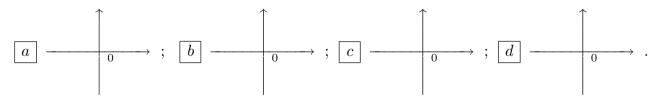
ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

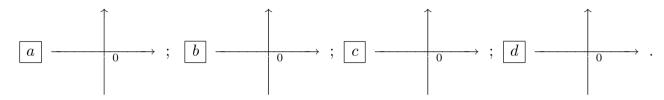
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^2 x^3 f(\frac{x^2}{4}) dx = \boxed{a} 4 \int_0^1 t^2 f(t) dt;$ $\boxed{b} 32 \int_0^1 t^2 f(t) dt;$ $\boxed{c} 8 \int_0^1 t f(t) dt;$ $\boxed{d} 2 \int_0^1 t f(t) dt.$
- 2. Determinare i numeri complessi soluzione dell'equazione $2z^2 + \overline{z} = -1$. \boxed{a} $z = -\frac{1}{4} \pm i \frac{\sqrt{11}}{4}$; \boxed{b} $z = \pm \frac{\sqrt{7}}{4} + i \frac{1}{4}$; \boxed{c} $z = \frac{1}{4} \pm i \frac{\sqrt{11}}{4}$; \boxed{d} $z = \pm \frac{\sqrt{7}}{4} i \frac{1}{4}$.
- 3. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di massimo relativo ma non assoluto per f(x) se: a non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) > f(x_0)$; b non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) < f(x_0)$; c esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \le f(x_0)$; d esiste $x^* \in \mathbf{R}$ con $f(x^*) < f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \ge f(x_0)$.
- 4. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione f(x) = 2(x + |x|). Allora $b_3 = \begin{bmatrix} a \end{bmatrix} 1/3$; $\begin{bmatrix} b \end{bmatrix} 2/3$; $\begin{bmatrix} c \end{bmatrix} 4/3$; $\begin{bmatrix} d \end{bmatrix} 2$.
- 5. Quante volte si azzera la funzione $f(x) = 1 x + x^2 x^3$? a 3; b 4; c 1; d 2.
- 6. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = f(x)e^{f(x)}$ vicino all'origine è:



- 7. Sia γ la curva data dal grafico di $f(x) = \log(1+x^2), x \in [0,1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx; \quad b \int_0^1 \sqrt{\frac{1+4x+8x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx; \quad c \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx; \quad d \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx.$
- 8. Sia $f(t) = t^3 \log t 3\sqrt{t}$ e sia $g(x) = x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h = f \circ g$ nel punto di ascissa $x_0 = 1$ risulta $a y = \frac{1}{3}x \frac{16}{3}$; $b y = \frac{1}{4}x \frac{25}{4}$; c y = x 4; $d y = \frac{1}{2}x \frac{9}{2}$.

ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

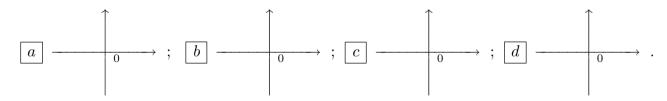
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = f(x)e^{-f(x)}$ vicino all'origine è:



- 2. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di minimo relativo ma non assoluto per f(x) se: a non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) < f(x_0)$; b esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \le f(x_0)$; c esiste $x^* \in \mathbf{R}$ con $f(x^*) < f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \ge f(x_0)$; d non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) > f(x_0)$.
- 3. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione q(x) = 3x + 3|x|. Allora $b_3 = \begin{bmatrix} a \end{bmatrix} 2/3$; $\begin{bmatrix} b \end{bmatrix} 4/3$; $\begin{bmatrix} c \end{bmatrix} 2$; $\begin{bmatrix} d \end{bmatrix} 1/3$.
- 4. Sia γ la curva data dal grafico di $f(x) = \arctan x, x \in [0, 1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{1+4x+8x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx;$ $b \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx;$ $c \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx;$ $d \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx.$
- 5. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^{\sqrt{2}} x^3 f(\frac{x^2}{2}) dx = \boxed{a} \ 32 \int_0^1 t^2 f(t) dt;$ $\boxed{b} \ 8 \int_0^1 t f(t) dt;$ $\boxed{c} \ 2 \int_0^1 t f(t) dt;$ $\boxed{d} \ 4 \int_0^1 t^2 f(t) dt.$
- 6. Determinare i numeri complessi soluzione dell'equazione $2z^2+iz=1$. \boxed{a} $z=\pm\frac{\sqrt{7}}{4}+i\frac{1}{4};$ \boxed{b} $z=\frac{1}{4}\pm i\frac{\sqrt{11}}{4};$ \boxed{c} $z=\pm\frac{\sqrt{7}}{4}-i\frac{1}{4};$ \boxed{d} $z=-\frac{1}{4}\pm i\frac{\sqrt{11}}{4}.$
- 7. Sia $f(t)=t^6\log t-6\sqrt{t}$ e sia $g(x)=x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h=f\circ g$ nel punto di ascissa $x_0=1$ risulta a $y=\frac{1}{4}x-\frac{25}{4};$ b y=x-4; c $y=\frac{1}{2}x-\frac{9}{2};$ d $y=\frac{1}{3}x-\frac{16}{3}.$
- 8. Quante volte si azzera la funzione $f(x) = 1 + x x^2 x^3$? \boxed{a} 4; \boxed{b} 1; \boxed{c} 2; \boxed{d} 3.

ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

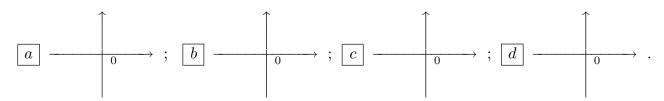
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Determinare i numeri complessi soluzione dell'equazione $2z^2 \overline{z} = -1$. \boxed{a} $z = \frac{1}{4} \pm i \frac{\sqrt{11}}{4}$; \boxed{b} $z = \pm \frac{\sqrt{7}}{4} i \frac{1}{4}$; \boxed{c} $z = -\frac{1}{4} \pm i \frac{\sqrt{11}}{4}$; \boxed{d} $z = \pm \frac{\sqrt{7}}{4} + i \frac{1}{4}$.
- 2. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione $g(x) = \frac{1}{2}(x + |x|)$. Allora $b_3 = \begin{bmatrix} a \end{bmatrix} 4/3$; $b \end{bmatrix} 2$; $c \end{bmatrix} 1/3$; $d \end{bmatrix} 2/3$.
- 3. Sia γ la curva data dal grafico di $f(x) = \frac{x}{1+x}, x \in [0,1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx; \quad b \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx; \quad c \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx; \quad dx; \quad dx$
- 4. Sia $f(t) = t^5 \log t 5\sqrt{t}$ e sia $g(x) = x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h = f \circ g$ nel punto di ascissa $x_0 = 1$ risulta a y = x 4; $b y = \frac{1}{2}x \frac{9}{2}$; $c y = \frac{1}{3}x \frac{16}{3}$; $d y = \frac{1}{4}x \frac{25}{4}$.
- 5. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = -f(x)e^{f(x)}$ vicino all'origine è:



- 6. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di massimo assoluto per f(x) se: a esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \le f(x_0)$; b esiste $x^* \in \mathbf{R}$ con $f(x^*) < f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \ge f(x_0)$; c non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) > f(x_0)$; d non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) < f(x_0)$.
- 7. Quante volte si azzera la funzione $f(x) = 1 x + 2x^2 2x^3$? \boxed{a} 1; \boxed{b} 2; \boxed{c} 3; \boxed{d} 4.
- 8. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^{\sqrt{2}} x^5 f(\frac{x^2}{2}) dx = \boxed{a} \ 8 \int_0^1 t f(t) dt;$ $\boxed{b} \ 2 \int_0^1 t f(t) dt;$ $\boxed{c} \ 4 \int_0^1 t^2 f(t) dt;$ $\boxed{d} \ 32 \int_0^1 t^2 f(t) dt.$

