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Contents: 1. Hölder spaces. 2. Regularity of Euclidean domains.

Note. The bullet • and the asterisk ∗ are respectively used to indicate the most relevant results

and complements. The symbol [] follows statements the proof of which has been omitted, whereas

[Ex] is used to propose the reader to fill in the argument as an exercise.

Here are some abbreviations that are used throughout:

a.a. = almost any; resp. = respectively; w.r.t. = with respect to.

p′: conjugate exponent of p, that is, p′ := p/(p− 1) if 1 < p < +∞, 1′ :=∞, ∞′ := 1.

N0 := N \ {0}; RN
+ := RN−1×]0,+∞[. |A| := measure of the measurable set A.

1. Hölder spaces

First we state a result, which provides a procedure to construct normed spaces, and is easily

extended from the product of two spaces to that of a finite family. This technique is very convenient,

and we shall repeatedly use it.

Proposition 1.1 Let A and B be two normed spaces and p ∈ [1,+∞]. Then:

(i) The vector space A×B is a normed space equipped with the p-norm of the product:

‖(v, w)‖p := (‖v‖pA + ‖w‖pB)
1/p

if 1 ≤ p < +∞,
‖(v, w)‖∞ := max {‖v‖A, ‖w‖B} .

(1.1)

Let us denote this space by (A×B)p. These norms are mutually equivalent.

(ii) If A and B are Banach spaces, then (A×B)p is a Banach space.

(iii) If A and B are separable (reflexive, resp.), then (A×B)p is also separable (reflexive, resp.).

(iv) If A and B are uniformly convex and 1 < p < +∞, then (A×B)p is uniformly convex.

(v) If A and B are inner-product spaces (Hilbert spaces, resp.), equipped with the scalar product

(·, ·)A and (·, ·)B, resp., then (A × B)2 is an inner-product space (a Hilbert space, resp.) equipped

with the scalar product(
(u1, v1), (u2, v2)

)
2

:= (u1, u2)A + (v1, v2)B ∀(u1, v1), (u2, v2) ∈ (A×B)2.

‖(·, ·)‖2 is then the corresponding Hilbert norm.

(vi) F ∈ (A × B)′p (the dual space of (A × B)p) iff there exists a (unique) pair (g, h) ∈ A′ × B′
such that

〈F, (u, v)〉 = A′〈g, u〉A + B′〈h, v〉B ∀(u, v) ∈ (A×B)p. (1.2)

In this case

‖F‖(A×B)′p
= ‖(g, h)‖(A′×B′)p′ . (1.3)

The mapping (A×B)′p → (A′ ×B′)p′ : F 7→ (g, h) is indeed an isometric surjective isomorphism.

(We omit the simple argument, that rests upon classical properties of Banach spaces.)

A variant of the above result consists in equipping Banach spaces with the graph norm, associated

to a linear operator.

Spaces of Continuous Functions. Throughout this section, by K we shall denote a compact

subset of RN , and by Ω a (possibly unbounded) domain of RN .

The linear space of continuous functions K → C, denoted by C0(K), is a Banach space equipped

with the sup-norm pK(v) := supx∈K |v(x)| (this is even a maximum). The corresponding topology

induces the uniform convergence.
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The linear space of continuous functions Ω → C, denoted by C0(Ω), is a locally convex Fréchet

space equipped with a family of seminorms: {pKn}. Here {Kn ⊂⊂ Ω : n ∈ N} is a nondecreasing

sequence of compact sets that invades Ω, namely
⋃
n∈NKn = Ω. (1) For instance, one may take

Kn = {x ∈ Ω : |x| ≤ n, dist(x, ∂Ω) ≥ 1/n} ∀n ∈ N.

This topology induces the locally uniform convergence.

The linear space of bounded continuous functions Ω → C, denoted by C0
b (Ω), is also a Banach

space equipped with the sup-norm pΩ(v) := supx∈Ω |v(x)|, and is thus a subspace of C0(Ω).

