu=G in Q

(qu) xn=a on 02
f(amru-n:a, Vr=1,...,p,

(10)

where m is a symmetric matrix, uniformly positive definite in €2,
with entries belonging to L>(Q), B € (L3(Q))3, G € L2(Q),

a € H~'/2(div ; Q) [the space of tangential traces of vector
fields belonging to H(curl;Q)], a € RP.
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Solving the curl-div system

First case: u x n assigned on 99 (cont'd)

The data satisfy the necessary conditions divB =0 in Q,
JoB-p+ [,qga-p =0 foreach p € #(m), and B n = div,a on
0. Here H(m) is the space of Neumann harmonic fields, namely,

H(m) = {p € (L*(Q))3|curlp=0in Q,divp =0 in Q,
p-n=0o0n0Q}.

The first step of the procedure is to find a vector field
u* € (L%(Q))3 satisfying

{ divu* =G in Q (11)

f(BQ),u*'":O‘f Vr=1,...,p.
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Solving the curl-div system

First case: u x n assigned on 99 (cont'd)

Then the vector field W = u — u* has to satisfy

curl (W) = B — curl (nu*) in Q

divW =0 in Q

(MW) xn=a—(nu*) xn on 0 (12)
f(aﬂ),W-n:O Vr=1,...,p.

The second step is to devise a variational formulation of (12).
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Solving the curl-div system

A variational formulation for the first case

Multiplying the first equation by a test function v € H(curl; Q),
integrating in Q and integrating by parts we find:

JoB-v = [ocurl[np(W +u*)]-v
= [on(W +u*)-curlv — [0 [p(W +u*) xn]-v
= [qnW -curlv + [onu*-curlv — [,ca-v.

Let us introduce the space
Wo = {v € H(div; Q) |divv =0 in Q,

13
f(amrwn:OVr:l,...,p}. (13)

It is readily seen that Wy = curl [H(curl; Q)].
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Solving the curl-div system

A variational formulation for the first case (cont'd)

The vector field W is thus a solution to
WeW, :
JonW -curlv = [(B-v— [onu*-curlv+ [,oa-v (14)
Vv e H(curl; Q).
More precisely, W is the unique solution of that problem: in fact,

assuming B = u* = a =0, and taking v such that curlv =W, it
follows at once fQ nW -W =0, hence W = 0.
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Solving the curl-div system

Finite element approximation of the first case

The finite element approximation follows the same steps.
The first one is finding a finite element potential u} € RT}, such
that

{ divuj = Gj in Q (15)

f(m)ru’;-n:a, Vr=1,...,p,

where G, € PCy, is the piecewise-constant interpolant I,fCG of G.
This can be done as in (7).
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Solving the curl-div system

Finite element approximation of the first case (cont'd)

The second step concerns the numerical approximation of problem
(14). The natural choice for the finite element space is clearly the
space W) j, introduced in (9). The finite element approximation of
(14) reads as follows:

W, € Wop
Jo MW, - curlvy, (16)
= JoB-vh— Jonuj -curlv, + [,oa- v,
Vv,e Ny,
where .
Ny = span{w) }1en5H. (17)
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Solving the curl-div system

Finite element approximation of the first case (cont'd)

The corresponding algebraic problem is a square linear system of
dimension n. — n, + 1 — g, and it is uniquely solvable. In fact, we
note that Wy = curl Nj;, hence we can choose vj € N} such that
curlvi = Wy,; from (16) we find at once W, = 0, provided that
G=u;=a=0.

The convergence of this finite element scheme is easily shown by
standard arguments. For the sake of completeness, let us present
the proof.
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Solving the curl-div system

Convergence of the approximation for the first case

Theorem A. Let W € Wy and W;, € W j, be the solutions of
problem (14) and (16), respectively. Set u = W + u* and

up = Wy + uj, where u* € H(div; Q) and u} € RT), are solutions
to problem (11) and (15), respectively. Assume that u is regular
enough, so that the interpolant If,?Tu is defined. Then the
following error estimate holds

lu—unll v < colllu— 15T ullz@) +11G— IhPCGHB(Q))' (18)
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Solving the curl-div system

Convergence of the approximation for the first case (cont'd)