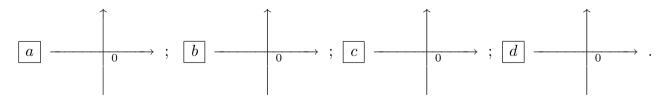
ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di minimo assoluto per f(x) se: a esiste $x^* \in \mathbf{R}$ con $f(x^*) < f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \ge f(x_0)$; b non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) > f(x_0)$; c non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) < f(x_0)$; d esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \le f(x_0)$.
- 2. Sia γ la curva data dal grafico di $f(x) = \frac{1}{1+x}, x \in [0,1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx; \quad b \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx; \quad c \int_0^1 \sqrt{\frac{1+4x+8x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx;$ $d \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx.$
- 3. Sia $f(t) = t^4 \log t 4\sqrt{t}$ e sia $g(x) = x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h = f \circ g$ nel punto di ascissa $x_0 = 1$ risulta $a y = \frac{1}{2}x \frac{9}{2}$; $b y = \frac{1}{3}x \frac{16}{3}$; $c y = \frac{1}{4}x \frac{25}{4}$; d y = x 4.
- 4. Quante volte si azzera la funzione $f(x) = 1 x x^2 + x^3$? \boxed{a} 2; \boxed{b} 3; \boxed{c} 4; \boxed{d} 1.
- 5. Determinare i numeri complessi soluzione dell'equazione $2z^2 iz = 1$. \boxed{a} $z = \pm \frac{\sqrt{7}}{4} i\frac{1}{4}$; \boxed{b} $z = -\frac{1}{4} \pm i\frac{\sqrt{11}}{4}$; \boxed{c} $z = \pm \frac{\sqrt{7}}{4} + i\frac{1}{4}$; \boxed{d} $z = \frac{1}{4} \pm i\frac{\sqrt{11}}{4}$.
- 6. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione h(x) = x + |x|. Allora $b_3 = \begin{bmatrix} a \end{bmatrix} 2$; $\begin{bmatrix} b \end{bmatrix} 1/3$; $\begin{bmatrix} c \end{bmatrix} 2/3$; $\begin{bmatrix} d \end{bmatrix} 4/3$.
- 7. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^2 x^5 f(\frac{x^2}{4}) dx = \boxed{a} \ 2 \int_0^1 t f(t) dt;$ $\boxed{b} \ 4 \int_0^1 t^2 f(t) dt;$ $\boxed{c} \ 32 \int_0^1 t^2 f(t) dt;$ $\boxed{d} \ 8 \int_0^1 t f(t) dt.$
- 8. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = -f(x)e^{-f(x)}$ vicino all'origine è:



ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

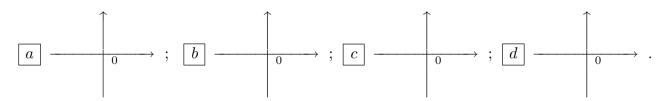
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione q(x) = 3x + 3|x|. Allora $b_3 = \begin{bmatrix} a \end{bmatrix} 1/3$; $\begin{bmatrix} b \end{bmatrix} 2/3$; $\begin{bmatrix} c \end{bmatrix} 4/3$; $\begin{bmatrix} d \end{bmatrix} 2$.
- 2. Sia $f(t) = t^3 \log t 3\sqrt{t}$ e sia $g(x) = x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h = f \circ g$ nel punto di ascissa $x_0 = 1$ risulta $a y = \frac{1}{3}x \frac{16}{3}$; $b y = \frac{1}{4}x \frac{25}{4}$; c y = x 4; $d y = \frac{1}{2}x \frac{9}{2}$.
- 3. Quante volte si azzera la funzione $f(x) = 1 x + 2x^2 2x^3$? \boxed{a} 3; \boxed{b} 4; \boxed{c} 1; \boxed{d} 2.
- 4. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^2 x^5 f(\frac{x^2}{4}) dx = \boxed{a} 4 \int_0^1 t^2 f(t) dt;$ $\boxed{b} 32 \int_0^1 t^2 f(t) dt;$ $\boxed{c} 8 \int_0^1 t f(t) dt;$ $\boxed{d} 2 \int_0^1 t f(t) dt.$
- 5. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di massimo assoluto per f(x) se: a non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) > f(x_0)$; b non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) < f(x_0)$; c esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \leq f(x_0)$; d esiste $x^* \in \mathbf{R}$ con $f(x^*) < f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \geq f(x_0)$.
- 6. Sia γ la curva data dal grafico di $f(x) = \arctan x, \ x \in [0,1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx; \quad b \int_0^1 \sqrt{\frac{1+4x+8x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx; \quad c \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx; \quad d \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx.$
- 7. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = -f(x)e^{-f(x)}$ vicino all'origine è:



8. Determinare i numeri complessi soluzione dell'equazione $2z^2 - \overline{z} = -1$. \boxed{a} $z = -\frac{1}{4} \pm i \frac{\sqrt{11}}{4}$; \boxed{b} $z = \pm \frac{\sqrt{7}}{4} + i \frac{1}{4}$; \boxed{c} $z = \frac{1}{4} \pm i \frac{\sqrt{11}}{4}$; \boxed{d} $z = \pm \frac{\sqrt{7}}{4} - i \frac{1}{4}$.

ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia γ la curva data dal grafico di $f(x) = \log(1+x^2), x \in [0,1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{1+4x+8x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx; \quad b \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx; \quad c \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx; \quad d \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx.$
- 2. Quante volte si azzera la funzione $f(x) = 1 + x x^2 x^3$? a 4; b 1; c 2; d 3.
- 3. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^2 x^3 f(\frac{x^2}{4}) dx = \boxed{a} \ 32 \int_0^1 t^2 f(t) dt;$ $\boxed{b} \ 8 \int_0^1 t f(t) dt; \boxed{c} \ 2 \int_0^1 t f(t) dt; \boxed{d} \ 4 \int_0^1 t^2 f(t) dt.$
- 4. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = f(x)e^{f(x)}$ vicino all'origine è:



- 5. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione f(x) = 2(x + |x|). Allora $b_3 = \boxed{a} \ 2/3$; $\boxed{b} \ 4/3$; $\boxed{c} \ 2$; $\boxed{d} \ 1/3$.
- 6. Sia $f(t)=t^6\log t-6\sqrt{t}$ e sia $g(x)=x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h=f\circ g$ nel punto di ascissa $x_0=1$ risulta a $y=\frac{1}{4}x-\frac{25}{4};$ b y=x-4; c $y=\frac{1}{2}x-\frac{9}{2};$ d $y=\frac{1}{3}x-\frac{16}{3}.$
- 7. Determinare i numeri complessi soluzione dell'equazione $2z^2+iz=1$. \boxed{a} $z=\pm\frac{\sqrt{7}}{4}+i\frac{1}{4};$ \boxed{b} $z=\frac{1}{4}\pm i\frac{\sqrt{11}}{4};$ \boxed{c} $z=\pm\frac{\sqrt{7}}{4}-i\frac{1}{4};$ \boxed{d} $z=-\frac{1}{4}\pm i\frac{\sqrt{11}}{4}.$
- 8. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di minimo relativo ma non assoluto per f(x) se: a non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) < f(x_0)$; b esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \le f(x_0)$; c esiste $x^* \in \mathbf{R}$ con $f(x^*) < f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \ge f(x_0)$; d non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) > f(x_0)$.

ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

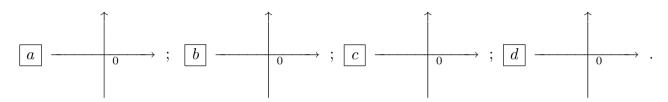
- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f(t) = t^5 \log t 5\sqrt{t}$ e sia $g(x) = x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h = f \circ g$ nel punto di ascissa $x_0 = 1$ risulta a y = x 4; $b y = \frac{1}{2}x \frac{9}{2}$; $c y = \frac{1}{3}x \frac{16}{3}$; $d y = \frac{1}{4}x \frac{25}{4}$.
- 2. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^{\sqrt{2}} x^5 f(\frac{x^2}{2}) dx = \boxed{a} \ 8 \int_0^1 t f(t) dt;$ $\boxed{b} \ 2 \int_0^1 t f(t) dt;$ $\boxed{c} \ 4 \int_0^1 t^2 f(t) dt;$ $\boxed{d} \ 32 \int_0^1 t^2 f(t) dt.$
- 3. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = -f(x)e^{f(x)}$ vicino all'origine è:



- 4. Determinare i numeri complessi soluzione dell'equazione $2z^2-iz=1$. \boxed{a} $z=\frac{1}{4}\pm i\frac{\sqrt{11}}{4};$ \boxed{b} $z=\pm\frac{\sqrt{7}}{4}-i\frac{1}{4};$ \boxed{c} $z=-\frac{1}{4}\pm i\frac{\sqrt{11}}{4};$ \boxed{d} $z=\pm\frac{\sqrt{7}}{4}+i\frac{1}{4}.$
- 5. Sia γ la curva data dal grafico di $f(x) = \frac{x}{1+x}, x \in [0,1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx;$ $b \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx;$ $c \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx;$ $d \int_0^1 \sqrt{\frac{1+4x+8x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx.$
- 6. Quante volte si azzera la funzione $f(x) = 1 x x^2 + x^3$? \boxed{a} 1; \boxed{b} 2; \boxed{c} 3; \boxed{d} 4.
- 7. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di massimo relativo ma non assoluto per f(x) se: a esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \leq f(x_0)$; a esiste a esiste
- 8. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione h(x) = x + |x|. Allora $b_3 = \begin{bmatrix} a \end{bmatrix} 4/3$; $\begin{bmatrix} b \end{bmatrix} 2$; $\begin{bmatrix} c \end{bmatrix} 1/3$; $\begin{bmatrix} d \end{bmatrix} 2/3$.

