Partial Differential Equations in Biology The boundary element method

March 26, 2013

Partial Differential Equations in Biology

Introduction and notation

The problem:

$$\begin{cases} -\Delta u = f & \text{in } D \subset \mathbb{R}^d \\ u = \varphi & \text{in } \Gamma_D \\ \frac{\partial u}{\partial n} = g & \text{on } \Gamma_N \,, \end{cases}$$

where $\partial D = \overline{\Gamma_D} \cup \overline{\Gamma_N}$, $\Gamma_D \cap \Gamma_N = \emptyset$ (possibly, $\Gamma_D = \emptyset$ [Neumann problem] or $\Gamma_N = \emptyset$ [Dirichlet problem]).

Given $\boldsymbol{\xi} \in \mathbb{R}^d$

K(·, ξ) denotes the fundamental solution of the Laplace operator:

$$-\Delta K = \delta_{\boldsymbol{\xi}} \, .$$

• $T(\cdot, \xi)$ denotes the normal derivative of $K(\cdot, \xi)$, defined on $\partial D = \Gamma$ (**n** is the unit outward normal vector on Γ):

$$T(\mathbf{x},\boldsymbol{\xi}) = \nabla_{\mathbf{x}} K(\mathbf{x},\boldsymbol{\xi}) \cdot \mathbf{n}(\mathbf{x}) \,.$$

Fundamental solutions

If
$$D \subset \mathbb{R}^2$$

 $\mathcal{K}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{2\pi} \log \frac{1}{|\mathbf{x} - \boldsymbol{\xi}|}$
 $T(\mathbf{x}, \boldsymbol{\xi}) = -\frac{1}{2\pi} \frac{\mathbf{x} - \boldsymbol{\xi}}{|\mathbf{x} - \boldsymbol{\xi}|^2} \cdot \mathbf{n}(\mathbf{x})$.
If $D \subset \mathbb{R}^3$
 $\mathcal{K}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi} \frac{1}{|\mathbf{x} - \boldsymbol{\xi}|}$
 $T(\mathbf{x}, \boldsymbol{\xi}) = -\frac{1}{4\pi} \frac{\mathbf{x} - \boldsymbol{\xi}}{|\mathbf{x} - \boldsymbol{\xi}|^3} \cdot \mathbf{n}(\mathbf{x})$.

Partial Differential Equations in Biology

æ

個人 くほん くほん

Basic integral equations

Internal points: $\boldsymbol{\xi} \in D$

$$u(\boldsymbol{\xi}) + \int_{\Gamma} u(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) - \int_{\Gamma} \frac{\partial u}{\partial n}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x})$$

= $\int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) \, d\mathbf{x}$. (1)

Boundary points: $\boldsymbol{\xi} \in \Gamma$ (regular boundary)

$$\frac{1}{2}u(\boldsymbol{\xi}) + \int_{\Gamma} u(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) - \int_{\Gamma} \frac{\partial u}{\partial n}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) \\ = \int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) \, d\mathbf{x} \,.$$
(2)

Polyhedral domain and piecewise-polynomial functions

- The domain D is approximated by a polyhedral domain D_h (union of triangles or tetrahedra; here h is the maximum of their diameters).
- The boundary ∂D = Γ is therefore approximated by ∂D_h (union of M segments or triangles S_k).
- The approximate solution is piecewise-polynomial (on D_h, if the problem to approximate is defined in D, or on ∂D_h, if the problem to approximate is defined in Γ).

In our case (approximation of the integral equation (2), defined on Γ , by piecewise-constant functions on ∂D_h):

▶ the unknowns are the values at the mid-point (or baricenter) ξ_j of S_j , j = 1, ..., M.

