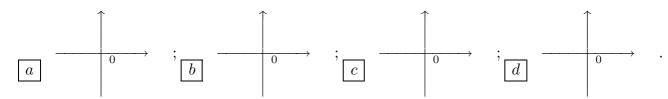
ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Indicate per quale delle seguenti funzioni il punto x=1 è un punto di massimo relativo ? $a (x-1)^4 + (x-1)^3$; $b x^5 + x^4 2$; $c (x-1)^5 (x-1)^4$; $d (x-1)^5 + (x-1)^4$.
- 2. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi; \boxed{b} Se $a_{n+1} \leq \frac{2}{3}a_n$ allora la serie è convergente; \boxed{c} Se $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente; \boxed{d} Se $\lim_{n \to +\infty} a_n^2 = 0$ allora la serie è convergente.
- 3. La retta passante per l'origine e tangente al grafico di $g(x)=x^3+\frac{2}{3}$ è: $a y=\frac{3}{\sqrt[3]{4}}x;$ $b y=\sqrt[3]{\frac{3}{4}}x;$ $c y=\sqrt[3]{3}x;$ $d y=\sqrt[3]{12}x.$
- 4. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x)=g(-x). Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se g'(x) esiste allora g'(0)=0; \boxed{b} $g^3(x)=-g^3(-x)$; \boxed{c} $\int_{-1}^1 g(x) dx=0$; \boxed{d} Se $g(x)\geq 0$ allora x=0 è un punto di minimo relativo.
- 5. Sia $f(x) = \frac{x}{|x|^{\alpha}}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} $3 < \alpha < 4$; \boxed{b} $2 < \alpha < 3$; \boxed{c} $0 < \alpha < 1$; \boxed{d} $1 < \alpha < 2$.
- 6. Le radici quarte di 2i sono:



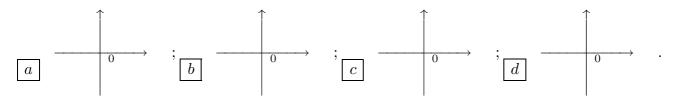
- 7. Indicate quale dei seguenti integrali generalizzati è convergente? $\boxed{a} \int_{1}^{+\infty} \frac{x^{2}e^{-x} + x^{3}}{x^{4} + 1} dx;$ $\boxed{b} \int_{1}^{+\infty} \frac{x + e^{-x}}{x^{2} + 1} dx;$ $\boxed{c} \int_{0}^{1} \frac{\sin \sqrt{x}}{x} dx;$ $\boxed{d} \int_{0}^{1} \frac{\sin x}{x^{2}} dx.$
- 8. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^2 \\ y(0) = 1 \end{cases}$$

 $\text{soddisfa} \quad \boxed{a} \ \ y(1) = 2^{\frac{2}{3}}; \quad \boxed{b} \ \ y(2) = 3^{\frac{1}{2}}; \quad \boxed{c} \ \ y(1/2) = 2; \quad \boxed{d} \ \ y(1/4) = 2^{\frac{1}{2}}.$

ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Le radici terze di -2i sono:



- 2. La retta passante per l'origine e tangente al grafico di $g(x) = x^3 + \frac{4}{3}$ è: $a y = \sqrt[3]{\frac{3}{4}}x$; $b y = \sqrt[3]{3}x$; $c y = \sqrt[3]{12}x$; $d y = \frac{3}{\sqrt[3]{4}}x$.
- 3. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x) = -g(-x). Quale delle seguenti affermazioni è sempre vera? \boxed{a} $g(x^2) = g(-x^2)$; \boxed{b} $\int_{-1}^0 g(x) dx = \int_0^1 g(x) dx$; \boxed{c} g non ha punti di massimo; \boxed{d} L'equazione g(x) = 0 ha sempre soluzione .
- 4. Indicate quale dei seguenti integrali generalizzati è convergente? a $\int_{1}^{+\infty} \frac{x + e^{-x}}{x^2 + 1} dx;$ b $\int_{0}^{1} \frac{e^{\sqrt{x}} 1}{x} dx;$ c $\int_{0}^{1} \frac{e^{x} 1}{x^2} dx;$ d $\int_{1}^{+\infty} \frac{x^2 e^{-x} + x^3}{x^4 + 1} dx.$
- 5. Indicate per quale delle seguenti funzioni il punto x=1 è un punto di minimo relativo ? $a ext{ } x^5+x^4-2; ext{ } b ext{ } (x-1)^5-(x-1)^4; ext{ } c ext{ } (x-1)^5+(x-1)^4; ext{ } d ext{ } (x-1)^4+(x-1)^3.$
- 6. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se $a_{n+1} \leq \frac{2}{3} a_n$ allora la serie è convergente; \boxed{b} Se $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente; \boxed{c} Se $\lim_{n \to +\infty} a_n^2 = 0$ allora la serie è convergente; \boxed{d} Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi.
- 7. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^3 \\ y(0) = 1 \end{cases}$$

