
lesson 41 

The Windowed Fourier 
Transform 

41.1 Limitations of standard Fourier analysis 

Current research is to a large extent motivated by industrial applications 
of mathematical analysis and signal processing. Seismic exploration, the 
analysis and synthesis of sound, medical imaging, and the digital telephone 
are a few of the applications that come to mind. In all cases, one wishes 
to extract from the signal the pertinent information as discrete numerical 
values. This set of digital information must be rich enough to characterize 
the signal, but it should be no larger than necessary for the task at hand. If, 
for example, it is a question of speech and the digital telephone, one wants 
enough numerical information at the receiver to reconstruct a recognizable 
voice, but economy dictates the need to minimize the amount of information 
that must be transmitted. 

Fourier analysis is the oldest of the various techniques avaliable for signal 
analysis and synthesis. Since the invention of the fast Fourier transform 
(FFT), it has become an efficient tool, particularly for analyzing sufficiently 
smooth periodic signals (Lesson 9). In these cases, the Fourier coefficients Cn 

decrease rapidly as lnl --+ +oo, and relatively few numerical coefficients are 
needed to reconstruct the signal for most practical purposes. Unfortunately, 
as soon as the signal becomes irregular, like, for example, a transient, the 
number of coefficients necessary to reconstruct the signal ( and hence the 
amount of data that must either be stored or transmitted) becomes large 
and often economically impractical. 

Before the advent of the FFT, Fourier analysis was mainly a theoreti­
cal tool-indeed, one of the most important and pervasive. This quickly 
changed with the arrival of the FFT and efficient digital computing, and 
these twin techniques have had widespread applications in the last third 
of the twentieth century. Nevertheless, even with the FFT and modern 
computing, Fourier analysis does not provide a s~isfactory analysis for all 
kinds of signals. Although the Fourier transform f contains all of the infor­
mation about J, much of this information in "hidden." For example, none 
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of the temporal aspects of f are revealed by 1 If f is a finite signal, the 
spectrum does not indicate the beginning and the end of the signal, and if 
there is a singularity, the time of occurrence is hidden throughout 1 

Faced with these kinds of issues, one would like to have an analytic tool 
that provides information both in time and in frequency. The model that is 
often cited is musical notation: the horizontal position of a note (its "start 
time," its duration, and its frequency are all represented. 

There is another problern that has surely not escaped the reader's notice: 
To compute the spectrum f(> .. ) it is necessary to know f(t) for allreal val­
ues of t. This is impossible in the case of analysis in "real time" where the 
signal must be processed as it arrives. One cannot know the spectrum, even 
approximately, of a signal when one knows nothing of its future; the inter­
esting information may be yet to arrive. We should not despair, however; 
the previous eleven chapters retain their value today both theoretically 
and numerically in spite of the cited problems. These technical constraints 
simply motivate us to refine existing tools and to develop new ones. 

41.2 Opening windows 

One of the first ideas was to truncate the signal and to analyze only what 
happens on a finite interval [-A, A]. One is forced to do this when making 
numerical computations. Mathematically, this amounts to multiplying the 
signal f(t) by a characteristic function X[-A,A] =TA (or a translate) and 
taking the Fourier transform of the product. The result is 

Thus truncating the signal results in convolving its spectrum with the car­
dinal sine (Figure 41.1). 

2A 

FIGURE 41.1. The cardinal sine. 
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The approximation of f by g becomes better as A increases, that is, as s A 

better approximates the Dirac impulse. Unfortunately, the computations 
for this process quickly become very voluminous. The cardinal sine decays 
slowly and has important lobes near the origin. To avoid these problems, 
one replaces X(-A,A] with a more regular function. These functions are all 
called windows, and they are concentrated around the origin. 

EXAMPLES: 

(a) Triangular window (Figure 41.2) 

w(t) w(A) =.! (sin21TAA)2 
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FIGURE 41.2. Triangular window in time and frequency. 

(b) Hamming and Hanning windows (Figure 41.3) 

Theseare of the form w(t) = [a + (1- a) cos(2rrt/A)]r(t). Fora= 0.54 
we have Hamming's window and for a = 0.50 Hanning's window. These 
coefficients have been computed to minimize certain criteria (see [Kun84]). 
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FIGURE 41.3. Hamming and Hanning windows. 

