Mathematical methods for engineering The boundary element method

Ana Alonso
University of Trento

Doctoral School in Environmental Engineering - January 24, 2012

Introduction and notation

$$
\begin{cases}-\Delta u=0 & \text { in } \Omega \\ u=f & \text { in } \Gamma_{D} \\ \frac{\partial u}{\partial n}=g & \text { on } \Gamma_{N}\end{cases}
$$

Given $\mathbf{z} \in \mathbb{R}^{d}$

- $E(\cdot, \mathbf{z})$ denotes the fundamental solution of the Laplace equation:

$$
-\Delta E=\delta_{\mathbf{z}}
$$

- $T(\cdot, \mathbf{z})$ denotes the normal derivative of $E(\cdot, \mathbf{z})$:

$$
T(\cdot, \mathbf{z}):=\nabla E(\cdot, \mathbf{z}) \cdot \mathbf{n} .
$$

It is defined in $\partial \Omega$.

If $\Omega \subset \mathbb{R}^{2}$

$$
\begin{gathered}
E(\mathbf{x}, \mathbf{z})=\frac{1}{2 \pi} \log \frac{1}{|\mathbf{x}-\mathbf{z}|} \\
T(\mathbf{x}, \mathbf{z})=-\frac{1}{2 \pi} \frac{1}{|\mathbf{x}-\mathbf{z}|^{2}}(\mathbf{x}-\mathbf{z}) \cdot \mathbf{n} \\
|\mathbf{x}-\mathbf{z}|^{2}=\left(x_{1}-z_{1}\right)^{2}+\left(x_{2}-z_{2}\right)^{2}
\end{gathered}
$$

Basic integral equations

- Internal points: $\mathbf{z} \in \Omega$

$$
u(\mathbf{z})=\int_{\partial \Omega} E(\mathbf{x}, \mathbf{z}) \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) d s(\mathbf{x})-\int_{\partial \Omega} T(\mathbf{x}, \mathbf{z}) u(\mathbf{x}) d s(\mathbf{x})
$$

- Boundary points: $\mathbf{z} \in \partial \Omega$

$$
\begin{aligned}
& C(\mathbf{z}) u(\mathbf{z})=\int_{\partial \Omega} E(\mathbf{x}, \mathbf{z}) \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) d s(\mathbf{x})-\int_{\partial \Omega} T(\mathbf{x}, \mathbf{z}) u(\mathbf{x}) d s(\mathbf{x}) \\
& C(\mathbf{z}) \equiv \text { free term } \equiv \frac{\alpha(\mathbf{z})}{2 \pi} .
\end{aligned}
$$

Constant elements - 1

- The boundary of Ω is assumed to be polygonal divided in N elements.
- Both u and $q:=\frac{\partial u}{\partial n}$ are approximated using piecewise constant functions: u_{N}, q_{N}.
- The unknowns are the values at the mid-element node, \mathbf{x}_{j}, $j=1, \ldots, N$.
- Notice that $\alpha\left(\mathbf{x}_{i}\right)=\frac{1}{2}$ for $i=1, \ldots, N$.

Constant elements - 2

Boundary points: $\mathbf{z} \in \partial \Omega$

$$
C(\mathbf{z}) u(\mathbf{z})=\int_{\partial \Omega} E(\mathbf{x}, \mathbf{z}) \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x}) d s(\mathbf{x})-\int_{\partial \Omega} T(\mathbf{x}, \mathbf{z}) u(\mathbf{x}) d s(\mathbf{x})
$$

For $i=1, \ldots, N$

$$
\begin{gathered}
\frac{1}{2} u_{N}\left(\mathbf{x}_{i}\right)=\sum_{j=1}^{N} q_{N}\left(\mathbf{x}_{j}\right) \int_{\Gamma_{j}} E\left(\mathbf{x}, \mathbf{x}_{i}\right) d s(\mathbf{x})-\sum_{j=1}^{N} u_{N}\left(\mathbf{x}_{j}\right) \int_{\Gamma_{j}} T\left(\mathbf{x}, \mathbf{x}_{i}\right) d s(\mathbf{x}) \\
G_{i, j}:=\int_{\Gamma_{j}} E\left(\mathbf{x}, \mathbf{x}_{i}\right) d s(\mathbf{x}) \quad \hat{H}_{i, j}:=\int_{\Gamma_{j}} T\left(\mathbf{x}, \mathbf{x}_{i}\right) d s(\mathbf{x}) \\
\frac{1}{2} u_{i}=\sum_{j=1}^{N} G_{i, j} q_{j}-\sum_{j=1}^{N} \hat{H}_{i, j} u_{j}
\end{gathered}
$$

