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Introduction and notation

The problem:
—Au=f inDcCR
u=gy inp

el
=& on Ny,

where 0D =TpUTy, TpN Ty =0 (possibly, Fp = () [Neumann
problem] or 'y = () [Dirichlet problem]).

Given £ € R

» K(-, &) denotes the fundamental solution of the Laplace
operator:

—AK = ¢ .

» T(-,&) denotes the normal derivative of K(-,£), defined on
OD =T (n is the unit outward normal vector on I'):

T(x,&) = VxK(x,&) - n(x).
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Fundamental solutions

If D C R2

If D CR3
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Basic integral equations

Internal points: € € D

u(€) + Jru()T(x,€)ds(x) — [ Gr(x)K(x, €) ds(x)

1
= [pF(X)K(x,&)dx. M

Boundary points: & € I (regular boundary)
u(€) +  [fru(x)T(x,€)ds(x) — [r IL(x)K(x, &) ds(x) o)

_fDx (x, &) dx.
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Polyhedral domain and piecewise-polynomial functions

» The domain D is approximated by a polyhedral domain Dy,
(union of triangles or tetrahedra; here h is the maximum of
their diameters).

» The boundary 9D =T is therefore approximated by 9D,
(union of M segments or triangles Sy).

» The approximate solution is piecewise-polynomial (on Dy, if
the problem to approximate is defined in D, or on 9Dy, if the
problem to approximate is defined in I').

In our case (approximation of the integral equation (2), defined on
I, by piecewise-constant functions on 9Dj):

> the unknowns are the values at the mid-point (or baricenter)
g of S, j=1,...,M.
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The approximate equations: collocation method

Let up the approximation of u on the boundary and g, the
approximation of % on the boundary (clearly, up and gy, are
defined on 9Dy, while u and % are defined on I'). They are

identified by their constant values o, and S on the element 5.
We can start considering an approximate form of (2), valid for
& €0Dy:

sun(€) +  [op, un(¥)T(x,€) ds(x) — [5p, an(x)K(x, &) ds(x)
= [ f(x)K(x,&)dx.
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The approximate equations: collocation method (cont'd)

Dirichlet problem. We know u = ¢ on the boundary I, therefore

we can construct a suitable approximation ¢p on the boundary
0Dy. We look for gy, the approximation of %.
Forj=1,....M

%‘Ph(gj) + faoh‘Ph(x)T(XfJ’)ds(x)

(4)
faDh gn(x)K(x,§;) ds(x) = fD fF(x)K(x,&;) dx.

We can write
Jop, an()K(x, &) ds(x) = L, [s an(x)K(x,€;) ds(x)
= Zk 15kf5 (x,&;) ds(x).
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The approximate equations: collocation method (cont'd)

We have thus obtained the linear system
Di Di
A lrﬁ — b 1 ,
where

APir = /S K(X7 5}) dS(X) )

ir __ 1 — X X, & X
by —280h(£j)+/8Dh ©n(x) T(x,€;) ds(x) /Df( JK(x.€)) dx.

The matrix AP is not symmetric.
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The approximate equations: collocation method (cont'd)

Neumann problem. We know = g on the boundary T,
therefore we can construct a swtable approximation g on the

boundary 0Dp. We look for up, the approximation of u.
Forj=1,....M

7un(€) + op, un() T(x.€;) ds(x)

5
faDhgh(X)K(ij) ds(x) = [, f(x)K(x,§;) dx )

We can write
Jop, un() T(x, &) ds(x) = 3L, fs, un(x) T(x,€;) ds(x)
= Zk 1O‘kf5 (x,&;) ds(x).
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The approximate equations: collocation method (cont'd)

We have thus obtained the linear system
N N
A eua — b eu ,
where

eu 1
A = S8+ | Tlx &) ds(x),
Sk

Neu __ x x. £.) ds(x x X £, .
5= [ a0kt g) st + [ 0K () d

The matrix AN®" is not symmetric.

[The matrix AN®" is singular, the kernel being given by constant
vectors ¢(1,1,...,1,1): a technical problem that we do not look
at in depth.]
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The approximate equations: Galerkin method

Another set of approximate equations can be obtained by
projecting equation (3) on the subspace of piecewise-constant
functions on dDy. This is an example of Galerkin method.

Let us define by {¢;}, j=1,..., M, a set of basis functions of the
vector space given by the piecewise-constant functions on 0Dy,.

We can write up(€) = Y301 cnthi(€). qn(€) = S py Brtbw(€)-

[The simplest choice is given by 1); equal to 1 in S;, and equal to 0
in all the other S; for | # j.]
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The approximate equations: Galerkin method (cont'd)

I\/Iultlplylng equation (3) by 1; and integrating on D}, we find for
eachj=1,...,M:

3 Jop, un(€)1;(€)ds(€)
+ Jony (o, 50 T(x,€) ds(x) ) 5(€)ds(€)
~ S, ( Jop, an(x)K(x, ) ds(x) ) 1(€)ds(€)
= Sy, ( Jo FOOK(x,€) dx) 5(€)ds(€) .

