COGNOME	NOME		Matr.
	_	(1)	
	<i>I</i> atematica	,	
21	dicembre 20	10	
Esercizio 1 (7 punti)			
Si calcoli l'area della parte del cerchio di	centro $(0,0)$ e	raggio 2 che sta al di so	pra della retta che
congiunge i punti $(-2,0)$ e $(\sqrt{2},-\sqrt{2})$.			
Risultato:			
Calcoli:			

Esercizio 2 (7 punti)

Si calcoli l'area della superficie di rotazione ottenuta ruotando attorno all'asse \boldsymbol{x} il grafico

$G = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le 1, y = 1\}$	$e^x + e^{-x}$	
$G = \{(x,y) \in \mathbf{R} \mid 0 \le x \le 1, y = 0\}$	${2}$	•

Risultato:		

Calcoli:

Esercizio 3 (8 punti)

Si calcoli il volume della parte del cilindro infinito

$$K = \{(x, y, z) \in \mathbf{R}^3 \mid x^2 + 4y^2 \le 1, z \in \mathbf{R}\}$$

che è **compresa** fra i piani z=1 e x+y+z=1.

Risultato:	

Calcoli:

Esercizio 4 (8 punti)

Si calcoli il flusso del campo vettoriale $\mathbf{v}(x,y,z)=(x+y+z,x+y+z,x^2+y^2)$ attraverso la superficie laterale del cono ottenuto ruotando attorno all'asse z l'insieme

$$M = \{(x, z) \in \mathbf{R}^2 \mid z = 2x, 0 \le z \le 1\}.$$

[Si scelga il versore normale che punta verso il basso, cioè con terza componente negativa.]			
Risultato:			
Calcoli:			