COGNOME	NOME	Matr.
Firma dello studente		
	Analisi Matematica I 30 ottobre 2006	
Esercizio 1		
Si calcoli il limite	$\lim_{x \to +\infty} \frac{\frac{1}{2}x^3 - x - e^{-x}}{\log(3x) - x^3} \ .$	
Risultato:		
Calcoli:		

α .	1	1 1	• •	11.	• ,
~ 1	6.0	COL	11	1 11	$_{ m mite}$
$\mathcal{O}_{\mathbf{I}}$	Cal	ICOI.	ΙΙ	1 11	

$$\lim_{x \to 0} \frac{[\cos(3x) - 1] \sin(2x)}{e^x \log(1 + 2x^3)}$$

Ris	-14	a + a .
DAIS	un.	ato:

Sia $f(x) = \alpha x^2 + \cos(\frac{\pi}{2}e^{x-1})$. Si determinino:

- il valore di $\alpha \in \mathbf{R}$ in modo tale che la retta tangente al grafico di f(x) nel punto (1, f(1)) abbia la stessa pendenza di y = 2x;
- per il valore di α così individuato, la retta tangente al grafico di f(x) nel punto (1, f(1)).

Risposte:		

α .	1	• 1		1 .	• •		1 .	1 11	c ·
S_1	determinino	11	massimo	assoluto	e 1	minimo	assoluto	della	funzione

$$f(x) = 4x^3 - 3x^2 - 6x + 6$$

nell'interval	illo $[-1, 2]$.	
Risposta:		
Calcoli:		

COGNOME	NOME	Matr.	
Firma dello studente			
	Analisi Matematica I 30 ottobre 2006		
Esercizio 1			
Si calcoli il limite	$\lim_{x \to +\infty} \frac{x^3 + \log(x^2)}{2e^{-x} + 3x^3 - x^2} \ .$		
Risultato:			

· ·	_				
					nite
$\omega_{\rm L}$	Can	-	11	111	\mathbf{m}

$$\lim_{x \to 0} \frac{(e^{2x} - 1) \log(1 - 3x^2)}{\sin(4x^3) \cos x} .$$

Risultato:

_	•	•	0
Eser	C12	z_{10}	. 3

Sia $f(x) = -\alpha x^3 + \sin(\pi e^{x-1})$. Si determinino:

- il valore di $\alpha \in \mathbf{R}$ in modo tale che la retta tangente al grafico di f(x) nel punto (1, f(1)) abbia la stessa pendenza di y = -x;
- per il valore di α così individuato, la retta tangente al grafico di f(x) nel punto (1, f(1)).

D: 4		
Risposte:		
Calcoli:		

α .	1	• •						1 11	c .
\sim 1	determining	าป	massimo	assoluto	P 1	minimo	aggoliito	della	tunzione

$$f(x) = 3 + 6x - 3x^2 - 4x^3$$

nell'interva	[-2,1].		
Risposta:			
Calcoli:			

COGNOME	NOME	Matr.
Firma dello studente		
	Analisi Matematica I 30 ottobre 2006	
Esercizio 1		
Si calcoli il limite	$\lim_{x \to +\infty} \frac{2\log x - 3x^3}{2x^3 - 2x^2 + e^{-2x}} .$	

Risultato: Calcoli:

		_		
C:	calcoli	: :1	1 1:.	i+ -
וה	Carcon	1 11		пше

$$\lim_{x \to 0} \frac{\cos(3x) \, \log(1 - 2x^3)}{[1 - \cos(4x)] \, \sin x} \; .$$

Risultato:		

Sia $f(x) = -2\alpha x^2 - \cos(\frac{\pi}{2}e^{x-1})$. Si determinino:

- il valore di $\alpha \in \mathbf{R}$ in modo tale che la retta tangente al grafico di f(x) nel punto (1, f(1)) abbia la stessa pendenza di y = -3x;
- per il valore di α così individuato, la retta tangente al grafico di f(x) nel punto (1, f(1)).

	_	
Risposte:		
Calcoli:	_	

Si	determinino	il	massimo	assoluto	e il	minimo	assoluto	della	funzione
----	-------------	----	---------	----------	------	--------	----------	-------	----------

$$f(x) = 4x^3 - 15x^2 + 18x + 1$$

nell'interva	llo $[0, 2]$.		
Risposta:			
Calcoli			

COGNOME	NOME	Matr.
Firma dello studente		
	Analisi Matematica I 30 ottobre 2006	
Esercizio 1		
Si calcoli il limite	$\lim_{x \to +\infty} \frac{\log(2x) + x - \frac{1}{2}x^3}{e^{-2x} + 2x^3} .$	
Risultato:		
Calcoli:		

α .	1	1 1	• •	11.	• ,
~ 1	6.0	COL	11	1 11	$_{ m mite}$
$\mathcal{O}_{\mathbf{I}}$	Cal	ICOI.	ΙΙ	1 11	

$$\lim_{x \to 0} \frac{e^{-x} \sin(2x^3)}{(e^{2x} - 1) \log(1 + 3x^2)} .$$

Risultato:

-		0
HOOM	cizio	٠,

Sia $f(x) = 2\alpha x^3 - \sin(\pi e^{x-1})$. Si determinino:

- il valore di $\alpha \in \mathbf{R}$ in modo tale che la retta tangente al grafico di f(x) nel punto (1, f(1)) abbia la stessa pendenza di y = 3x;
- $\bullet\,$ per il valore di α così individuato, la retta tangente al grafico di f(x) nel punto (1,f(1)).

Risposte:		
Calcoli:		

α .	1	• •						1 11	c .
\sim 1	determining	าป	massimo	assoluto	P 1	minimo	aggoliito	della	tunzione

$$f(x) = 2 - 6x + 9x^2 - 4x^3$$

nell'interva	llo [-1,2].			
		 	_	
Risposta:				
Calcoli:				