Proof. Since Nj C H(curl;), we can choose v =vj, € N} in
(14). By subtracting (16) from (14) we end up with

/n[(W+u*)—(Wh+u7,)]-curlvh:O Vv,e N,
Q
namely, the consistency property
/n(uuh)-curlvh:0 Vv, e Nj. (19)
Q

Then from Wy , = curl Ny we can write Wy, = curlv} for a
suitable v; € N}, and using (19) we find
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Solving the curl-div system

Convergence of the approximation for the first case (cont'd)

cullu— upllf gy < Jom(u—un) - (u—up)
= Jon(u—up) - (u—W,—up)
= [on(u—up) - (u—curlv} —u})
= [on(u—up) - (u—curlvy —u})
< allu—upllp@)llu— @5 —uill2@) ¥ ®hEWo -
We can choose ®; = (IFTu — u}) € Wy p; in fact,
div (1fTu) = 1/¢(divu) = IP€G = G, and
f(aﬂ)r IRTu.-n = f(aﬂ)r u-n=aq, foreachr=1,...,p. Thenit

follows at once [[u — up||2(q) < Z[lu — IA?TUHLQ(Q).
Finally, div(u —up) = G — G, = G — I[¢G. O
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Solving the curl-div system

Convergence of the approximation for the first case (cont'd)

Note that a sufficient condition for defining the interpolant of u is
that u € (H%+5(Q))3,75 > 0. This is satisfied if, e.g., m is a scalar
Lipschitz function in Q and a € (H(9Q))3, v > 0.
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Solving the curl-div system

The algebraic problem for the first case

The solution Wy, € Wy , can be written in terms of the basis as
W, = Z}';;g_vfrl Wicurlwy, j. Hence the finite dimensional
problem (16) can be rewritten as

ne—ny+1
Z WJ/ ncurlwy; - curlwy,
j=g+1 &

:fQB-whym—anu;-curlwh7m+/ a-Wppm,
o0

(20)

foreachm=g+1,...,n.—n, + 1.
The matrix K* with entries

Knj = / necurlwy ;- curlwy,
Q

is clearly symmetric and positive definite, as the vector fields
curlwy, ; are linearly independent.
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Solving the curl-div system

Second case: u - n assigned on 02

The problem at hand reads

curlu=B
div(pu) = G
pu-n=>, (21)

$,u-ds=p, Yn=1,... g,
where p is a symmetric matrix, uniformly positive definite in €,

with entries belonging to L°(Q), B € (L2(Q))3, G € L%(Q),
be H-12(0Q), B € R8.
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Solving the curl-div system

Second case: u - n assigned on 99 (cont'd)

The data satisfy the necessary conditions divB =0 in Q,

Jo G = [,q b; moreover, in order that the line integral of u on o,
has a meaning, we also assume that B-n =0 on 9Q (which is
more restrictive than the necessary condition f(aﬂ)r B-n=0 for

each r=1,...,p).

The first step of the procedure is to find a vector field
u* € (L2(Q))3 satisfying

{ curlu* =B in Q (22)

fgnu*'ds:ﬂn Vn=1,...,g.
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Solving the curl-div system

Second case: u - n assigned on 99 (cont'd)

Then the vector field V = u — u* has to satisfy

curlV =20 in Q

div(pV) = G —div(pu*) in Q (23)
(uV) -n=b—(pu*)-n  on 9N

fgnV-ds:O Vn=1...,g,

The second step is to devise a variational formulation of (23).
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Solving the curl-div system

A variational formulation for the second case

Multiplying the second equation by a test function ¢ € H*(Q),
integrating in Q and integrating by parts we find:

Ja Gy = [odiv[p(V +u)]e
=— Jou(V+u*)-gradp + [o[n(V +u*) n]p
=— JouV-gradyp — [ pu* -gradp + [, bop.
Let us introduce the space

Vo ={v € H(curl;Q) |curlv =0 in Q,

fanv-ds:OVnzl,...,g}. (24)

Note that Vo = grad [H(Q)].
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Solving the curl-div system

A variational formulation for the second case (cont'd)

The vector field V is thus a solution to
Vel :
JonV -grado=— [, Gp— [pu*-gradp+ [, by (25)
Y p € HY(Q).