- 4 E b 4 E b

Let u_h the approximation of u on the boundary and q_h the approximation of $\frac{\partial u}{\partial n}$ on the boundary (clearly, u_h and q_h are defined on ∂D_h , while u and $\frac{\partial u}{\partial n}$ are defined on Γ). They are identified by their constant values α_k and β_k on the element S_k . We can start considering an approximate form of (2), valid for $\boldsymbol{\xi} \in \partial D_h$:

$$\frac{1}{2}u_h(\boldsymbol{\xi}) + \int_{\partial D_h} u_h(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) - \int_{\partial D_h} q_h(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x})$$

$$= \int_D f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) \, d\mathbf{x} \, .$$
(3)

Dirichlet problem. We know $u = \varphi$ on the boundary Γ , therefore we can construct a suitable approximation φ_h on the boundary ∂D_h . We look for q_h , the approximation of $\frac{\partial u}{\partial n}$. For $j = 1, \dots, M$ $\frac{1}{2}\varphi_h(\boldsymbol{\xi}_i) + \int_{\partial D_i} \varphi_h(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}_i) ds(\mathbf{x})$

$$-\int_{\partial D_h} q_h(\mathbf{x}) \mathcal{K}(\mathbf{x},\boldsymbol{\xi}_j) \, ds(\mathbf{x}) = \int_D f(\mathbf{x}) \mathcal{K}(\mathbf{x},\boldsymbol{\xi}_j) \, d\mathbf{x} \,. \tag{4}$$

$$\begin{aligned} \int_{\partial D_h} q_h(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) &= \sum_{k=1}^M \int_{\mathcal{S}_k} q_h(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) \\ &= \sum_{k=1}^M \beta_k \int_{\mathcal{S}_k} \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) \, . \end{aligned}$$

We have thus obtained the linear system

$$A^{\rm Dir}\boldsymbol{\beta} = \mathbf{b}^{\rm Dir}\,,$$

where

$$A_{jk}^{\text{Dir}} = \int_{S_k} \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) \,,$$
$$b_j^{\text{Dir}} = \frac{1}{2} \varphi_h(\boldsymbol{\xi}_j) + \int_{\partial D_h} \varphi_h(\mathbf{x}) \, \mathcal{T}(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) - \int_D f(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}_j) \, d\mathbf{x} \,.$$

The matrix A^{Dir} is not symmetric.

Neumann problem. We know $\frac{\partial u}{\partial n} = g$ on the boundary Γ , therefore we can construct a suitable approximation g_h on the boundary ∂D_h . We look for u_h , the approximation of u. For $j = 1, \ldots, M$

$$\frac{1}{2}u_{h}(\boldsymbol{\xi}_{j}) + \int_{\partial D_{h}} u_{h}(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}_{j}) ds(\mathbf{x}) - \int_{\partial D_{h}} g_{h}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}_{j}) ds(\mathbf{x}) = \int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}_{j}) d\mathbf{x} .$$

$$(5)$$

$$\begin{aligned} \int_{\partial D_h} u_h(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) &= \sum_{k=1}^M \int_{S_k} u_h(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) \\ &= \sum_{k=1}^M \alpha_k \int_{S_k} T(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) \, . \end{aligned}$$

We have thus obtained the linear system

$$A^{\operatorname{Neu}} \boldsymbol{\alpha} = \mathbf{b}^{\operatorname{Neu}},$$

where

$$\begin{aligned} \mathcal{A}_{jk}^{\mathrm{Neu}} &= \frac{1}{2} \delta_{jk} + \int_{\mathcal{S}_k} \mathcal{T}(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) \,, \\ b_j^{\mathrm{Neu}} &= \int_{\partial D_h} g_h(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}_j) \, ds(\mathbf{x}) + \int_D f(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}_j) \, d\mathbf{x} \,. \end{aligned}$$

The matrix A^{Neu} is not symmetric.

[The matrix A^{Neu} is singular, the kernel being given by constant vectors $c(1, 1, \ldots, 1, 1)$: a technical problem that we do not look at in depth.]

Another set of approximate equations can be obtained by projecting equation (3) on the subspace of piecewise-constant functions on ∂D_h . This is an example of Galerkin method.

Let us define by $\{\psi_j\}$, j = 1, ..., M, a set of basis functions of the vector space given by the piecewise-constant functions on ∂D_h .