Constant elements - 3

$$
\frac{1}{2} u_{i}+\sum_{j=1}^{N} \hat{H}_{i, j} u_{j}=\sum_{j=1}^{N} G_{i, j} q_{j}
$$

Setting $H_{i, j}= \begin{cases}\hat{H}_{i, j} & \text { when } i \neq j \\ \hat{H}_{i, j}+\frac{1}{2} & \text { when } i=j\end{cases}$

$$
\sum_{j=1}^{N} H_{i, j} u_{j}=\sum_{j=1}^{N} G_{i, j} q_{j}
$$

Evaluation of integrals - 1

$$
G_{i, j}:=\frac{1}{2 \pi} \int_{\Gamma_{j}} \log \frac{1}{\left|\mathbf{x}-\mathbf{x}_{i}\right|} d s(\mathbf{x}) \quad \hat{H}_{i, j}:=-\frac{1}{2 \pi} \int_{\Gamma_{j}} \frac{\left(\mathbf{x}-\mathbf{x}_{i}\right) \cdot \mathbf{n}_{j}}{\left|\mathbf{x}-\mathbf{x}_{i}\right|^{2}} d s(\mathbf{x})
$$

- For the case $i \neq j$ integrals $G_{i, j}$ and $\hat{H}_{i, j}$ can be calculted using, for instance, Gauss quadrature rules.
- For $i=j$ the presence on the singularity requires a more accurate integration.
For the particular case of constant elements $\hat{H}_{i, i}$ and $G_{i, i}$ can be computed analitically.
Notice that if $\mathbf{x} \in \Gamma_{i}$ then $\left(\mathbf{x}-\mathbf{x}_{i}\right) \cdot \mathbf{n}_{i}=0$ hence $\hat{H}_{i, i}=0$.

Evaluation of integrals - 2

$$
\begin{aligned}
G_{i, i}= & \frac{1}{2 \pi} \int_{\Gamma_{i}} \log \frac{1}{\left|\mathbf{x}-\mathbf{x}_{i}\right|} d s(\mathbf{x})=\frac{1}{2 \pi} \frac{L_{i}}{2} \int_{-1}^{1} \log \frac{1}{\left|r L_{i} / 2\right|} d r \\
& \mathbf{x}=\mathbf{P}_{i} \frac{1-r}{2}+\mathbf{P}_{i+1} \frac{1+r}{2} \quad \mathbf{x}_{i}=\frac{\mathbf{P}_{i}+\mathbf{P}_{i+1}}{2}
\end{aligned}
$$

where L_{i} is the length of Γ_{i}.
By integration by parts $\int_{0}^{1} \log \left(r \frac{L_{i}}{2}\right) d r=\log \frac{L_{i}}{2}-1$.

$$
G_{i, i}=\frac{L_{i}}{2 \pi}\left(1-\log \frac{L_{i}}{2}\right)
$$

Gauss quadrature rules - 1

$$
\int_{-1}^{1} f(r) d r \approx \sum_{k=1}^{K} \omega_{k} f\left(r_{k}\right)
$$

It is a quadrature rule constructed to yield an exact result for polynomials of degree $2 K-1$ or less.
For instance, in the four points rule the point are

$$
\begin{gathered}
\pm \sqrt{\frac{1}{7}(3-2 \sqrt{6 / 5})} \text { with weight } \frac{18+\sqrt{30}}{36} \\
\pm \sqrt{\frac{1}{7}(3+2 \sqrt{6 / 5})} \text { with weight } \frac{18-\sqrt{30}}{36} . \\
\int_{\Gamma_{j}} F(\mathbf{x}) d s(\mathbf{x})=\frac{L_{j}}{2} \int_{-1}^{1} F\left(\mathbf{P}_{j} \frac{1-r}{2}+\mathbf{P}_{j+1} \frac{1+r}{2}\right) d r \\
\approx \frac{L_{j}}{2} \sum_{k=1}^{4} \omega_{k} F\left(\mathbf{P}_{j} \frac{1-r_{k}}{2}+\mathbf{P}_{j+1} \frac{1+r_{k}}{2}\right) .
\end{gathered}
$$