It is easily seen that V is indeed the unique solution of that
problem: in fact, assuming G = b =0, u* = 0, and taking ¢ such
that grad ¢ =V, it follows at once fQ puV -V =0, hence V=0.
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Finite element approximation of the second case

The finite element approximation follows the same steps.

The first one is finding a finite element potential uy € N such that

{ curluy = By in Q (26)

fanuZ’dszﬁn \v/n:]'a"'vga

where B, € RT, is the Raviart—Thomas interpolant /X7 B of B
(we therefore assume that B is so regular that its interpolant I,fTB
is defined; for instance, as already recalled, it is enough to assume
Bc (H%+5(Q))3, d > 0). The construction of uj can be done as

in (5).
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Finite element approximation of the second case (cont'd)

The second step is related to the numerical approximation of
problem (25). The natural choice for the finite element space is
clearly the space Vg j, introduced in (8). The finite element
approximation of (25) reads as follows:

V, € VO,h :
Jo 1V - grad o), =

(27)
— Ja Gon— Jq puj, - gradps + [0 ben

Y op€e L},
where

Ly = span{wp Yt = {pn € L | on(va,) = 0}.  (28)
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Finite element approximation of the second case (cont'd)

The corresponding algebraic problem is a square linear system of
dimension n, — 1, and it is uniquely solvable. In fact, since

Vo,n = grad L}, we can choose ¢} € L} such that grad ¢} = Vy;
from (27) we find at once V;, = 0, provided that G = b =0,

u;y =0.

The convergence of this finite element scheme is easily shown by
standard arguments.
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Convergence of the approximation for the second case

Theorem B. Let V € Vp and V, € Vg be the solutions of
problem (25) and (27), respectively. Set u = V + u* and

up = Vi + uj, where u* € H(curl; Q) and uj € N, are solutions
to problem (22) and (26), respectively. Assume that u and B are
regular enough, so that the interpolants I,ﬁvu and I,fTB are defined.
Then the following error estimate holds

lu = whllpygeurt ;) < co(llu = I8 ull2i) + 1B = 177 Bl|12(q)) - (29)
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Convergence of the approximation for the second case (cont'd)

Proof. Since L} C H'(R), we can choose ¢ = ¢p, € L} in (25).
By subtracting (27) from (25) we end up with

V4 ) = (V)] grad iy =0 Vg€ L,
namely, the consistency property
/Qu(uuh)-gradsah:o Venely.  (30)

Then, since Vg, = grad L} and thus V,, = grad ¢} for a suitable
@y, € Ly, from (30) we find
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Convergence of the approximation for the second case (cont'd)

c1llu — upl[fa ) < Jo #(u—up) - (u—up)
= Jou(u—up) - (u—V,—u})
— Joalu — up) - (u — grad ¢} — u)
= Jou(u—up) - (u—gradp, — up)
< allu—upll2@)llu—Wh —uillz@) Y WhEVon-
We can choose Wy, = (INu — u}) € Vo p; in fact,
curl (1Nu) = IFT (curlu) = IfTB = B}, and
4, INu - ds = ¢, u-ds=p, foreach n=1,...,g. Then we find

at once [lu — up[/;2(0) < Zlu— I,fVuHLz(Q).

Moreover, curl (u —u;) =B — B, =B — I[fTB. O
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Convergence of the approximation for the second case (cont'd)

Note that a sufficient condition for defining the interpolants of u
and B = curlu is that they both belong to (H2+3(Q))3, § > 0.
Thus one has to assume that B € (H%+6(Q))3; moreover, u
belongs to (H%H(Q))3 if, for instance, p is a scalar Lipschitz
function in Q and b € HY(Q2), v > 0.
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The algebraic problem for the second case

The solution Vj, € Vg 1, is given by V;, = S Vigrad ¢y, ;.
Hence the finite dimensional problem (27) can be rewritten as

n,—1
> Vi/ pgrad ;- grad ¢y
i=1 Q (31)