We can write $u_h(\boldsymbol{\xi}) = \sum_{k=1}^{M} \alpha_k \psi_k(\boldsymbol{\xi}), \ q_h(\boldsymbol{\xi}) = \sum_{k=1}^{M} \beta_k \psi_k(\boldsymbol{\xi}).$ [The simplest choice is given by ψ_j equal to 1 in S_j , and equal to 0 in all the other S_l for $l \neq j$.]

Multiplying equation (3) by ψ_j and integrating on ∂D_h we find for each $j = 1, \ldots, M$:

$$\frac{1}{2} \int_{\partial D_{h}} u_{h}(\boldsymbol{\xi}) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) + \int_{\partial D_{h}} \left(\int_{\partial D_{h}} u_{h}(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) - \int_{\partial D_{h}} \left(\int_{\partial D_{h}} q_{h}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) = \int_{\partial D_{h}} \left(\int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) d\mathbf{x} \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) .$$
(6)

Dirichlet problem. We know $u = \varphi$ on the boundary Γ , therefore we can construct a suitable approximation φ_h on the boundary ∂D_h . We look for q_h , the approximation of $\frac{\partial u}{\partial n}$. For $j = 1, \ldots, M$ we have

$$\frac{1}{2} \int_{\partial D_{h}} \varphi_{h}(\boldsymbol{\xi}) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\
+ \int_{\partial D_{h}} \left(\int_{\partial D_{h}} \varphi_{h}(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\
- \int_{\partial D_{h}} \left(\int_{\partial D_{h}} q_{h}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\
= \int_{\partial D_{h}} \left(\int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) d\mathbf{x} \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}).$$
(7)

$$\int_{\partial D_h} \left(\int_{\partial D_h} q_h(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) \right) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ = \sum_{k=1}^M \beta_k \int_{\partial D_h} \int_{\partial D_h} K(\mathbf{x}, \boldsymbol{\xi}) \psi_k(\mathbf{x}) \psi_j(\boldsymbol{\xi}) \, ds(\mathbf{x}) ds(\boldsymbol{\xi}) \, .$$

We have thus obtained the linear system

$$\widehat{A}^{\mathrm{Dir}}\boldsymbol{\beta} = \widehat{\mathbf{b}}^{\mathrm{Dir}},$$

where

$$\begin{split} \widehat{A}_{jk}^{\mathrm{Dir}} &= \int_{\partial D_h} \int_{\partial D_h} \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}) \psi_k(\mathbf{x}) \psi_j(\boldsymbol{\xi}) \, ds(\mathbf{x}) ds(\boldsymbol{\xi}) \,, \\ \widehat{b}_j^{\mathrm{Dir}} &= \frac{1}{2} \int_{\partial D_h} \varphi_h(\boldsymbol{\xi}) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ &+ \int_{\partial D_h} \Big(\int_{\partial D_h} \varphi_h(\mathbf{x}) \mathcal{T}(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) \Big) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ &- \int_{\partial D_h} \Big(\int_D f(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}) \, d\mathbf{x} \Big) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \,. \end{split}$$

Since $K(\mathbf{x}, \boldsymbol{\xi}) = K(\boldsymbol{\xi}, \mathbf{x})$, the matrix \widehat{A}^{Dir} is clearly symmetric.

Neumann problem. We know $\frac{\partial u}{\partial n} = g$ on the boundary Γ , therefore we can construct a suitable approximation g_h on the boundary ∂D_h . We look for u_h , the approximation of u. For $j = 1, \ldots, M$ we have

$$\frac{1}{2} \int_{\partial D_{h}} u_{h}(\boldsymbol{\xi}) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi})$$

$$+ \int_{\partial D_{h}} \left(\int_{\partial D_{h}} u_{h}(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi})$$

$$- \int_{\partial D_{h}} \left(\int_{\partial D_{h}} g_{h}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi})$$

$$= \int_{\partial D_{h}} \left(\int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) d\mathbf{x} \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) .$$

$$(8)$$

$$\int_{\partial D_h} u_h(\boldsymbol{\xi}) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) = \sum_{k=1}^M \alpha_k \int_{\partial D_h} \psi_k(\boldsymbol{\xi}) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) ,$$
$$\int_{\partial D_h} \left(\int_{\partial D_h} u_h(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi})$$
$$= \sum_{k=1}^M \alpha_k \int_{\partial D_h} \int_{\partial D_h} T(\mathbf{x}, \boldsymbol{\xi}) \psi_k(\mathbf{x}) \psi_j(\boldsymbol{\xi}) ds(\mathbf{x}) ds(\boldsymbol{\xi}) .$$