AsΩ is a metric space, we may also deal with uniformly continuous functions. In the literature, the

linear space of bounded and uniformly continuous functions Ω → C is often denoted by BUC(Ω) or

C0(Ω̄), as these functions have a unique continuous extension to Ω̄. The latter notation is customary

but slightly misleading: for instance,

C0
(
RN

)
6= C0

(
RN

)
(1.4)

although obviously RN = RN . If Ω is bounded then K := Ω̄ is compact, and C0(Ω̄) may be

identified with the space C0(K) that we defined above. Notice that C0(Ω̄) (= BUC(Ω)) is a closed

subspace of C0
b (Ω) for any domain Ω of RN , and the inclusion is strict; for instance,

{x 7→ sin(1/x)} ∈ C0
b (]0, 1[) \ C0(]0, 1[), {x 7→ sin(x2)} ∈ C0

b

(
R
)
\ C0

(
R̄
)
. (1.5)

In this section we shall see several other spaces over Ω̄ that are included into the corresponding

space over Ω.

Spaces of Hölder-Continuous Functions. Let us fix any λ ∈ ]0, 1]. The bounded continuous

functions v : Ω → C such that

pΩ,λ(v) := sup
x,y∈Ω,x6=y

|v(x)− v(y)|
|x− y|λ

< +∞ (1.6)

are said Hölder-continuous of index (or exponent) λ, and form a linear space that we denote

by C0,λ(Ω̄) and equip with the graph norm. If λ = 1 these functions are said to be Lipschitz

continuous. Obviously Hölder functions are uniformly continuous, so C0,λ(Ω̄) ⊂ C0(Ω̄). The

functional pΩ,λ is a seminorm on C0(Ω). [Ex]

Proposition 2.1 For any λ ∈ ]0, 1], C0,λ(Ω̄) is a Banach space when equipped with the norm

pΩ + pΩ,λ.

The functions v : Ω → C that are Hölder-continuous of index λ in any compact set K ⊂ Ω

are called locally Hölder-continuous. They form a Fréchet space, denoted by C0,λ(Ω), when

equipped with the family of seminorms {pK + pK,λ : K ⊂⊂ Ω}. Notice that

C0,λ(Ω̄) ⊂ C0,ν(Ω̄) ∀λ, ν ∈ ]0, 1], ν < λ, [Ex] (1.7)

with continuous injections. (2) For instance for any λ ∈ ]0, 1], the function x 7→ |x|λ is an element of

C0,λ(R), but not of C0,ν(R) for any ν > λ, and not of C0,λ(R̄) (here also the traditional notation

is not very helpful).

(1) We remind the reader that Fréchet spaces are linear spaces that are also complete metric spaces and such
that the linear operations are continuous.

(2) All the injections between function spaces will be continuous; so we shall not point it out any more.
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Notice that
⋃
λ∈]0,1] C

0,λ([0, 1]) 6= C0([0, 1]); e.g., the function

u(x) := 1/ log(x/2) ∀x ∈ ]0, 1], u(0) = 0 (1.8)

is continuous, but is not Hölder-continuous for any index λ. [Ex]

On the other hand
⋂
λ∈]0,1[ C

0,λ([0, 1]) 6= C0,1([0, 1]); e.g., the function

u(x) := x log(x/2) ∀x ∈ ]0, 1], u(0) = 0 (1.8′)

is Hölder-continuous for any index λ, but is not Lipschitz-continuous. [Ex]

Spaces of Differentiable Functions. Let us assume that Ω and λ are as above and that

m ∈ N. Let us recall the multi-index notation, and set Di := ∂/∂xi for i = 1, ..., N .

We claim that the functions Ω → C that are m-times differentiable and are bounded and contin-

uous jointly with their derivatives up to order m form a Banach space, denoted by Cmb (Ω), when

equipped with the norm

pΩ,m(v) :=
∑
|α|≤m

sup
x∈Ω
|Dαv(x)| ∀m ∈ N. (1.9)

This is easily seen because, setting

k(m) :=
(N +m)!

N !m!
= number of the multi-indices α ∈ NN such that |α| ≤ m, (1.10)

the mapping Cmb (Ω) → C0
b (Ω)k(m) : v 7→ {Dαv : |α| ≤ m} is an isomorphism between Cmb (Ω) and

its range. Indeed, if Dαun → uα uniformly in Ω for any α ∈ NN such that |α| ≤ m, then uα = Dαu0;

thus un → u0 in Cmb (Ω). For instance, C1
b (R2) is isomorphic to {(w,w1, w2) ∈ C0

b (R2)3 : wi =

∂w/∂xi in R2, for i = 1, 2}. Here one may define a norm via Proposition 1.1.

