Esercitazione di lunedì 19/10/2015

Gruppo A-L

Derivabilità; retta tangente/normale ad una funzione.

Esercizio 1. Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile. Sia g la funzione definita come

$$g(x) := \exp(f(\log x)) \quad \forall x \in \mathbb{R}.$$

Quale delle seguenti è corretta?

- (a) $g'(x) = \exp(f'(\frac{1}{x}));$
- (b) $g'(x) = \exp(f(\log x)) \cdot \frac{f'(x)}{x};$
- (c) $g'(x) = \exp(f(\log x)) \cdot \frac{f'(\log x)}{x}$;
- (d) $g'(x) = \exp(f(\log x))$.

Esercizio 2. Stabilire per quali valori $\alpha, \beta \in \mathbb{R}$ la seguente funzione è continua e derivabile:

$$f(x) = \begin{cases} \alpha \cos^2 x + \beta (\sin x - 1)^2 & \text{se } x \ge \pi; \\ (\sin x + 1)^4 - \alpha (3 + \cos x)^3 + 1 & \text{se } x < \pi. \end{cases}$$

Esercizio 3. Sia $f:(0,+\infty)\to\mathbb{R}$ una funzione così definita:

$$f(x) = \log(x^3 - x^2 + x).$$

Dopo aver verificato che la funzione è invertibile, determinare l'equazione della retta tangente a f^{-1} nel punto di coordinate $(0, f^{-1}(0))$.