(c) Gaussian window w(t) = Ae-ctt2 (a, A > 0) (Figure 41.4) 
These windows are used in practice, and they significantly improve the 

computation of the spectrum. 
One is led naturally to slide this window along the graph of the func­

tion and thereby analyze the whole function. One then obtains a family of 
coefficients depending on two real variables .\ and b given by 

l +oo 

Wt(.X, b) = -oo f(t)w(t- b)e-2i1r>.t dt. ( 41.1) 

Wt(A, b) replaces f(.X). The mapping f ~---+ Wt is called the sliding window 
Fourier transform or simply the windowed Fourier transform. 
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w(t) = Ae-"12 
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A Y7i'la 
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FIGURE 41.4. Gaussian window in time and frequency. 

The parameter A plays the role of a frequency, localized around the ab­
scissa b of the temporal signal. W 1(.\, b) thus provides an indication of how 
the signal behaves at time t = b for the frequency A. We use the function w 
rather than w in ( 41.1) for reasons of convenience and because we wish to 
allow complex-valued windows. Thus, W1 becomes a scalar product in L2 : 

Wt(A, b) = (!, W>.b), 
W>.b(t) = w(t- b)e2irr>.t. 

41.3 Dennis Gabor's formulas 

(41.2) 

Intuitively, one might expect that knowing WJ(A, b) for all values of A and 
b completely determines the signal f. One could even conjecture that the 
information contained in W1(.\, b) is redundant, since we have replaced a 
one-parameter family j with a two-parameter family. We will see below 
that these speculations are weil founded. 

In his 1946 paper [Gab46), Dennis Gabor used a window that was essen­
tially the Gaussian w(t) = 7r- 114e-t2 /Z. Such a function has the advantage 
of approximating a square window while avoiding the disadvantage of in­
troducing abrupt discontinuities. One of Gabor's important contributions 
was to show that Wt(A, b) can be inverted to recover f. 

41.3.1 Theorem Suppose that w E L 1 nL2 is a window suchthat lwl 
is even and llwllz = 1. Write 

W>.b(t) = w(t- b)e2irr>.t, .\,b ER 

For all signals f E L 2 we define the coeflicients 

l +oo 
Wt(.\,b) = -oo f(t)w>.b(t)dt. 

Under these conditions, we have the following two results: 
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(a) Conservation of energy: 

(b) Reconstruction formula: 

f(x) = JJR.2 Wt(.A,b)w>.b(x)dAdb (41.4) 

in the sense that if 

9A(x) = J!i>-I~A WJ(A,b)W>.b(x)dAdb, 
bER. 

then 9A ---+ f in L 2 as A ---+ +oo. 

Proof. We first give another expression for WJ(A, b): 

Since 

this becomes 

so 

~ (t:) -2i1T(~->.)b ~((: ') W>.b ." = e w ." - ,~~, , (41.5) 

The function of ~ in brackets is in L1, since it is the product of two 
functions in L2 • It is also in L2 because, w being in L1 , w is bounded. Thus 
we have 

JJR.2 1Wt(A,b)j2 dAdb = /_:oo (/_:oo 15 di(~)$(~- A)](b)j 2 db) dA 

This establishes ( a). 

= j_:oo (j_:oo ji(~)$(~- AW d~) dA (Parseval) 

= /_:oo (11(~)1 2 /_:oo Iw(~- A)l 2 d, A) ~ 
= ll!ll~llwll~ = 11!11~· 
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To prove (b), we first show that YA is well-defined for all A > 0 by showing 
that (A,b) ~ WJ(A,b)w>.b(x) is integrable on the strip [-A,A] x R Let 

By Schwarz's inequality and Parseval's relation, we have (Theorem 22.1.4) 

JA(x):::; I: 115 di(~):ß(~- A)](b)ll2llwll2 dA 

=I: lli(~):ß(~- A)ll2 dA. 