The functions Ω → C that are continuous with their derivatives up to order m form a locally

convex Fréchet space equipped with the family of seminorms {pK,m : K ⊂⊂ Ω}. This space is

denoted by Cm(Ω) (or by Em(Ω)).

The linear space of the functions Ω → C that are bounded with their derivatives up to order m,

and whose derivatives of order m are Hölder-continuous of index λ, may be equipped with the norm

pΩ,m,λ(v) :=
∑
|α|≤m

sup
x∈Ω
|Dαv(x)|+

∑
|α|=m

pΩ,λ(Dαv), (1.11)

with pΩ,λ as above. By Proposition 1.1, this is a Banach space, that we denote by Cm,λ(Ω̄).

The linear space of the functions Ω → C whose derivatives up to order m are Hölder-continuous

of index λ in any compact set K ⊂ Ω can be equipped with the family of seminorms {pK,m,λ :

K ⊂⊂ Ω}. This is a locally convex Fréchet space, denoted by Cm,λ(Ω).

It is also convenient to set

Cm,0(Ω̄) = Cm(Ω̄) := {v ∈ Cm(Ω) : Dαv ∈ C0(Ω̄),∀α, |α| ≤ m},
Cm,0(Ω) = Cm(Ω),

C∞(Ω̄) =
⋂
m∈N

Cm(Ω̄), C∞(Ω) =
⋂
m∈N

Cm(Ω).
∀m ∈ N. (1.12)

In passing notice that C∞(Ω̄)∩Lp(Ω) is a dense subset of Lp(Ω) for any p ∈ [1,+∞[. This may

be proved by convolution with a regularizing kernel.
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Some Embeddings. We say that a topological space A is embedded into another topological

space B whenever A ⊂ B and the injection operator A→ B (which is then called an embedding) is

continuous. (3)

For any m ∈ N, some embeddings are obvious within the class of Cm-spaces,

m ≥ ` ⇒ Cm(Ω̄) ⊂ C`(Ω̄), (1.13)

as well within that of Cm,λ-spaces:

ν ≤ λ ⇒ Cm,λ(Ω̄) ⊂ Cm,ν(Ω̄) ∀m. (1.14)

Concerning inclusions between spaces of the two classes, apart from obvious ones like Cm,λ(Ω̄) ⊂
Cm(Ω̄), some regularity is needed for the domain. (4)

Proposition 2.2 Let either Ω = RN , or Ω ∈ C0,1 (5) and bounded. Then

Cm+1(Ω̄) ⊂ Cm,λ(Ω̄) ∀m,∀λ ∈ [0, 1].[] (1.15)

From this inclusion it easily follows that

Cm2,λ2(Ω̄) ⊂ Cm1,λ1(Ω̄) if m1 < m2,∀λ1, λ2 ∈ [0, 1]. (1.16)

A Counterexample. The next example shows that some regularity is actually needed for (1.15)

to hold. Let us set

Ω := {(x, y) ∈ R2 : x2 + y2 < 1, y < |x|1/2}. (1.17)

Of course Ω ∈ C0,1/2 \C0,ν for any ν > 1/2. (5) For any a ∈ ]1, 2[, the function v : Ω → R : (x, y) 7→
(y+)a sign(x) belongs to C1(Ω̄) \ C0,ν(Ω̄) for any ν > a/2. [Ex]

We just considered embeddings for Banach spaces “on Ω̄”. It is easy to see that these results

yield analogous statements for the corresponding Fréchet spaces “on Ω”.

Synthesis. For any domain Ω ⊂ RN , we have introduced the Banach spaces

C0
b (Ω), C0(Ω̄) (= BUC(Ω)), C0,λ(Ω̄) ∀λ ∈ ]0, 1],

and the Fréchet spaces

C0(Ω), C0,λ(Ω) ∀λ ∈ ]0, 1].

For any m ∈ N, assuming that Ω is regular enough (e.g., it coincides with the interior of Ω̄), we

have introduced the Banach spaces

Cmb (Ω), Cm(Ω̄), Cm,λ(Ω̄) ∀λ ∈ ]0, 1],

and the Fréchet spaces

Cm(Ω), Cm,λ(Ω) ∀λ ∈ ]0, 1], C∞(Ω̄), C∞(Ω).

Exercises. 1. Show that
⋃
λ∈]−1,1[ C

0,λ(Ω) 6= C0(]− 1, 1[).

2. Show that
⋂
λ∈]0,1[ C

0,λ(]− 1, 1[) 6= C0,1(]− 1, 1[).

(3) We shall use some notions of regularity of domains that are defined in the next section ...
(4) The regularity of domains is defined in the next section.
(5) See the definition in the next section ...
(5) According to the definition of the next section ...
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2. Regularity of Euclidean Domains

Open subsets of RN may be very irregular; e.g., consider
⋃
n∈NB(qn, 2

−n), where {qn} is an

enumeration of QN . This set is open and has finite measure, but it is obviously dense in RN .

Several notions may be used to define the regularity of a Euclidean open set Ω, or rather that of

its boundary Γ . Here we just introduce two of them.

Open Sets of Class Cm,λ. Let us denote by BN (x,R) the ball of RN of center x and radius R.

For any m ∈ N and 0 ≤ λ ≤ 1, we say that Ω is of class Cm,λ (here Cm,0 stays for Cm), and write

Ω ∈ Cm,λ, iff for any x ∈ Γ there exist:

(i) two positive constants R = Rx and δx,

(ii) a mapping ϕx : BN−1(0, R)→ R of class Cm,λ,

(iii) a Cartesian system of coordinates y1, ..., yN ,

such that the point x is characterized by y1 = ... = yN = 0 in this Cartesian system, and, for any

y′ := (y1, ..., yN−1) ∈ BN−1(0, R),

yN = ϕ(y′) ⇒ (y′, yN ) ∈ Γ,
ϕ(y′) < yN < ϕ(y′) + δ ⇒ (y′, yN ) ∈ Ω,
ϕ(y′)− δ < yN < ϕ(y′) ⇒ (y′, yN ) 6∈ Ω̄.

(2.1)

This means that Γ is an (N − 1)-dimensional manifold (without boundary) of class Cm,λ, and that

Ω locally stays only on one side of Γ . We say that Ω is a continuous (Lipschitz, Hölder, resp.) open

set whenever it is of class C0 (C0,1, C0,λ for some λ ∈ ]0, 1], resp.). (6)

For instance, the domain

Ωa,b,λ := {(x, y) ∈ R2 : x > 0, ax1/λ < y < bx1/λ} ∀λ ≤ 1,∀a, b ∈ R, a < b (2.2)

is of class C0,λ iff a < 0 < b. [Ex]

We say that Ω is uniformly of class Cm,λ iff

Ω ∈ Cm,λ, inf
x∈Γ

Rx > 0, inf
x∈Γ

δx > 0, sup
x∈Γ
‖ϕx‖Cm,λ(BN−1(x,R)) < +∞. (2.3)

For instance, by compactness, this is fulfilled by any bounded domain Ω of class Cm,λ. [Ex]

Cone Property. The above notion of regularity of open sets is not completely satisfactory, as it

excludes sets like e.g. a ball with deleted center. We then introduce a further regularity notion.

We say that Ω has the cone property iff there exist a, b > 0 such that, defining the finite open

cone

Ca,b :=
{
x := (x1, ..., xN ) : x21 + ...+ x2N−1 ≤ bx2N , 0 < xN < a

}
,

any point of Ω is the vertex of a cone contained in Ω and congruent to Ca,b. For instance, any ball

with deleted center and the plane sets

Ω1 := {(ρ, θ) : 1 < ρ < 2, 0 < θ < 2π} (ρ, θ : polar coordinates),

Ω2 := {(x, y) ∈ R2 : |x|, |y| < 1, x 6= 0}
(2.4)

have the cone property, but are not of class C0. [Ex]

Proposition 2.1 Any bounded Lipschitz domain has the cone property. [Ex]

For unbounded Lipschitz domains this may fail; Ω := {(x, y) ∈ R2 : x > 1, 0 < y < 1/x}
is a counterexample. Note that a domain Ω is bounded whenever it has the cone property and

|Ω| < +∞. []

(6) This notation refers to the Hölder spaces, that are defined half-a-page ahead ...