— Jo GUni— [qreu} - grad iy +/mb1/1h,/7

foreach /I=1,...,n, — 1.
The matrix K* with entries

Ki = / wgrad p ;i - grad op
Q
is clearly symmetric and positive definite.
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Other problems

e Darcy problem (for simplicity, assume 9 connected)

ku—gradp=f in Q

divu =20 in Q
P = ¢ on 0.
In weak form:
ueW :
Joru-v=Jof v+ [ogev-n
YveWs.
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e elliptic problems in mixed formulation (for simplicity, assume
02 connected)

kw—gradg=0 in Q

divw =g in Q
qo =1 on 0N).
In weak form:
WeW, :
Jo kW v =— [oru*-v+ [[onv-n
YVveW,

where divu* = g in Q and w = W + u*.
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The grad problem (back to it)

Having found a nodal element v, such that its gradient has line
integral on all the edges of the spanning tree equal to that of Hy,
what about the edges not belonging to the spanning tree?

For each node v;, v; # v, let us denote by C,, the set of edges in
Sh joining v, to v;. Given an edge e = [va,, vp] not belonging to Sp,
we define the cycle D, = C,, + e — C,,.

Since Hy, is a gradient (it is curl-free and its line integral on all the
cycles o, vanishes), its line integral on D, vanishes. Therefore we
have

0 = §p, Hn - ds = Yn(va) + [, Hp - 7 — ¥n(vp)
= [Hy-7— [ grady, - T.
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An explicit formula for the vector potential

@ Devise an explicit formula for the solution to (5).

(We are able to do that if By -n =0 on 9%, a quite natural
condition in the most interesting physical situations, and for a
suitable choice of the constants p,.)

The idea is the following. Define the Biot—Savart field

1 X —
HES() = - [ Buly) % =2 dy.

Cam x —y[3

and set p, = §, H5® . ds in (5).
One has curlHB> = B, in Q (here the condition By - n =0 on 9Q
has played a role). Hence the Nédélec interpolant MNVrHBS satisfies

(5)1 and (5)2.
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An explicit formula for the vector potential (cont'd)

To find the solution to (5), we can correct MNnHBS by a gradient,
namely, construct the nodal element ¢, whose gradient has the
same line integral of HB on the edges of the spanning tree S.

The Nédélec finite element Ay, = NMNV"HBS — grad ¢, is the solution
to (5).

To express its degrees of freedom, we proceed as follows. For each
edge e € Sp, we define the cycle D, as before (the edges from the
root of the spanning tree to the first vertex of e, the edge e, the

edges from the second vertex of e to the root of the spanning tree).
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An explicit formula for the vector potential (cont'd)

The cycle D, is constituted by edges all belonging to the spanning
tree (except e): hence we have

[ AT = [ (NMM"HBS —grad ¢) - T
= fe HBS T — [Qbh(Vb) - ¢h(va)]

= [HES = [Jo MBS m— [ HES.1| (3
= 9, HB> . ds

i 9p. (fQ Bn(y) x |x y|3 dy) - ds(x).

Using (32), we can always restart the Webb—Forghani algorithm.
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A basis of the first de Rham cohomology group

The presented approach permits to solve also the problem

curlA, =0 in Q
fanAh‘dSZHn Vn=1,...,g (33)
JoAp-T=0 Ve €Sy,

for any choice of the constants k.

Taking r, equal to 4¢(0n,0}), j =1,...,8, (4 denotes the linking
number) we find a basis TU) of the first de Rham cohomology
group, and we have also an explicit formula like (32) for expressing
the degrees of freedom of each TU),
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The linking number

The linking number between &; and another disjoint cycle o is
given by:

~ 1 y — X

@ The linking number (introduced by Gauss...) is an integer
that represents the number of times that each cycle winds
around the other.

The explicit formula for determining the basis elements TU) is

/TU) -7 = ly(De, 5) (34)

e

(where G; has been chosen inside R®\ Q, namely, not intersecting
De).
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A basis of the second de Rham cohomology group

It can be also noted that the solutions W(S), s=1,...,p, of the
problems

divvy =0 in Q

f(aﬂ)rvh-nzér,s Vr=1,...,p (35)

ffvh'VfZO Vngh

furnish a basis of the second de Rham cohomology group of 2.
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