The function h(A) under the last integral sign satisfies 

Since L1 * L1 C L1 , it follows that lhl2 E L1 and hence that h E L2 . Finally, 

for all x E ~ and A > 0. Integrability allows us to choose the order of 
integration in the definition of gA, so in view of (41.6), we have 

A 

YA(x) = IA g(A) dA 

with 

1+oo 
g(A) = -oo 5 df(~)ß(~- A)](b)w(x- b)e2i1r>.(x-b) db, 

which by Proposition 22.1.5 is 

After computing the Fourier transform 5b[w(x- b)e2i1r>.(x-b)], we see 
that 

so 
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The next step is to verify that the function of (.>., ~) under the double 
integral ( 41. 7) is integrable on [-A, A] x ffi.. Since Iw I is even, 

Since IJl E L 2 and lwl2 E L 1, it follows (Proposition 20.3.2) that h = 
1Jl * lwl2 E L2(ffi.) and hence that h E L 1[-A, A]. Thus the integral is 
well-defined, and we can interchange the order of integration in (41.7): 

Denote the second integral by ct~A(~). Then 0::::; tt~A(~) ::::; 1, since llwll2 = 1. 
Since ct~A is bounded, 1ct~A is in L 2 and 9A = !T (1· ct~A)· The last step 
is to show that 9A tends to f in L 2 as A-+ +oo. Forthis we evaluate the 
norm of the difference: 

II!- 5(1· ct'A)II~ = 115[(1- ct'A)1JII~ = 11(1- ct'A)111~ = c:(A). 

We estimate the integral 

in two parts. If 1~1 ::::; A/2, then 

so 
A 

o::::; 1- tt~A(~)::::; j_~2 lw(y)l2 dy + J:i+oo lw(y)l2 dy = c:1(A), 
2 

which tends to 0 as A-+ +oo. As a consequence, 

A 

1_: [1- tt~A(~)fli(~W d~::::; ci(A)IIfll~· 
2 

If 1~1 ;::: A/2, then 

[ A [1- ct'A(~)fl1(~)1 2 d~::::; 1 A li(~W d~, 
llt;l?.-z lt;l?.-z 

( 41.8) 

which also tends to 0 as A -+ +oo. These two estimates show that c:(A) 
(41.8) tends to 0 as A tends to infinity, and this proves (b). 0 
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This result shows that for the windowed Fourier transform in L 2 we 
have formulas analogaus to those for the ordinary Fourier transform in L 2 : 

conservation of energy (Parseval's formula) and an inversion formula. There 
is a nice harmony in these formulas; this will also appear in the theory of 
wavelets. 

In practice, one generally uses a function w that is well localized around 
the origin t = 0, for example, a Gaussian. The function W>-.b is then localized 
araund the point t = b, while W>-.b, given by (41.5), is localized around the 
point ~ = A. This means that 

contains information in both time and frequency around the point (b, .\). 
For numerical computations, the coefficients Wt(A, b) are evaluated on 

a grid (m.\o, nbo) with m, n E Z and Ao, bo > 0. One thus obtains a double 
sequence Wm,nU) = Wt(m.\o, nbo), which is a discretized version of the 
function of the two real variables ,\ and b. 

41.4 Comparing the methods of Fourier and 
Gabor 

The transforms of Fourier and Gabor, which we can write formally as 

f +oo 

f(x) = -oo J(~)e2ine d~, 

f(x) = { Wt(.\,b)w>-.b(x)d.\db, 
JJR2 

can be interpreted as decomposing the signal f in terms of functions that 
play the role of basis functions, except that sums are replaced by integrals. 

In the Fourier transform, these functions are sinusoids; in the Gabor 
transform, they are strongly attenuated sinusoids, or looked at the other 
way, modulated Gaussians (Figure 41.5). In the frequency space, we have 
the representations illustrated in Figure 41.6. 

With Fourier's method, the "basis functions" are completely concen­
trated in frequency (Dirac impulses) and totally distributed in time ( unat­
tenuated sinusoids extending from -oo to +oo ). This is another way to 
explain that taking the Fourier transform gives the maximum amount of 
information about the distribution of the frequencies but completely loses 
information relative to time. 

