Syllabus of the course

Partial Differential Equations in Biology - Part 2

- Partial differential equations (PDEs)

Classification for linear second order PDEs in two variables [Greenspan-Casulli, pp. 182-185]:

$$
a u_{x x}+2 b u_{x y}+c u_{y y}+\text { lower order terms }=\ldots \begin{cases}a c-b^{2}>0 & \text { elliptic } \\ a c-b^{2}=0 & \text { parabolic } \\ a c-b^{2}<0 & \text { hyperbolic }\end{cases}
$$

Linear second order elliptic PDEs, parabolic PDEs, hyperbolic PDEs in space dimension $d \geq 2$ [QuarteroniValli, pp. 159, 363-364, 497-498]
elliptic $L u:=-\sum_{i, j=1}^{d} D_{i}\left(a_{i j} D_{j} u\right)+\sum_{i=1}^{d} b_{i} D_{i} u+q u=f$ with $\sum_{i, j=1}^{d} a_{i j} \xi_{j} \xi_{i} \geq \alpha_{0}|\boldsymbol{\xi}|^{2}$
parabolic $\quad D_{t} u+L u=f, \quad L$ elliptic
hyperbolic $\quad D_{t}^{2} u+L u=f, \quad L$ elliptic

- Boundary value problems and initial-boundary value problems for linear second order PDEs [Quarte-roni-Valli pp. 161-163; 364; 497-498]
elliptic
Dirichlet u given on ∂D
Neumann $\sum_{i, j=1}^{d} a_{i j} D_{j} u n_{i}$ given on ∂D
mixed u given on Γ_{D} and $\sum_{i, j=1}^{d} a_{i j} D_{j} u n_{i}$ given on $\Gamma_{N} \quad\left(\partial D=\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}, \Gamma_{D} \cap \Gamma_{N}=\emptyset\right)$
Robin $\sum_{i, j=1}^{d} a_{i j} D_{j} u n_{i}+\kappa u$ given on ∂D
parabolic
Dirichlet or Neumann or mixed or Robin on the boundary, and $u_{\mid t=0}$ given in D
hyperbolic
Dirichlet or Neumann or mixed or Robin on the boundary, and $u_{\mid t=0}$ and $\left(D_{t} u\right)_{\mid t=0}$ given in D
- Weak form for linear second order elliptic PDEs [Quarteroni-Valli, pp. 159-163]

$$
\begin{aligned}
& b(\varphi, \psi):=\sum_{i, j=1}^{d} \int_{D} a_{i j} D_{j} \varphi D_{i} \psi+\sum_{i=1}^{d} \int_{D} b_{i}\left(D_{i} \varphi\right) \psi+\int_{D} q \varphi \psi=\left\{\begin{array}{l}
\int_{D} f \psi \quad \text { Dirichlet (homogeneous) } \\
\int_{D} f \psi+\int_{\partial D} g \psi \text { Neumann } \\
\int_{D} f \psi+\int_{\Gamma_{N}} g \psi \text { mixed }
\end{array}\right. \\
& b(\varphi, \psi):=\sum_{i, j=1}^{d} \int_{D} a_{i j} D_{j} \varphi D_{i} \psi+\sum_{i=1}^{d} \int_{D} b_{i}\left(D_{i} \varphi\right) \psi+\int_{D} q \varphi \psi+\int_{\partial D} \kappa \varphi \psi=\int_{D} f \psi+\int_{\partial D} g \psi \quad \text { Robin }
\end{aligned}
$$

- Calculus of variations and minimization problems [Quarteroni-Valli pp. 163-164]:

$$
\min _{\psi}\left(\frac{1}{2} \sum_{i, j=1}^{d} \int_{D} a_{i j} D_{j} \psi D_{i} \psi+\frac{1}{2} \int_{D} q \psi^{2}-\int_{D} f \psi\right) \quad \text { Dirichlet (homogeneous) }
$$

[Note: no first order terms in the operator L...]
Similarly for the other boundary value problems

- Existence and uniqueness

Minimization problem: direct method of calculus of variations (selection of a convergent subsequence from a minimization sequence)
Weak problem: Riesz representation theorem $(b(\varphi, \psi)$ is a scalar product in a Hilbert space V, equivalent to the scalar product of V) or Lax-Milgram lemma $(b(\varphi, \psi)$ is continuous and coercive bilinear form in a Hilbert space V) [Quarteroni-Valli pp. 133-135]:

$$
\begin{aligned}
& |b(\varphi, \psi)| \leq \gamma\|\varphi\|_{V}\|\psi\|_{V} \quad \text { continuous } \\
& b(\psi, \psi) \geq \alpha\|\psi\|_{V}^{2} \quad \text { coercive }
\end{aligned}
$$

