COGNOME	NOME	Matr.
	77 (C	
Analisi	Matematica II (1 14 luglio 2014	EA)
Esercizio 1 (7 punti)		
Si determinino i valori di $\alpha \in \mathbf{R}$ e $\beta \in$	${f R}$ per i quali il campo vet	toriale
$ec{F}(x,y,z)$	$z) = (\alpha x^2 z - 2xy^2, -\beta yx^2,$	(x^3)
è conservativo. Per tali valori di α e β	si determini poi un potenz	ziale di \vec{F} .
Risultati:		

Calcoli:

Esercizio 2 (7 punti)
Si determini la natura dei punti stazionari in \mathbf{R}^2 della funzione $f(x,y)=y^3-2x^2+xy-\frac{1}{4}y$. Si
determinino quindi il massimo assoluto e il minimo assoluto di f nel triangolo di vertici $(0,0)$, $(0,1)$
$e(\frac{1}{2},1).$
Risultati:
Calcoli:

Esercizio	3	(8)	punti)	١
-----------	---	-----	--------	---

Si calcoli l'integrale triplo $\int\!\!\!\int_K xy\sin\!z\,dxdydz,$ ove

$$K = \{(x, y, z) \in \mathbf{R}^3 \mid 0 \le x \le \sqrt{\pi}, 0 \le y \le \sqrt{\pi}, 0 \le z \le x^2 + y^2\}.$$

Risultato:			

Calcoli:

Esercizio 4	(8)	punti))
-------------	-----	--------	---

Si calcoli $\iint_S \vec{v} \cdot \vec{n} \, dS$ (il flusso del campo vettoriale \vec{v} attraverso la superficie S), ove $\vec{v} = (zx, zy, xy)$, S è il bordo di Q non contenuto nei piani $\{x=0\}, \{y=0\}, \{z=0\}, \{z=1\}$ e

$$Q = \{(x, y, z) \in \mathbf{R}^3 \mid x \ge 0, y \ge 0, 0 \le z \le 1, x^2 + y^2 + z^2 \le 4\}$$

(si scelga la normale orientata verso l'alto).

Risultato:		

Calcoli: