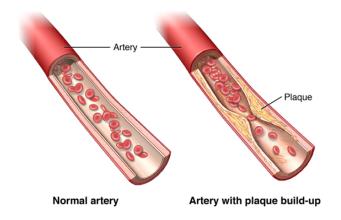
Biomedical Application of Mathematics

Masters course in Mathematics
Specialism: Modelling and Simulation for Biomedical Applications

Prof. Eleuterio F. Toro toro@ing.unitn.it
Mr. Christian Contarino christian.contarino@unitn.it

Laboratory of Applied Mathematics DICAM University of Trento, Italy


Matlab 2015b

Assistant: Christian Contarino

Reference : Bonmassari's slides, Liang et al. [1], Lecture notes of Computational Haemodynamics [2] and Strocchi et al. [3]

December 3, 2015

We are interested in studying the haemodynamic effects of an arterial stenosis in a global model of the human circulation.

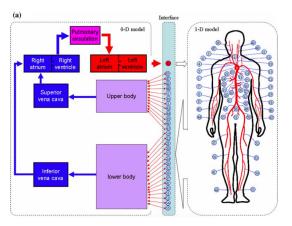


Figure: From Liang et al. [1]

The 1D model is composed by 55 arteries.

Table 1 Physiological data of the arterial tree

No.	Arterial segment	L (cm)	r ₀ (cm)	r ₁ (cm)	$c_0 \; (\mathrm{m \; s^{-1}})$	$R_0 \text{ (mmHg s ml}^{-1}\text{)}$	$R_1 \text{ (mmHg s ml}^{-1}\text{)}$	C_1 (ml mmHg ⁻¹)
1	Ascending aorta	2.0	1.525	1.420	5.11	-	-	_
2	Aortic arch I	3.0	1.420	1.342	5.11	_	-	-
3	Brachiocephalic	3.5	0.650	0.620	5.91	_	_	_
4	R.subclavian I	3.5	0.425	0.407	5.29	_	_	_
5	R.carotid	17.7	0.400	0.370	5.92	_	_	_
6	R.vertebral	13.5	0.200	0.200	9.64	6.10	27.87	0.0126
7	R.subclavian II	39.8	0.407	0.230	5.38	_	_	_
8	R.radius	22.0	0.175	0.140	10.12	14.21	18.34	0.0143
9	R.ulnar I	6.7	0.215	0.215	8.78	_	_	_
10	Aortic arch II	4.0	1.342	1.246	5.11	_	_	_
11	L.carotid	20.8	0.400	0.370	5.92	_	_	-
12	Thoracic aorta I	5.5	1.246	1.124	5.11	_	_	_
13	Thoracic aorta II	10.5	1.124	0.924	5.11	_	_	_
14	Intercoastals	7.3	0.300	0.300	7.13	2.00	6.04	0.0542

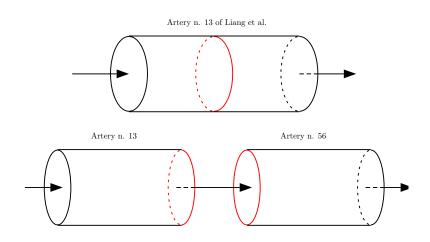
Figure: Table n. 1 of [1]

We have modeled the healthy control (no stenosis), two stenoses: in the ascending aorta (no. 1) and in the thoracic aorta (n. 13).

Exam

You are asked to prepare an oral presentation with the following features:

- Characterize the cardiovascular system using the indicators introduced by Dr. Bonmassari: PV loop, mean arterial pressure, CI, etc.
- Discuss the differences between the healthy control and patients with the stenosis.
- Prepare an oral presentation (15-20 minutes) with slides.
- Create a zip file containing the slides and the scripts you have used to study the data, call it yoursurname-BAM-2015-16.zip and submit to christian.contarino@unitn.it and eleuterio.toro@unitn.it one week before the exam.


Data

- You have 3 folders: HealthyControl, StenosisAscAo and StenosisThorAo
 - HealthyControl : healthy control
 - StenosisAscAo: Stenosis in the ascending aorta (Artery No. 1).
 - StenosisThorAo: Stenosis in the thoracic aorta (Artery No. 13)
- Each folder contains dat-files: NameA.dat, NameP.dat, NameQ.dat and NameHeart.dat

Important

- Assume 77-kg person of 1.75 m in height.
- A cardiac cycle lasts 1 second.
- You have 55+1 arteries

Stenosis in the thoracic aorta

Summary of the data: 1D model

NameP.dat, NameA.dat, NameQ.dat

- First column is time s
- From column 2 to column 56, you find pressures, cross-sectional areas and flows in arteries from 1 to 55 of table 1 of Liang et al. [1]
- Column 57 represents the second half of the vessel with the stenosis
 - For HealthyControl do not consider the 56th artery
 - Note that for the stenosis in the ascending aorta, artery no. 1 of [1], is composed of two vessels, whose column numbers are 2 (first proximal half) and 57 (second proximal half)
 - Note that for the stenosis in the thoracic aorta, artery no. 13 of [1] is composed of two vessels, whose column numbers are 14 (first proximal half) and 57 (second proximal half)
- Pressure is measured in mmHg, cross-sectional area in m^2 and flow in m^3/s
- The data is given by considering sampling area and flow at the center of each artery

Summary of the data: 0D model

NameHeart.dat

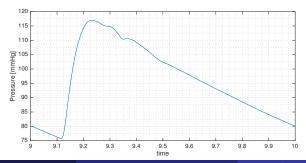
- First column is the time s
- Pressure is measured in mHg, volume in mL and flow in mL/s

Column			
10	V_{RA}	Volume right atrium	
11	Q_{TV}	Flow through the tricuspid valve	
12	V_{RV}	Volume right ventricle	
13	Q_{PV}	Flow through the pulmonary valve	
20	V_{LA}	Volume left atrium	
21	Q_{MV}	Flow through the mitral valve	
22	V_{LV}	Volume left ventricle	
23	Q_{AV}	Flow through the aortic valve	
32	P_{LA}	Pressure left atrium	
33	P_{LV}	Pressure left ventricle	
34	P_{RA}	Pressure right atrium	
35	P_{RV}	Pressure right ventricle	

If you think you need other data (such as volume in the lower capillaries), write me.

• Load the Healthy control's pressure

P=load('HealthyControl/SaveData/HealthyControlP.dat') %Load the .dat file

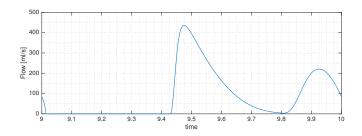

- P(:,1) is the time. Time goes from 9 to 10 because we have simulated 10 cardiac cycles.
- P(:,2) is the pressure of the first artery of the Liang's model, namely the ascending aorta.

• Plot the pressure of the 13th artery

```
\mathsf{plot}\big(\mathsf{P}(:,\!1),\!\mathsf{P}(:,\!14)\big) \  \, \%\mathsf{P}(:,\!1) \text{ is the time and } \mathsf{P}(:,\!14) \text{ is the pressure of the 13th artery}
```

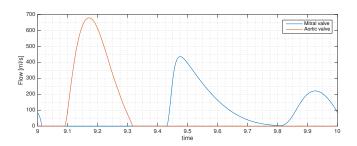
Mean value of the 13th artery

```
mean(P(:,14))
ans =
96.0276
```



Load the Heart information of the Healthy control

```
H=load('HealthyControl/SaveData/HealthyControlHeart.dat')
%Load the .dat file
```


Plot the flow through the mitral valve

```
plot(H(:,1),H(:,21)) %H(:,1) is the time and H(:,21) is the flow through the mitral valve
```


• 2 plots in the same figure with a grid and a legend.

```
plot(H(:,1),H(:,21))
grid minor
xlabel('time')
ylabel('Flow [ml/s]')
hold on
plot(H(:,1),H(:,23))
legend('Mitral valve','Aortic valve')
```


Indicators

Here is an example of possible indicators you can use to characterize the cardiovascular system

- Pressure pulse
- Stroke volume and stroke volume index
- Cardiac output and cardiac index
- Ending diastolic and systolic volume
- ABI
- Plot the pressure of the ascending aorta, left atrium and left ventricle
- Refer to the plots of [1] and [4]

Use plots and histograms to show the differences.

References

F. Liang, S. Takagi, R. Himeno, H. Liu, Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses, Med Biol Eng Comput 47 (7) (2009) 743-755.

doi:10.1007/s11517-009-0449-9.

URL http://dx.doi.org/10.1007/s11517-009-0449-9

E. T. M. Strocchi, C. Contarino, R. Bonmassari, A global mathematical model for the

E. F. Toro, Lecture Notes of Computational Haemodynamics (2015/2016).

simulation of stenoses and bypass placement in the human arterial system.

F. Liang, S. Takagi, R. Himeno, H. Liu, Biomechanical characterization of ventricular-arterial coupling during aging: A multi-scale model study, Journal of Biomechanics 42 (6) (2009) 692-704.

doi:10.1016/j.jbiomech.2009.01.010.

URL http://dx.doi.org/10.1016/j.jbiomech.2009.01.010