ANALISI MATEMATICA 1		15 luglio 2009
Cognome:	Nome:	Matricola:

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Quante volte si azzera la funzione $f(x) = 1 x + x^2 x^3$? \boxed{a} 2; \boxed{b} 3; \boxed{c} 4; \boxed{d} 1.
- 2. Sia f una funzione continua, con derivata prima e seconda continue, tale che f(0) = 0, f'(0) = 1 e f''(0) = 1. Allora il grafico della funzione $g(x) = f(x)e^{-f(x)}$ vicino all'origine è:



- 3. Determinare i numeri complessi soluzione dell'equazione $2z^2 + \overline{z} = -1$. \boxed{a} $z = \pm \frac{\sqrt{7}}{4} i\frac{1}{4}$; \boxed{b} $z = -\frac{1}{4} \pm i\frac{\sqrt{11}}{4}$; \boxed{c} $z = \pm \frac{\sqrt{7}}{4} + i\frac{1}{4}$; \boxed{d} $z = \frac{1}{4} \pm i\frac{\sqrt{11}}{4}$.
- 4. Si consideri la funzione $f: \mathbf{R} \to \mathbf{R}$. Il punto x_0 è di minimo assoluto per f(x) se: a esiste $x^* \in \mathbf{R}$ con $f(x^*) < f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \ge f(x_0)$; b non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) > f(x_0)$; c non esiste $x^* \in \mathbf{R}$ tale che $f(x^*) < f(x_0)$; d esiste $x^* \in \mathbf{R}$ con $f(x^*) > f(x_0)$ ed esiste r > 0 tale che, se $x \in (x_0 r, x_0 + r)$, allora $f(x) \le f(x_0)$.
- 5. Sia $f(t) = t^4 \log t 4\sqrt{t}$ e sia $g(x) = x^2$. Allora l'equazione della retta normale al grafico della funzione composta $h = f \circ g$ nel punto di ascissa $x_0 = 1$ risulta $a y = \frac{1}{2}x \frac{9}{2}$; $b y = \frac{1}{3}x \frac{16}{3}$; $c y = \frac{1}{4}x \frac{25}{4}$; d y = x 4.
- 6. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione continua. Allora $\int_0^{\sqrt{2}} x^3 f(\frac{x^2}{2}) dx = \boxed{a} \ 2 \int_0^1 t f(t) dt;$ $\boxed{b} \ 4 \int_0^1 t^2 f(t) dt;$ $\boxed{c} \ 32 \int_0^1 t^2 f(t) dt;$ $\boxed{d} \ 8 \int_0^1 t f(t) dt.$
- 7. Nell'intervallo $(-\pi, \pi)$ sia $\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx))$ la serie di Fourier della funzione $g(x) = \frac{1}{2}(x + |x|)$. Allora $b_3 = \begin{bmatrix} a \\ 2 \end{bmatrix}$ 2; $\begin{bmatrix} b \\ 1/3 \end{bmatrix}$ 1/3; $\begin{bmatrix} c \\ 2/3 \end{bmatrix}$ 2/3.
- 8. Sia γ la curva data dal grafico di $f(x) = \frac{1}{1+x}, x \in [0,1]$. Allora la lunghezza di γ è data da: $a \int_0^1 \sqrt{\frac{2+4x+6x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx;$ $b \int_0^1 \sqrt{\frac{2+2x^2+x^4}{1+2x^2+x^4}} \, dx;$ $c \int_0^1 \sqrt{\frac{1+4x+8x^2+4x^3+x^4}{1+4x+6x^2+4x^3+x^4}} \, dx;$ $d \int_0^1 \sqrt{\frac{1+6x^2+x^4}{1+2x^2+x^4}} \, dx.$