With Gabor's method, the figures show that time-frequency information 
remains coupled, although there is always a compromise: The uncertainty 
principle limits the simultaneaus localization in time and frequency. In spite 
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FIGURE 41.5. Basis functions for Fourier and Gabor decompositions. 
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FIGURE 41.6. Basis functions for Fourier and Gabor in frequency space. 

of this-which is a fact of life for any time-frequency analysis-Gabor's 
method has advantages over Fourier analysis for certain applications. 

A signal f of finite duration provides one of the best illustrations of 
the difference between the two methods. The reconstruction of f using 
the inverse Fourier formula necessitates knowing the values of f{e) with 
considerable precision over a very large range of values, for although f{e) 
tends to zero, it can do so frustratingly slowly ( consider the transform of 
X[a,bJ)· The effects of all the sinusoids must come together to give zero 
outside the support of f. 

The situation is quite different for Gabor analysis. It f vanishes on a 
long enough interval (bo - a, bo + a) and if w(t) is small for ltl ~ 1, then 
the coefficients Wt(>., b) will be negligible for b in a neighborhood of b0 , 

since 1b+l 

Wt(>., b) ~ f(t)'W>-.b(t) dt = 0. 
b-1 

On the other hand, if f oscillates strongly at t = bo, the value of Wt(>., b) 
will be large for b near bo when the values of >. "match" the frequency of f 
near bo. This gives an idea about the "local frequency" of f. 

In spite of its advantages for certain applications, the Gabor method has 
. the inajor disadvantage that the size of the window is fixed. In terms of the 
uncertainty principle, this means that l:l.t is fixed (Section 22.3), and this 
limits the ability to localize events in time. Problems arise when one wishes 
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to analyze signals that contain features on scales that range over several 
orders of magnitude. This is the case, for example, with speech. Consider 
the word "school." It begins with a short high-frequency attack followed by 
a Ionger relatively lower-frequency component. Fluid mechanics provides 
another important example. In fully developed turbulence, one observes 
events on scales that range from the macroscopic to the microscopic. 

The geophysicist Jean Morlet encountered these kinds of problems in 
connection with seismic exploration for oil. Here it is necessary to analyze 
signals that result from a pulse being reflected (and delayed and com­
pressed) from various layers in the earth. This led Morlet to introduce a 
new method where the window is not only translated but is also dilated 
and contracted. This was the beginning of the use of wavelets for numerical 
signal processing. 

41.5 Exercises 

Exercise 41.1 With the notation and hypotheses of Theorem 41.3.1, show 
that for fand g E L2 (1R), 

//JR
2 
w1(>.,b)W9 (>.,b)d>.db= 1f(t)g(t)dt. 

Exercise 41.2 Consider the signal f(t) = e2i"at, a E JR, and the Gaussian 
window w(t) = e-?Tt2 • 

(a) Verify that 

W1 (>., b) = 1 f(t)w(t- b)e-2i"M dt 

is well-defined (even though f fl. L2 (JR)). 

(b) Compute w, ( >., b) using the following result: 

Fora> 0 and x E JR, 1 e-"a(t+ix)2 dt = a -~. 

(c) Show that IWt(>., bW attains its maximum when >. = a. 

Exercise 41.3 Consider the Gaussian window w(t) = Ae-at2 with A, a > 0 
and the signal f(t) = Be-ßt2 with B, ß > 0. Use the result in Exercise 41.2(b) 
to compute 

Wj(A, b) = 1 j(t)w(t- b)e-2i1rM dt. 
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Wavelet Analysis 

Gabor's method dates from the 1940s. With wavelets we enter a dynamic 
contemporary research environment; what is now known as the modern 
theory of wavelets emerged in the 1980s, notably with the article [GM84] 
by Alex Crossmann and Jean Morlet. We say "modern" wavelet theory 
because looking back over the mathematicallandscape from a late twentieth 
century perspective we can identify many earlier ideas and techniques that 
are now logically included in this theory. Work by Haar in 1909; work in the 
late 1920s by Strömberg; results from the 1930s by Littlewood and Paley, 
Lusin, and Franklin; and later work in the 1960s, particularly the result of 
Calder6n on operators with singular kernels-all these efforts and others 
are now interpreted in the language of wavelets. 