soddisfa a $y(2) = 3^{\frac{1}{2}}$; b y(1/2) = 2; c $y(1/4) = 2^{\frac{1}{2}}$; d $y(1) = 2^{\frac{2}{3}}$.

8. Sia $f(x) = \frac{|x|^{\alpha}}{x}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} $2 < \alpha < 3$; \boxed{b} $0 < \alpha < 1$; \boxed{c} $1 < \alpha < 2$; \boxed{d} $3 < \alpha < 4$.

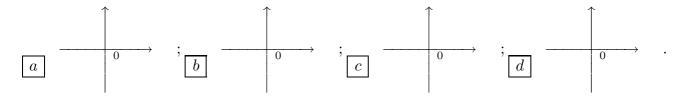
ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? a Se $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente; b Se $\lim_{n\to+\infty} a_n^2 = 0$ allora la serie è convergente; c Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi; d Se $a_{n+1} \leq \frac{2}{3}a_n$ allora la serie è convergente.
- 2. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x)=g(-x). Quale delle seguenti affermazioni è sempre vera? $\boxed{a} \int_{-1}^{1} g(x) dx = 0$; \boxed{b} Se $g(x) \geq 0$ allora x=0 è un punto di minimo relativo; \boxed{c} Se g'(x) esiste allora g'(0)=0; \boxed{d} $g^3(x)=-g^3(-x)$.
- 3. Indicate quale dei seguenti integrali generalizzati è convergente? $a \int_0^1 \frac{\sqrt{1-\cos x}}{x^{3/2}} dx;$ $b \int_0^1 \frac{1-\cos x}{x^3} dx;$ $c \int_1^{+\infty} \frac{x^2 e^{-x} + x^3}{x^4 + 1} dx;$ $d \int_1^{+\infty} \frac{x + e^{-x}}{x^2 + 1} dx.$
- 4. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^{-2} \\ y(0) = 1 \end{cases}$$

soddisfa a y(1/2) = 2; b $y(1/4) = 2^{\frac{1}{2}}$; c $y(1) = 2^{\frac{2}{3}}$; d $y(2) = 3^{\frac{1}{2}}$.

5. Le radici quarte di 3i sono:



- 6. La retta passante per l'origine e tangente al grafico di $g(x) = x^3 + 1$ è: $a y = \sqrt[3]{3}x$; $b y = \sqrt[3]{12}x$; $c y = \frac{3}{\sqrt[3]{4}}x$; $d y = \sqrt[3]{\frac{3}{4}}x$.
- 7. Sia $f(x) = \frac{x^3}{|x|^{\alpha}}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} $0 < \alpha < 1$; \boxed{b} $1 < \alpha < 2$; \boxed{c} $3 < \alpha < 4$; \boxed{d} $2 < \alpha < 3$.
- 8. Indicate per quale delle seguenti funzioni il punto x = 1 è un punto di flesso? a $(x-1)^5 (x-1)^4$; b $(x-1)^5 + (x-1)^4$; c $(x-1)^4 + (x-1)^3$; d $x^5 + x^4 2$.

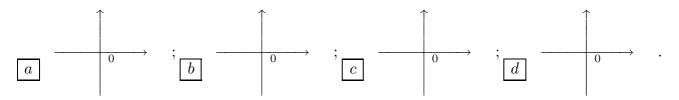
ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. La retta passante per l'origine e tangente al grafico di $g(x) = x^3 + \frac{1}{3}$ è: $a y = \sqrt[3]{12}x$; $b y = \frac{3}{\sqrt[3]{4}}x$; $c y = \sqrt[3]{\frac{3}{4}}x$; $d y = \sqrt[3]{3}x$.
- 2. Indicate quale dei seguenti integrali generalizzati è convergente? $a \int_0^1 \frac{\log(1+x)}{x^2} dx$; $b \int_1^{+\infty} \frac{x^2 e^{-x} + x^3}{x^4 + 1} dx$; $c \int_1^{+\infty} \frac{x + e^{-x}}{x^2 + 1} dx$; $d \int_0^1 \frac{\log(1+\sqrt{x})}{x} dx$.
- 3. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^{-3} \\ y(0) = 1 \end{cases}$$

soddisfa a $y(1/4) = 2^{\frac{1}{2}}$; b $y(1) = 2^{\frac{2}{3}}$; c $y(2) = 3^{\frac{1}{2}}$; d y(1/2) = 2.

- 4. Sia $f(x) = \frac{|x|^{\alpha}}{x^3}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} $1 < \alpha < 2$; \boxed{b} $3 < \alpha < 4$; \boxed{c} $2 < \alpha < 3$; \boxed{d} $0 < \alpha < 1$.
- 5. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se $\lim_{n\to+\infty} a_n^2 = 0$ allora la serie è convergente; \boxed{b} Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi; \boxed{c} Se $a_{n+1} \leq \frac{2}{3}a_n$ allora la serie è convergente; \boxed{d} Se $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente.
- 6. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x) = -g(-x). Quale delle seguenti affermazioni è sempre vera? \boxed{a} g non ha punti di massimo; \boxed{b} L'equazione g(x) = 0 ha sempre soluzione ; \boxed{c} $g(x^2) = g(-x^2)$; \boxed{d} $\int_{-1}^0 g(x) dx = \int_0^1 g(x) dx$.
- 7. Indicate per quale delle seguenti funzioni il punto x=1 è un punto di massimo relativo ? $a (x-1)^5 + (x-1)^4$; $b (x-1)^4 + (x-1)^3$; $c x^5 + x^4 2$; $d (x-1)^5 (x-1)^4$.
- 8. Le radici terze di -3i sono:



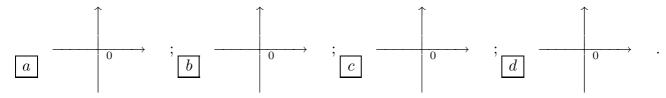
ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		 Test Es1 Es2 Es3

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x)=g(-x). Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se g'(x) esiste allora g'(0)=0; \boxed{b} $g^3(x)=-g^3(-x)$; \boxed{c} $\boxed{\int_{-1}^1 g(x) dx = 0}$; \boxed{d} Se $g(x) \geq 0$ allora x=0 è un punto di minimo relativo.
- 2. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^{-3} \\ y(0) = 1 \end{cases}$$

 $\text{soddisfa} \quad \boxed{a} \ \ y(1) = 2^{\frac{2}{3}}; \quad \boxed{b} \ \ y(2) = 3^{\frac{1}{2}}; \quad \boxed{c} \ \ y(1/2) = 2; \quad \boxed{d} \ \ y(1/4) = 2^{\frac{1}{2}}.$

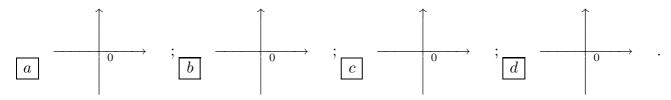
- 3. Sia $f(x) = \frac{x}{|x|^{\alpha}}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} $3 < \alpha < 4$; \boxed{b} $2 < \alpha < 3$; \boxed{c} $0 < \alpha < 1$; \boxed{d} $1 < \alpha < 2$.
- 4. Indicate per quale delle seguenti funzioni il punto x=1 è un punto di minimo relativo ? $a (x-1)^4 + (x-1)^3$; $b x^5 + x^4 2$; $c (x-1)^5 (x-1)^4$; $d (x-1)^5 + (x-1)^4$.
- 5. La retta passante per l'origine e tangente al grafico di $g(x)=x^3+\frac{2}{3}$ è: $a y=\frac{3}{\sqrt[3]{4}}x;$ $b y=\sqrt[3]{\frac{3}{4}}x;$ $c y=\sqrt[3]{3}x;$ $d y=\sqrt[3]{12}x.$
- 6. Indicate quale dei seguenti integrali generalizzati è convergente? $\boxed{a} \int_{1}^{+\infty} \frac{x^{2}e^{-x} + x^{3}}{x^{4} + 1} dx;$ $\boxed{b} \int_{1}^{+\infty} \frac{x + e^{-x}}{x^{2} + 1} dx; \boxed{c} \int_{0}^{1} \frac{\sin \sqrt{x}}{x} dx; \boxed{d} \int_{0}^{1} \frac{\sin x}{x^{2}} dx.$
- 7. Le radici quarte di -2i sono:



8. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? a Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi; b Se $a_{n+1} \leq \frac{2}{3}a_n$ allora la serie è convergente; c Se $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente; d Se $\lim_{n \to +\infty} a_n^2 = 0$ allora la serie è convergente.

ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Indicate quale dei seguenti integrali generalizzati è convergente? $\boxed{a} \int_{1}^{+\infty} \frac{x + e^{-x}}{x^2 + 1} dx;$ $\boxed{b} \int_{0}^{1} \frac{e^{\sqrt{x}} 1}{x} dx;$ $\boxed{c} \int_{0}^{1} \frac{e^{x} 1}{x^2} dx;$ $\boxed{d} \int_{1}^{+\infty} \frac{x^2 e^{-x} + x^3}{x^4 + 1} dx.$
- 2. Sia $f(x) = \frac{|x|^{\alpha}}{x}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} 2 < α < 3; \boxed{b} 0 < α < 1; \boxed{c} 1 < α < 2; \boxed{d} 3 < α < 4.
- 3. Indicate per quale delle seguenti funzioni il punto x=1 è un punto di flesso ? a x^5+x^4-2 ; b $(x-1)^5-(x-1)^4$; c $(x-1)^5+(x-1)^4$; d $(x-1)^4+(x-1)^3$.
- 4. Le radici terze di 2i sono:



- 5. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x) = -g(-x). Quale delle seguenti affermazioni è sempre vera? $\boxed{a} g(x^2) = g(-x^2); \boxed{b} \int_{-1}^0 g(x) dx = \int_0^1 g(x) dx; \boxed{c} g$ non ha punti di massimo; \boxed{d} L'equazione g(x) = 0 ha sempre soluzione .
- 6. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^{-2} \\ y(0) = 1 \end{cases}$$

soddisfa a $y(2) = 3^{\frac{1}{2}}$; b y(1/2) = 2; c $y(1/4) = 2^{\frac{1}{2}}$; d $y(1) = 2^{\frac{2}{3}}$.

- 7. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se $a_{n+1} \leq \frac{2}{3} a_n$ allora la serie è convergente; \boxed{b} Se $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente; \boxed{c} Se $\lim_{n \to +\infty} a_n^2 = 0$ allora la serie è convergente; \boxed{d} Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi.
- 8. La retta passante per l'origine e tangente al grafico di $g(x) = x^3 + \frac{4}{3}$ è: $a y = \sqrt[3]{\frac{3}{4}}x$; $b y = \sqrt[3]{3}x$; $c y = \sqrt[3]{12}x$; $d y = \frac{3}{\sqrt[3]{4}}x$.

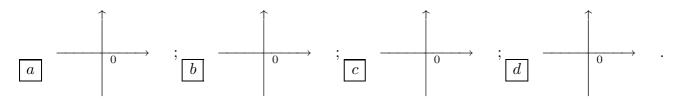
ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^3 \\ y(0) = 1 \end{cases}$$

soddisfa $a y(1/2) = 2; b y(1/4) = 2^{\frac{1}{2}}; c y(1) = 2^{\frac{2}{3}}; d y(2) = 3^{\frac{1}{2}}.$

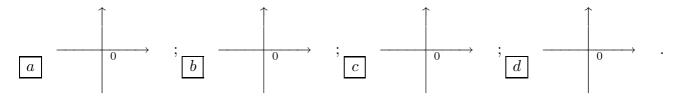
- 2. Indicate per quale delle seguenti funzioni il punto x=1 è un punto di minimo relativo ? $a (x-1)^5 (x-1)^4$; $b (x-1)^5 + (x-1)^4$; $c (x-1)^4 + (x-1)^3$; $d x^5 + x^4 2$.
- 3. Le radici quarte di 3i sono:



