15 luglio 2009

1. (6 punti)

Fissato k > 0, calcolare per $x \in [0, k]$ l'area A_k della regione compresa tra il grafico della funzione $f(x) = x - 2 \arctan x$ e la retta passante per il punto $(0, -\pi)$ e di pendenza 1. Quanto vale $\lim_{k \to 0^+} \frac{A_k}{k}$?

Quanto vale
$$\lim_{k\to 0^+} \frac{A_k}{k}$$
?

15 luglio 2009

1. (6 punti)

Fissato k > 0, calcolare per $x \in [0, k]$ l'area A_k della regione compresa tra il grafico della funzione $f(x) = x - \arctan(2x)$ e la retta passante per il punto $(0, -\pi/2)$ e di pendenza 1. Quanto vale $\lim_{k \to 0^+} \frac{A_k}{k}$?

Quanto vale
$$\lim_{k\to 0^+} \frac{A_k}{k}$$
?

15 luglio 2009

1. (6 punti)

Fissato k > 0, calcolare per $x \in [0, k]$ l'area A_k della regione compresa tra il grafico della funzione $f(x) = \arctan x - 2x$ e la retta passante per il punto $(0, \pi/2)$ e di pendenza -2.

Quanto vale $\lim_{k \to 0^+} \frac{A_k}{k}$?

Quanto vale
$$\lim_{k\to 0^+} \frac{A_k}{k}$$
?

15 luglio 2009

1. (6 punti)

Fissato k > 0, calcolare per $x \in [0, k]$ l'area A_k della regione compresa tra il grafico della funzione $f(x) = \arctan(x/2) - x$ e la retta passante per il punto $(0, \pi/2)$ e di pendenza -1.

Quanto vale $\lim_{k \to 0^+} \frac{A_k}{k}$?

Quanto vale
$$\lim_{k\to 0^+} \frac{A_k}{k}$$
?

15 luglio 2009

2. (6 punti)

Si disegni qualitativamente il grafico della funzione $g(x) = x^2(2 - \log|x|)$ (insieme di definizione, limiti, crescenza/decrescenza; convessità/concavità).

15 luglio 2009

2. (6 punti)

Si disegni qualitativamente il grafico della funzione $g(x) = x^3(1 + \log|x|)$ (insieme di definizione, limiti, crescenza/decrescenza; convessità/concavità).

15 luglio 2009

2. (6 punti)

Si disegni qualitativamente il grafico della funzione $g(x) = x^2(2 - \log |2x|)$ (insieme di definizione, limiti, crescenza/decrescenza; convessità/concavità).

15 luglio 2009

2. (6 punti)

Si disegni qualitativamente il grafico della funzione $g(x) = x^3(1 - \log|x|)$ (insieme di definizione, limiti, crescenza/decrescenza; convessità/concavità).

15 luglio 2009

3. (6 punti)

Si determini la soluzione y(t) del seguente problema di Cauchy:

$$\begin{cases} y' = y^2 \sin t \\ y(0) = \alpha . \end{cases}$$

Si disegni approssimativamente il grafico della soluzione per $\alpha=1$ e per $\alpha=1/4.$

15 luglio 2009

3. (6 punti)

Si determini la soluzione y(t) del seguente problema di Cauchy:

$$\begin{cases} y' = y^2 \cos t \\ y(0) = \beta. \end{cases}$$

Si disegni approssimativamente il grafico della soluzione per $\beta=1$ e per $\beta=1/4.$

15 luglio 2009

3. (6 punti)

Si determini la soluzione y(t) del seguente problema di Cauchy:

$$\begin{cases} y' = y^2 \sin(2t) \\ y(0) = \gamma. \end{cases}$$

Si disegni approssimativamente il grafico della soluzione per $\gamma=1$ e per $\gamma=1/4.$

15 luglio 2009

3. (6 punti)

Si determini la soluzione y(t) del seguente problema di Cauchy:

$$\begin{cases} y' = y^2 \cos(2t) \\ y(0) = \delta. \end{cases}$$

Si disegni approssimativamente il grafico della soluzione per $\delta=2$ e per $\delta=1/4.$