(6)
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The approximate equations: Galerkin method (cont'd)
Dirichlet problem. We know u = ¢ on the boundary I, therefore

we can construct a suitable approximation ¢p on the boundary
0Dy. We look for gy, the approximation of %.
Forj=1,..., M we have
5 Jon, on(€);(€)ds(€)
+ Joy (o, 10 T(x.€) ds(x) ) vs(€)ds(€)
~ Jo, ( Jop, an(xIK(x, €) ds(x) ) 1(€)ds(€)

= Joo, (Jo FOOK(x, €) dx) 5(€)5(€) .
We can write

Joo, (oo, an(0)K(x.8) ds(x )) (£)ds(€)
= Zk 15k faD,, faDh X, §)Yi(x)1(&) ds(x)ds(€) -
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The approximate equations: Galerkin method (cont'd)

We have thus obtained the linear system

//A\Dirﬁ _ BDir

where

A= [ Kx 0nu(€) dsx)as(o),
BPIT =1 fop, on(€)(€)ds(€)
+ Jon, (o, £n0) T(x,€) ds(x) ) v(€)ds(€)
= Jon, (fD K(x,€) dx)%( )ds(§) .

Since K(x,&) = K(&,x), the matrix AP is clearly symmetric.
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The approximate equations: Galerkin method (cont'd)

Neumann problem. We know = g on the boundary T,
therefore we can construct a swtable approximation g, on the
boundary 0Dp. We look for uy, the approximation of w.
Forj=1,..., M we have

3 Joo, un(€)v;(€)ds(€)
+ Joo, (S, 50T (x €) ds(x) ) 5(€)ds(¢)
~ Joo, ( fop, 8K (x,€) ds(x) ) 1(€)ds(€)
= Joo, ( Jo FOOK(x,€) dx) 45(&)ds(€) .

(8)
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The approximate equations: Galerkin method (cont'd)

We can write

M
/Mh €Ol =D [ vulEs(€)ase).

Joo, (faD,, un(x) T (x, €) ds(x) ) 5(£) ()
= Sk Sy, Jop, T(x EDek(x)05(€) ds(x)ds(€)
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The approximate equations: Galerkin method (cont'd)
We have thus obtained the linear system

ANeu, — bNeu)

where
A = 1 [, n€)(€)ds(€)
ooy Joo, T €)n(x)25(€) ds(x)ds(€)
B = Lo, (foo, 85(x)K(x,€) ds(x) ) (&) ds(€)
+ Joo, (S FOOK(x.€) dx) 4(£)ds(€)
Since

1 x=£ for d=2
T(x,é):{ 2 gz N(x) for

_iilz:é% -n(x) ford=3,

we see that T(x,&) # T(&,x), and therefore the matrix AN" is not
symmetric [moreover, as in the collocation case, it is singular...].
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The approximate equations: Galerkin method (cont'd)

A symmetric Galerkin formulation for the Neumann problem can
be derived by using a different integral equation, that can be
proved to hold for £ € I':

165(8)  +an Jru()T(x,€) ds(x)
—a% : a*ﬁ(X)K(Xvé“) ds(x) 9)
= goc I FOK(x, &) dx.
Its approximate form for £ € 0Dy, in terms of up and gy, is
30n(8) o Jop, un(®) T(x,€) ds(x)
*a% faDh gn(X)K(x, £) ds(x) (10)

= (')ng fD dX
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The approximate equations: Galerkin method (cont'd)

I\/Iultlplylng equation (10) by 7; and integrating on 0Dy we find for
eachj=1,...,M:

L Jop, a8(E)05(£)ds(€)
+ Jon, (522 Jop, un(X) T(x, €) ds(x) ) () ds(€)
~ Joo, (52 Jom, an(X)K(x, €) ds(x) ) () ds(€)
= Joo, (2 Jo FOOK(x,€) dx)5(€)ds(€)

(11)

We can write

Joo, (3% foo, un) T(x.€) ds(x))wj( )ds(€)
= ki % Jop, Jon, o T 06 €)8(x)1(€) ds(x)ds(€)
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The approximate equations: Galerkin method (cont'd)

We have thus obtained the linear system

ANeu, bNeu7

where
AN = [ ooy oo T 06 E)0(x)5(€) ds(x)ds(€)
BY = —1 [y, Gn(€)5(€)ds(€)
+ oy (5 Job, a(IK (x,€) ds(x) ) 5(€)ds(€)
oy (5 o FOOK(x, €) dx)5(€)ds(€)
Since 50-T(x,€) = 5o g K(x. &) is symmetric in x and &, we see

that the matrix A is symmetric.
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The approximate equations: Galerkin method (cont'd)

Let us remark that the construction of the matrices Abir, ANeu 5

ANeu only requires that we have a basis 1, for the space where we
look for the approximate solution: namely, we can repeat the same
construction for piecewise-linear functions, or piecewise-polynomial
functions, once we have a basis for that space of functions.

In the particular case of piecewise-constant functions, we can
compute the entries of these matrices in a more explicit way: for
instance, since ¥, = 1 in Sx and ¢, = 0 outside Sy, we have

AR = [0 o, K, €)0i(x)15(€) ds(x)ds(€)
—fskfs (x, &) ds(x)ds(§) -
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