Gauss quadrature rules - 2

```
function [h,g]=GQcon(P1,P2,Q)
    r=[-0.8611363116 -0.3399810436 0.3399810436 0.8611363116];
    w=[0.3478548451 0.6521451549 0.6521451549 0.3478548451];
    L=norm(P2-P1);
    n=[0 1; -1 0]*(P2-P1)/L;
    for i=1:4
    x=P1*(1-r(i))/2+P2*(1+r(i))/2;
    H(i)=(x-Q)'*n/norm(x-Q)^2;
    G(i)=log(norm(x-Q));
    end
    h=-L/(4*pi)*W*H;
    g=-L/(4*pi)*W*G;
```


Constant elements - Boundary data

$$
\sum_{j=1}^{N} H_{i, j} u_{j}=\sum_{j=1}^{N} G_{i, j} q_{j}
$$

$$
\begin{cases}-\Delta u=0 & \text { in } \Omega \\ u=f & \text { in } \Gamma_{D} \\ \frac{\partial u}{\partial n}=g & \text { on } \Gamma_{N}\end{cases}
$$

- If $\Gamma_{D}=\partial \Omega$ the vector $\mathbf{u}=\left(u_{j}\right)_{j=1}^{N}$ is given and the unknowns are the componente of the vector $\mathbf{q}=\left(q_{j}\right)_{j=1}^{N}$.
- On the other hand if $\Gamma_{N}=\partial \Omega$ then the vector $\mathbf{q}=\left(u_{j}\right)_{j=1}^{N}$ is given and the unknowns are the componente of the vector $\mathbf{u}=\left(q_{j}\right)_{j=1}^{N}$ (but matrix H is singular.)
- In general N_{1} values of u corresponding to Γ_{D} and N_{2} values of q corresponding to Γ_{N} are known with $N_{1}+N_{2}=N$.

Constant elements - Boundary data

We rearrange the unknowns to obtain a system:

$$
A \mathbf{x}=\mathbf{b}
$$

where \mathbf{x} is the vector of unknowns (u on Γ_{N}, q on Γ_{D}) and \mathbf{b} is a data vector obtained multiplying the corresponding coefficient by the known values of u or q :

```
for \(i=1: N\)
    for \(j=1: N\)
        if \(u(j)\) is unknown
            \(A(i, j)=H(i, j)\)
            \(b(i)=b(i)+G(i, j) * q(j)\)
            else
            \(A(i, j)=-G(i, j)\)
            \(b(i)=b(i)-H(i, j) * u(j)\)
            end
    end
end
```


The input data

The geometry and the boundary conditions.

- The geometry is given by a $2 \times N$ matrix with the coordinates of the points \mathbf{P}_{j} that define the elements. Notice that:

$$
\begin{aligned}
& \mathbf{x}_{j}=\frac{\mathbf{P}_{j}+\mathbf{P}_{j+1}}{2} \quad \text { if } j \neq N \\
& \mathbf{x}_{N}=\frac{\mathbf{P}_{N}+\mathbf{P}_{1}}{2} \quad \text { if } j \neq N
\end{aligned}
$$

- The boundary conditions are given in a $2 \times N$ matrix. The first line indicates the type of boundary condition (0 for Dirichlet boundary condition and 1 for Neumann boundary condition), the second one contains the boundary data.

The output

The solution is saved in a $2 \times N$ matrix that contains both the boundary data and the computed solution.

- The first row contains the Dirichlet data;
- the second row the Neumann one.