Space of functions:
$V=\left\{\begin{array}{lll}H_{0}^{1}(D):=\left\{\psi:\left.D \rightarrow \mathbf{R}\left|\int_{D} \psi^{2}<\infty, \int_{D}\right| \nabla \psi\right|^{2}<\infty, \psi_{\mid \partial D}=0\right\} & \text { Dirichlet (homogeneous) } \\ H^{1}(D):=\left\{\psi:\left.D \rightarrow \mathbf{R}\left|\int_{D} \psi^{2}<\infty, \int_{D}\right| \nabla \psi\right|^{2}<\infty\right\} & \text { Neumann } \\ H_{\Gamma_{N}}^{1}(D):=\left\{\psi:\left.D \rightarrow \mathbf{R}\left|\int_{D} \psi^{2}<\infty, \int_{D}\right| \nabla \psi\right|^{2}<\infty, \psi_{\mid \Gamma_{N}}=0\right\} & \text { mixed } \\ H^{1}(D):=\left\{\psi:\left.D \rightarrow \mathbf{R}\left|\int_{D} \psi^{2}<\infty, \int_{D}\right| \nabla \psi\right|^{2}<\infty\right\} & \text { Robin }\end{array}\right.$
Sufficient conditions for continuity:

$$
\begin{cases}a_{i j}, b_{i}, q \text { bounded in } D & \text { Dirichlet (homogeneous) } \\ a_{i j}, b_{i}, q \text { bounded in } D & \text { Neumann } \\ a_{i j}, b_{i}, q \text { bounded in } D & \text { mixed } \\ a_{i j}, b_{i}, q \text { bounded in } D, \kappa \text { bounded on } \partial D & \text { Robin }\end{cases}
$$

Sufficient conditions for coerciveness [Quarteroni-Valli pp. 164-167]:

$$
\begin{cases}q-\frac{1}{2} \operatorname{divb} \geq 0 \text { in } D & \text { Dirichlet (homogeneous) } \\ q-\frac{1}{2} \operatorname{divb} \geq \mu_{0}>0 \text { in } D, \mathbf{b} \cdot \mathbf{n} \geq 0 \text { on } \partial D & \text { Neumann } \\ q-\frac{1}{2} \operatorname{divb} \geq 0 \text { in } D, \mathbf{b} \cdot \mathbf{n} \geq 0 \text { on } \Gamma_{N} & \text { mixed } \\ q-\frac{1}{2} \operatorname{divb} \geq \mu_{0}>0 \text { in } D, \frac{1}{2} \mathbf{b} \cdot \mathbf{n}+\kappa \geq 0 \text { on } \partial D & \text { Robin }\end{cases}
$$

An alternative for Neumann: choose $V=\left\{\psi \in H^{1}(D) \mid \int_{D} \psi=0\right\}$ and assume $q-\frac{1}{2} \operatorname{divb} \geq 0$ in D, $\mathbf{b} \cdot \mathbf{n} \geq 0$ on ∂D [but pay attention to the correct interpretation of the weak problem!]. An alternative for Robin: assume $q-\frac{1}{2} \operatorname{divb} \geq 0$ in $D, \frac{1}{2} \mathbf{b} \cdot \mathbf{n}+\kappa \geq 0$ on ∂D and $\int_{\partial D}\left(\frac{1}{2} \mathbf{b} \cdot \mathbf{n}+\kappa\right)>0$. Assumptions on the data: $f \in L^{2}(D), g \in L^{2}(\partial D)$ (Neumann and Robin) or $g \in L^{2}\left(\Gamma_{N}\right)$ (mixed), where

$$
L^{2}(D):=\left\{\psi: D \rightarrow \mathbf{R} \mid \int_{D} \psi^{2}<\infty\right\}
$$

and similarly for $L^{2}(\partial D)$ and $L^{2}\left(\Gamma_{N}\right)$.
For Neumann, if $q=0$ and $\mathbf{b}=\mathbf{0}$: assume also the (necessary) compatibility condition $\int_{D} f+\int_{\partial D} g=0$.

- Galerkin approximation method [Quarteroni-Valli, pp. 136-144]

Choice of a finite dimensional subspace V_{h} of V, and minimization in V_{h} (or solution of the weak problem in V_{h}).
Examples:
trigonometric polynomials in $D=[a, b]^{d}$ (Fourier methods for periodic problems);
global polynomials in $D=[a, b]^{d}$ (spectral methods) [Quarteroni-Valli, pp. 176-179];
global polynomials in $D=[a, b]^{d}$ with Gaussian quadrature formulas (spectral collocation methods)
[Quarteroni-Valli, pp. 179-186];
piecewise polynomials in a polygonal domain (finite element methods) [Quarteroni-Valli, pp. 170-176]

- The finite element method [Quarteroni-Valli, pp. 73-91, 170-174, 190, 192-193]

Family of triangulations:

$$
\bar{D}=\cup_{K \in \mathcal{T}_{h}} K \quad, \quad K \text { polyhedron }
$$

Piecewise-polynomials finite dimensional subspaces:
i.