The approximate equations: Galerkin method (cont'd) We have thus obtained the linear system

$$\widehat{\mathcal{A}}^{\operatorname{Neu}} \boldsymbol{\alpha} = \widehat{\mathbf{b}}^{\operatorname{Neu}},$$

where

$$\begin{split} \widehat{A}_{jk}^{\mathrm{Neu}} &= \frac{1}{2} \int_{\partial D_h} \psi_k(\boldsymbol{\xi}) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ &+ \int_{\partial D_h} \int_{\partial D_h} T(\mathbf{x}, \boldsymbol{\xi}) \psi_k(\mathbf{x}) \psi_j(\boldsymbol{\xi}) ds(\mathbf{x}) ds(\boldsymbol{\xi}) \,, \\ \widehat{b}_j^{\mathrm{Neu}} &= \int_{\partial D_h} \Big(\int_{\partial D_h} g_h(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \Big) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ &+ \int_{\partial D_h} \Big(\int_D f(\mathbf{x}) \mathcal{K}(\mathbf{x}, \boldsymbol{\xi}) d\mathbf{x} \Big) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \,. \end{split}$$

Since

$$T(\mathbf{x}, \boldsymbol{\xi}) = \begin{cases} -\frac{1}{2\pi} \frac{\mathbf{x} - \boldsymbol{\xi}}{|\mathbf{x} - \boldsymbol{\xi}|^2} \cdot \mathbf{n}(\mathbf{x}) & \text{for } d{=}2\\ -\frac{1}{4\pi} \frac{\mathbf{x} - \boldsymbol{\xi}}{|\mathbf{x} - \boldsymbol{\xi}|^3} \cdot \mathbf{n}(\mathbf{x}) & \text{for } d{=}3 \end{cases},$$

we see that $T(\mathbf{x}, \boldsymbol{\xi}) \neq T(\boldsymbol{\xi}, \mathbf{x})$, and therefore the matrix \widehat{A}^{Neu} is not symmetric [moreover, as in the collocation case, it is singular...].

A symmetric Galerkin formulation for the Neumann problem can be derived by using a different integral equation, that can be proved to hold for $\boldsymbol{\xi} \in \Gamma$:

$$\frac{1}{2}\frac{\partial u}{\partial n}(\boldsymbol{\xi}) + \frac{\partial}{\partial n_{\boldsymbol{\xi}}}\int_{\Gamma}u(\mathbf{x})T(\mathbf{x},\boldsymbol{\xi})\,ds(\mathbf{x}) \\ -\frac{\partial}{\partial n_{\boldsymbol{\xi}}}\int_{\Gamma}\frac{\partial u}{\partial n}(\mathbf{x})K(\mathbf{x},\boldsymbol{\xi})\,ds(\mathbf{x}) \qquad (9) \\ = \frac{\partial}{\partial n_{\boldsymbol{\xi}}}\int_{D}f(\mathbf{x})K(\mathbf{x},\boldsymbol{\xi})\,d\mathbf{x}\,.$$

Its approximate form for $\boldsymbol{\xi} \in \partial D_h$, in terms of u_h and q_h , is

$$\frac{1}{2}q_{h}(\boldsymbol{\xi}) + \frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{\partial D_{h}} u_{h}(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) - \frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{\partial D_{h}} q_{h}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x})$$
(10)
$$= \frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) d\mathbf{x}.$$