The program

```
function sol=Bemcon(coor,bc)
N=length(coor);
b=zeros(N,1);
coor=[coor,coor (:,1)];
L=sqrt(sum((coor(:,2:N+1)-coor(:,1:N)).^2))
gdiag=L/(2*pi).*(1-log(L/2))
for i=1:N
    Q=0.5*(\operatorname{coor}(:,i)+\operatorname{coor}(:,i+1));
    for j=1:N
        if j==i
            h=1/2;
            g=gdiag(j);
        else
            [h,g]=GQcon(\operatorname{coor}(:,j),\operatorname{coor}(:,j+1),Q);
        end
        if bc(1,j)==0
        A(i,j)=-g;
        b(i)=b(i)-h*bc(2,j);
        else
            A(i,j)=h;
            b(i)=b(i)+g*bc(2,j);
        end
    end
end
```


The program - 2

```
x=A\b;
for i=1:N
    if bc(1,i)==0
        sol(1,i)=bc(2,i);
        sol(2,i)=x(i);
    else
        sol(1,i)=x(i);
        sol(2,i)=bc(2,i);
    end
end
```


The solution at internal points - 1

$$
u(\mathbf{z}) \approx \sum_{j=1}^{N}\left[q_{j} \int_{\Gamma_{j}} E(\mathbf{x}, \mathbf{z}) d s(\mathbf{x})-\sum_{j=1}^{N} u_{j} \int_{\Gamma_{j}} T(\mathbf{x}, \mathbf{z}) d s(\mathbf{x})\right]
$$

The integrals are calculated using Gauss quadrature.

```
function s=SolIntcon(coor,sol,data)
K=length(data);
N=length(coor);
coor=[coor,coor(:,1)];
s=zeros(1,K);
for i=1:K
    z=data(:,i);
    for j=1:N
        [h,g]=GQcon(coor(:,j),\operatorname{coor}(:,j+1),z);
        s(i)=s(i)-sol (1,j)*h+sol (2,j)*g;
    end
end
```


The solution at internal points - 2

- coor is the matrix with the vertices in the discrete boundary;
- sol is the matrix with both the Dirichlet and the Neumann data at the meddle point of the edges in the discrete boundary;
- data is a matrix with the coordinates of the internal points where the solution would be computed.

Linear elements - 1

- The functions u and q are assumed to be liner over each element.
- We will assume that u is continuous but q can be discontinuous in corner points

$$
\begin{gathered}
u_{\mid \Gamma_{j}}=u\left(P_{j}\right) N_{1}(r)+u\left(P_{j+1}\right) N_{2}(r) \\
q_{\mid \Gamma_{j}}=q^{+}\left(P_{j}\right) N_{1}(r)+q^{-}\left(P_{j+1}\right) N_{2}(r)
\end{gathered}
$$

$N_{1}(r)=\frac{1-r}{2}, N_{2}(r)=\frac{1+r}{2}$, with $r \in[-1,1]$.

Linear elements - 2

$$
\begin{aligned}
& C\left(\mathbf{P}_{i}\right) u\left(\mathbf{P}_{i}\right)+\int_{\partial \Omega} u(\mathbf{x}) T\left(\mathbf{x}, \mathbf{P}_{i}\right) d s(\mathbf{x})=\int_{\partial \Omega} q(\mathbf{x}) E\left(\mathbf{x}, \mathbf{P}_{i}\right) d s(\mathbf{x}) \\
& \int_{\Gamma_{j}} u(\mathbf{x}) T\left(\mathbf{x}, \mathbf{P}_{i}\right) d s(\mathbf{x})= \\
& \quad u_{j} \frac{L_{j}}{2} \int_{-1}^{1} N_{1}(r) T\left(\mathbf{P}_{j} N_{1}(r)+\mathbf{P}_{j+1} N_{2}(r), \mathbf{P}_{i}\right) d s(\mathbf{x}) \\
& \quad+u_{j+1} \frac{L_{j}}{2} \int_{-1}^{1} N_{2}(r) T\left(\mathbf{P}_{j} N_{1}(r)+\mathbf{P}_{j+1} N_{2}(r), \mathbf{P}_{i}\right) d s(\mathbf{x})
\end{aligned}
$$

For $k=1,2$

$$
\begin{gathered}
A_{k}(i, j):=\frac{L_{j}}{2} \int_{-1}^{1} N_{k}(r) T\left(\mathbf{P}_{j} N_{1}(r)+\mathbf{P}_{j+1} N_{2}(r), \mathbf{P}_{i}\right) d s(\mathbf{x}) \\
\int_{\Gamma_{j}} u(\mathbf{x}) T\left(\mathbf{x}, \mathbf{P}_{i}\right) d s(\mathbf{x})=A_{1}(i, j) u_{j}+A_{2}(i, j) u_{j+1}
\end{gathered}
$$