$$
X_{h}^{r}:=\left\{\psi_{h}: D \rightarrow \mathbf{R} \mid \psi_{h \mid K} \in \mathbf{P}_{r}, \psi_{h} \in C^{0}(\bar{D})\right\}
$$

\mathbf{P}_{r} polynomials of degree less than or equal to r, K triangle/tetrahderon.
ii.

$$
X_{h}^{r}:=\left\{\psi_{h}: D \rightarrow \mathbf{R} \mid \psi_{h \mid K} \circ T_{K} \in \mathbf{Q}_{r}, \psi_{h} \in C^{0}(\bar{D})\right\}
$$

\mathbf{Q}_{r} polynomials of degree less than or equal to r with respect to each variable, K parallelogram/parallepiped, T_{K} affine map from $[0,1]^{d}$ onto K.
Degrees of freedom: values of functions in the nodes \mathbf{P}_{i}
Shape functions (basis functions): "hat" functions η_{i}, such that $\eta_{i}\left(\mathbf{P}_{i}\right)=1$ and $\eta_{i}\left(\mathbf{P}_{j}\right)=0$ for each $j \neq i$.
Consequently: η_{i} has "small" support.
Interpolation operator and interpolation error
Error estimates for the approximate solution via Céa lemma
Algebraic form: stiffness matrix A,

$$
A_{i j}:=b\left(\eta_{j}, \eta_{i}\right)
$$

A is symmetric if $b(\varphi, \psi)$ is symmetric (namely, $b(\varphi, \psi)=b(\psi, \varphi)$: this is never true if the first order terms are present)
A is positive definite if $b(\varphi, \psi)$ is coercive
A is sparse as the basis functions have small support.

- The mixed finite element method

Elliptic equations (without first and zero order terms) [Quarteroni-Valli, pp. 217-218, 222-227, 230-231].
Example: Laplace operator

$$
\left\{\begin{array}{l}
\mathbf{p}-\nabla \varphi=\mathbf{0} \\
\operatorname{div} \mathbf{p}+f=0
\end{array}\right.
$$

Weak form (homogeneous Dirichlet): $\mathbf{p} \in V, \varphi \in Q$ such that

$$
\left\{\begin{array}{l}
\int_{D}(\mathbf{p} \cdot \mathbf{q}+\varphi \operatorname{div} \mathbf{q})=0 \\
\int_{D}(\operatorname{div} \mathbf{p}) \psi=-\int_{D} f \psi
\end{array}\right.
$$

with

$$
\begin{aligned}
& V=H(\operatorname{div} ; D):=\left\{\mathbf{q}:\left.D \rightarrow \mathbf{R}^{d}\left|\int_{D}\right| \mathbf{q}\right|^{2}<\infty, \int_{D}(\operatorname{div} \mathbf{q})^{2}<\infty\right\} \\
& Q=L^{2}(D)
\end{aligned}
$$

Raviart-Thomas finite elements
Stokes problem [Quarteroni-Valli, pp. 297-302, 304-311]

$$
\left\{\begin{array}{l}
-\Delta \mathbf{u}+\nabla p=\mathbf{f} \\
\operatorname{div} \mathbf{u}=0
\end{array}\right.
$$

Weak form (homogeneous Dirichlet): $\mathbf{u} \in\left(H_{0}^{1}(D)\right)^{d}, p \in L^{2}(D)$ such that

$$
\left\{\begin{array}{l}
\int_{D}(\nabla \mathbf{u} \cdot \nabla \mathbf{v}-p \operatorname{div} \mathbf{v})=\int_{D} \mathbf{f} \cdot \mathbf{v} \\
-\int_{D}(\operatorname{div} \mathbf{u}) q=0
\end{array}\right.
$$

Discontinuous pressure finite elements (Crouzeix-Raviart)
Continuous pressure finite elements (Taylor-Hood, Arnold-Brezzi-Fortin mini element)
The algebraic structure [Quarteroni-Valli, pp. 241-242, 303-304]

$$
S:=\left(\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right)
$$

where A is a $N \times N$ matrix and B is a $K \times N$ matrix
S is non-singular if and only if $\Pi A_{\mid \operatorname{ker} B}$ is non-singular and ker $B^{T}=\{0\}$
(Π orthogonal projection from \mathbf{R}^{N} onto ker B)
ker $B^{T}=\{0\}$ is equivalent to the inf-sup condition:

$$
\exists \beta>0: \forall \mathbf{p} \in \mathbf{R}^{K} \exists \mathbf{v} \in \mathbf{R}^{N} \backslash \mathbf{0}: B^{T} \mathbf{p} \cdot \mathbf{v} \geq \beta\|\mathbf{p}\|\|\mathbf{v}\|
$$

Good finite element approximations: the inf-sup condition holds with β independent of the mesh size h

References

D. Greenspan, V. Casulli, Numerical Analysis for Applied Mathematics, Science and Engineering, Addison-Wesley, Redwood City, 1988
A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, 2nd printing, 1997