What happened in the 1980s was qualitatively different; there occurred 
a conjunction of requirement and solution. Jean Morlet, a geophysicist, 
wished to analyze a particular dass of signals associated with seismic ex­
ploration, and he had an idea about how this should be clone. He sought 
the collaboration of Alex Grossmann, who, being a theoretical physicist, 
had command of certain mathematical tools, particularly those associated 
with coherent states and group representations from quantum theory. The 
immediate result was their celebrated 1984 paper; it was also the begin­
ning of a productive collaboration between mathematics and other sectors 
of science and technology. We will say more about contemporary research 
at the end of the lesson, once some basic results have been established. 

42.1 The basic idea: the accordion 

Starting with a function 1/J, called the analyzing wavelet or "mother" wave­
let, we construct the family of functions 

b E IR, a > 0. 
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The wavelet coefficients of a signal f are the numbers 

f+oo 

Ct(a, b) = (!, '1/Ja,b) = -oo f(tfißa,b(t) dt. 

The properties of '1/J are quite different from those of a window, which 
has more or less the aspect of a characteristic function, while '1/J, on the 
other hand, oscillates and its integral is zero. We also want '1/J and :(jJ to 
be well localized, which means that they both converge to zero at infinity 
fairly rapidly. In this way one obtains a function that looks like a wave: It 
oscillates and quickly decays. This is the source of its name. Morlet used 
the function 

t2 

7/J(t) = e-2 cos5t, 

which is now known as Morlet's wavelet; derivatives of the Gaussian are 
widely used in practice. Figures 42.1-42.4 illustrate differences in the be­
havior of the Gabor functions W>.b(t), which have a ridged envelope, and 
wavelets, which are dilated and contracted. With wavelets one sees the 
action of an accordion. (The factor a- 112 has not been used in the figures.) 
Unlike Gabor functions, wavelets do not have a rigid envelope. 
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FIGURE 42.1. A wavelet oscillates and decays. 
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FIGURE 42.2. Gabor functions W>.b(t) = e -2(t-b) e2inAt: The envelope is rigid, 

and the number of oscillations varies with frequency. 



0.8227 

0.5727 

0.3227 

0.0727 

rfr(x) 

42.2 The wavelet transform 397 

a=1 

-0.1773 

-0.4273 

-0.6773 L--.....__._____.___..'--'---.1.....-'-----'----'-"'--+ 
-5.0 -3.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 

-4.0 -2.0 

FIGURE 42.3. A mother wavelet (8th derivative of a Gaussian). 

42.2 The wavelet transform 

42.2.1 Theorem Suppose that the function 'ljJ E L1 (IR) n L2 (IR) satis­
fies the following conditions: 

+ ~ 2 

(i) [oooo 1'1/J~~?I d>. = K < +oo. 

(ii) II'I/JII2 = 1. 

Construct the family of wavelets 

1 (t- b) '1/Jab(t) = VfaT'I/J -a- , a, b E IR, a =1- 0, 

and for any signal f E L 2 (IR) consider the wavelet coeHicicnts 

f +oo 
CJ(a, b) = -oo f(t)""ijjab(t) dt. 

Under these conditions we have the following results: 
(a) Conservation of energy: 

1 !J da db f+oo 
K ICJ(a, bW-2 = lf(tW dt. 

F a -oo 
(b) Rcconstruction formula: 

1 Jr r dadb f(x) = K 1 IR2 CJ(a,b)'I/Jab(x)~ 

in the sense that if 

1 Jr r dadb 
fc(x) = K 1 lal~c CJ(a, b)'I/Jab(x)~, 

bEIR 
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FIGURE 42.4. Wavelets at low and high frequency: They have the same form 
and the same number of oscillations; they are dilated for large a and contracted 
for small a. 

Proof. First two observations: The '1/Jab are normalized so that II'I/Jabll2 = 1, 
and the proof is similar tothat of Theorem 41.3.1. Thus, as before, we find 
another expression for CJ(a, b): 

and since 

(42.1) 

we have 

( 42.2) 