Linear elements - 3

Analogously

$$
\begin{aligned}
& \int_{\Gamma_{j}} q(\mathbf{x}) E\left(\mathbf{x}, \mathbf{P}_{i}\right)= \\
& \quad q_{j}^{+} \frac{l_{j}}{2} \int_{-1}^{1} N_{1}(r) E\left(\mathbf{P}_{j} N_{1}(r)+\mathbf{P}_{j+1} N_{2}(r), \mathbf{P}_{i}\right) d s(\mathbf{x}) \\
& \quad+q_{j+1}^{-} \frac{l_{j}}{2} \int_{-1}^{1} N_{2}(r) E\left(\mathbf{P}_{j} N_{1}(r)+\mathbf{P}_{j+1} N_{2}(r), \mathbf{P}_{i}\right) d s(\mathbf{x})
\end{aligned}
$$

For $k=1,2$

$$
\begin{gathered}
B_{k}(i, j):=\frac{L_{j}}{2} \int_{-1}^{1} N_{k}(r) E\left(\mathbf{P}_{j} N_{1}(r)+\mathbf{P}_{j+1} N_{2}(r), \mathbf{P}_{i}\right) d s(\mathbf{x}) \\
\int_{\Gamma_{j}} q(\mathbf{x}) E\left(\mathbf{x}, \mathbf{P}_{i}\right)=q_{j}^{+} B_{1}(i, j)+q_{j+1}^{-} B_{2}(i, j)
\end{gathered}
$$

Linear elements - 4

$$
\begin{aligned}
& C\left(\mathbf{P}_{i}\right) u\left(\mathbf{P}_{i}\right)+\int_{\partial \Omega} u(\mathbf{x}) T\left(\mathbf{x}, \mathbf{P}_{i}\right) d s(\mathbf{x})=\int_{\partial \Omega} q(\mathbf{x}) E\left(\mathbf{x}, \mathbf{P}_{i}\right) d s(\mathbf{x}) \\
& C\left(\mathbf{P}_{i}\right) u_{i}+\sum_{j=1}^{N}\left[A_{1}(i, j) u_{j}+A_{2}(i, j) u_{s}\right]=\sum_{j=1}^{N}\left[B_{1}(i, j) q_{j}^{+}+B_{2}(i, j) q_{s}^{-}\right] \\
& \qquad s=s(j)= \begin{cases}j+1 & \text { if } j=1, \ldots, N-1 \\
1 & \text { if } j=N\end{cases} \\
& \begin{array}{l}
\text { for } \mathrm{i}=1: \mathrm{N} \\
\text { for } \mathrm{j}=1: \mathrm{N} \\
\text { compute } A_{1}(i, j), A_{2}(i, j), B_{1}(i, j), B_{2}(i, j) .
\end{array}
\end{aligned}
$$

For each one of this four coefficients
if it multiplies an unknown then the coefficient is added to the corresponding entry of the matrix ($a_{i, j}$ or $a_{i, s}$),
if it multiplies a data the product is added to the right hand term.

Boundary conditions

1. Neumann-Neumann condition u_{j} unknown, q_{j}^{-}given, q_{j}^{+}given.
2. Dirichlet - Neumann condition u_{j} given, q_{j}^{-}unknown, q_{j}^{+}given.
3. Neumann - Dirichlet condition u_{j} given, q_{j}^{-}given, q_{j}^{+}unknown.
4. Dirichlet - Dirichlet condition (regular point)
u_{j} given, q_{j}^{-}unknown, q_{j}^{+}unknown.
but $q_{j}^{-}=q_{j}^{+}$
5. Dirichlet - Dirichlet condition (non regular point) u_{j} given, q_{j}^{-}unknown, q_{j}^{+}unknown. and $q_{j}^{-} \neq q_{j}^{+} \quad \rightsquigarrow \quad$ The gradient approach