Multiplying equation (10) by ψ_j and integrating on ∂D_h we find for each $j = 1, \ldots, M$:

$$\frac{1}{2} \int_{\partial D_{h}} q_{h}(\boldsymbol{\xi}) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\
+ \int_{\partial D_{h}} \left(\frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{\partial D_{h}} u_{h}(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\
- \int_{\partial D_{h}} \left(\frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{\partial D_{h}} q_{h}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\
= \int_{\partial D_{h}} \left(\frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) d\mathbf{x} \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}).$$
(11)

$$\int_{\partial D_h} \left(\frac{\partial}{\partial n_{\xi}} \int_{\partial D_h} u_h(\mathbf{x}) T(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) \right) \psi_j(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ = \sum_{k=1}^M \alpha_k \int_{\partial D_h} \int_{\partial D_h} \frac{\partial}{\partial n_{\xi}} T(\mathbf{x}, \boldsymbol{\xi}) \psi_k(\mathbf{x}) \psi_j(\boldsymbol{\xi}) \, ds(\mathbf{x}) ds(\boldsymbol{\xi}) \, .$$

We have thus obtained the linear system

$$\widetilde{\mathcal{A}}^{\operatorname{Neu}} oldsymbol{lpha} = \widetilde{oldsymbol{\mathsf{b}}}^{\operatorname{Neu}} \, ,$$

where

$$\widetilde{A}_{jk}^{\text{Neu}} = \int_{\partial D_h} \int_{\partial D_h} \frac{\partial}{\partial n_{\xi}} T(\mathbf{x}, \boldsymbol{\xi}) \psi_k(\mathbf{x}) \psi_j(\boldsymbol{\xi}) \, ds(\mathbf{x}) ds(\boldsymbol{\xi}) \,,$$

$$\begin{split} \widetilde{b}_{j}^{\text{Neu}} &= -\frac{1}{2} \int_{\partial D_{h}} q_{h}(\boldsymbol{\xi}) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ &+ \int_{\partial D_{h}} \left(\frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{\partial D_{h}} q_{h}(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) ds(\mathbf{x}) \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \\ &+ \int_{\partial D_{h}} \left(\frac{\partial}{\partial n_{\boldsymbol{\xi}}} \int_{D} f(\mathbf{x}) K(\mathbf{x}, \boldsymbol{\xi}) d\mathbf{x} \right) \psi_{j}(\boldsymbol{\xi}) ds(\boldsymbol{\xi}) \,. \end{split}$$

Since $\frac{\partial}{\partial n_{\xi}} T(\mathbf{x}, \boldsymbol{\xi}) = \frac{\partial}{\partial n_{\xi}} \frac{\partial}{\partial n_{x}} K(\mathbf{x}, \boldsymbol{\xi})$ is symmetric in \mathbf{x} and $\boldsymbol{\xi}$, we see that the matrix \widetilde{A} is symmetric.

Let us remark that the construction of the matrices \widehat{A}^{Dir} , \widehat{A}^{Neu} and $\widetilde{A}^{\text{Neu}}$ only requires that we have a basis ψ_k for the space where we look for the approximate solution: namely, we can repeat the same construction for piecewise-linear functions, or piecewise-polynomial functions, once we have a basis for that space of functions.

In the particular case of piecewise-constant functions, we can compute the entries of these matrices in a more explicit way: for instance, since $\psi_k = 1$ in S_k and $\psi_k = 0$ outside S_k , we have

$$\begin{aligned} \widehat{A}_{jk}^{\text{Dir}} &= \int_{\partial D_h} \int_{\partial D_h} K(\mathbf{x}, \boldsymbol{\xi}) \psi_k(\mathbf{x}) \psi_j(\boldsymbol{\xi}) \, ds(\mathbf{x}) ds(\boldsymbol{\xi}) \\ &= \int_{\mathcal{S}_k} \int_{\mathcal{S}_j} K(\mathbf{x}, \boldsymbol{\xi}) \, ds(\mathbf{x}) ds(\boldsymbol{\xi}) \, . \end{aligned}$$