- 4. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente; \boxed{b} Se $\lim_{n\to+\infty} a_n^2 = 0$ allora la serie è convergente; \boxed{c} Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi; \boxed{d} Se $a_{n+1} \leq \frac{2}{3}a_n$ allora la serie è convergente.
- 5. Indicate quale dei seguenti integrali generalizzati è convergente? $\boxed{a} \int_0^1 \frac{\sqrt{1-\cos x}}{x^{3/2}} dx;$ $\boxed{b} \int_0^1 \frac{1-\cos x}{x^3} dx;$ $\boxed{c} \int_1^{+\infty} \frac{x^2 e^{-x} + x^3}{x^4 + 1} dx;$ $\boxed{d} \int_1^{+\infty} \frac{x + e^{-x}}{x^2 + 1} dx.$
- 6. Sia $f(x) = \frac{x^3}{|x|^{\alpha}}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} $0 < \alpha < 1$; \boxed{b} $1 < \alpha < 2$; \boxed{c} $3 < \alpha < 4$; \boxed{d} $2 < \alpha < 3$.
- 7. La retta passante per l'origine e tangente al grafico di $g(x) = x^3 + 1$ è: $a y = \sqrt[3]{3}x$; $b y = \sqrt[3]{12}x$; $c y = \frac{3}{\sqrt[3]{4}}x$; $d y = \sqrt[3]{\frac{3}{4}}x$.
- 8. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x)=g(-x). Quale delle seguenti affermazioni è sempre vera? $\boxed{a} \int_{-1}^{1} g(x) dx = 0$; $\boxed{b} \operatorname{Se} g(x) \geq 0$ allora x=0 è un punto di minimo relativo; $\boxed{c} \operatorname{Se} g'(x)$ esiste allora g'(0)=0; $\boxed{d} g^3(x)=-g^3(-x)$.

ANALISI MATEMATICA 1 - Secondo appello		21 febbraio 2011
Cognome:	Nome:	Matricola:
Corso di laurea:		

- Una ed una sola delle quattro affermazioni è corretta. Indicarla con una croce.
- Per annullare una risposta ritenuta errata racchiuderla in un cerchio.
- Risposta corretta: +1.5. Risposta errata: -0.25.
- 1. Sia $f(x) = \frac{|x|^{\alpha}}{x^3}$, per $x \neq 0$ e f(0) = 0. Quale è l'insieme degli $\alpha \in \mathbf{R}$ per i quali il punto x = 0 è un punto a tangente verticale del grafico di f? \boxed{a} $1 < \alpha < 2$; \boxed{b} $3 < \alpha < 4$; \boxed{c} $2 < \alpha < 3$; \boxed{d} $0 < \alpha < 1$.
- 2. Le radici terze di -3i sono:



- 3. Sia $\sum_{n=0}^{+\infty} a_n$ una serie a termini positivi. Quale delle seguenti affermazioni è sempre vera? \boxed{a} Se $\lim_{n\to+\infty} a_n^2 = 0$ allora la serie è convergente; \boxed{b} Se la serie è convergente allora $a_{n+1} \leq a_n$ per tutti gli n sufficientemente grandi; \boxed{c} Se $a_{n+1} \leq \frac{2}{3}a_n$ allora la serie è convergente; \boxed{d} Se $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = 1$ allora la serie è convergente.
- 4. La retta passante per l'origine e tangente al grafico di $g(x) = x^3 + \frac{1}{3}$ è: $a y = \sqrt[3]{12}x$; $b y = \frac{3}{\sqrt[3]{4}}x$; $c y = \sqrt[3]{\frac{3}{4}}x$; $d y = \sqrt[3]{3}x$.
- 5. La soluzione del problema di Cauchy

$$\begin{cases} y' = y^2 \\ y(0) = 1 \end{cases}$$

soddisfa a $y(1/4) = 2^{\frac{1}{2}}$; b $y(1) = 2^{\frac{2}{3}}$; c $y(2) = 3^{\frac{1}{2}}$; d y(1/2) = 2.

- 6. Indicate per quale delle seguenti funzioni il punto x=1 è un punto di flesso? a $(x-1)^5+(x-1)^4$; b $(x-1)^4+(x-1)^3$; c x^5+x^4-2 ; d $(x-1)^5-(x-1)^4$.
- 7. Sia g una funzione continua, definita in \mathbf{R} e tale che g(x) = -g(-x). Quale delle seguenti affermazioni è sempre vera? \boxed{a} g non ha punti di massimo; \boxed{b} L'equazione g(x) = 0 ha sempre soluzione ; \boxed{c} $g(x^2) = g(-x^2)$; \boxed{d} $\int_{-1}^0 g(x) dx = \int_0^1 g(x) dx$.
- 8. Indicate quale dei seguenti integrali generalizzati è convergente? $a \int_0^1 \frac{\log(1+x)}{x^2} dx$; $b \int_1^{+\infty} \frac{x^2 e^{-x} + x^3}{x^4 + 1} dx$; $c \int_1^{+\infty} \frac{x + e^{-x}}{x^2 + 1} dx$; $d \int_0^1 \frac{\log(1+\sqrt{x})}{x} dx$.