The gradient approach

$$
\begin{array}{ll}
q_{j}^{-}=\nabla u\left(\mathbf{P}_{j}\right) \cdot \mathbf{n}_{j-1} & \nabla u\left(\mathbf{P}_{j}\right)=\left|\nabla u\left(\mathbf{P}_{j}\right)\right| \mathbf{e}\left(\mathbf{P}_{j}\right) \\
q_{j}^{+}=\nabla u\left(\mathbf{P}_{j}\right) \cdot \mathbf{n}_{j}
\end{array}
$$

Assuming linear evolution along the elements adjacent to the corner in \mathbf{P}_{j} a linear

- $\left|\nabla u\left(\mathbf{P}_{j}\right)\right|$ is the unknown $\rightsquigarrow v_{j}$.

$$
q_{j}^{-} \rightsquigarrow v_{j} \frac{\nabla \hat{u}_{j}}{\left|\nabla \hat{u}_{j}\right|} \cdot \mathbf{n}_{j-1} \quad q_{j}^{+} \rightsquigarrow v_{j} \frac{\nabla \hat{u}_{j}}{\left|\nabla \hat{u}_{j}\right|} \cdot \mathbf{n}_{j} .
$$

Evaluation of the coefficients - 1

- If $\mathbf{P}_{i} \notin \Gamma_{j}$ Gauss quadrature
- If $\mathbf{P}_{i} \in \Gamma_{j}$
- $A_{k}(i, j)=0$ for $k=1,2$ because $\forall \mathbf{P} \in \Gamma_{j} \quad\left(\mathbf{P}-\mathbf{P}_{i}\right) \cdot \mathbf{n}=0$.
- $B_{k}(i, j)$ are improper integrals that can be calculated exactly.

$$
\begin{aligned}
B_{1}(j, j)= & -\frac{L_{j}}{2} \int_{-1}^{1} \frac{1}{2 \pi} \frac{1-r}{2} \log \left|\mathbf{P}_{j} \frac{1-r}{2}+\mathbf{P}_{j+1} \frac{1+r}{2}-\mathbf{P}_{j}\right| d r \\
= & -\frac{L_{j}}{2} \int_{-1}^{1} \frac{1}{2 \pi} \frac{1-r}{2} \log \left|\left(\mathbf{P}_{j+1}-\mathbf{P}_{j}\right) \frac{1+r}{2}\right| d r \\
& \left(\frac{1+r}{2}=s, \quad d r=2 d s, \quad \frac{1-r}{2}=1-s\right) \\
= & -\frac{L_{j}}{2 \pi} \int_{0}^{1}(1-s) \log \left(L_{j} s\right) d s=\frac{L_{j}}{2 \pi}\left(\frac{3}{4}-\frac{1}{2} \log L_{j}\right)
\end{aligned}
$$

Evaluation of the coefficients - 2

$$
\begin{array}{ll}
B_{1}(j, j) & =\frac{L_{j}}{2 \pi}\left(\frac{3}{4}-\frac{1}{2} \log L_{j}\right) \\
B_{2}(j, j) & =\frac{L_{j}}{2 \pi}\left(\frac{1}{4}-\frac{1}{2} \log L_{j}\right) \\
B_{1}(j+1, j) & =\frac{L_{j}}{2 \pi}\left(\frac{1}{4}-\frac{1}{2} \log L_{j}\right) \\
B_{2}(j+1, j) & =\frac{L_{j}}{2 \pi}\left(\frac{3}{4}-\frac{1}{2} \log L_{j}\right)
\end{array}
$$

- Free terms: for a constant solution $u=M$

$$
\begin{gathered}
C\left(P_{i}\right) M+\sum_{j=1}^{N}\left[A_{1}(i, j) M+A_{2}(i, j) M\right]=0 \\
C\left(P_{i}\right)=-\sum_{j=1}^{N}\left[A_{1}(i, j)+A_{2}(i, j)\right]
\end{gathered}
$$

Input data

The geometry and the boundary conditions.

- The geometry is given by a $2 \times N$ matrix with the coordinates of the points \mathbf{P}_{j} that define the elements (as in the case of constant elements).
- The type of boundary conditions is given in a vector with N components. Each entry is an integer from 1 to 5 .
- The boundary data are given in a matrix $3 \times N$ matrix. The first line contains the values of u, the second one q^{-}and the last one q^{+}.
Notice that in this matrix there are unknowns coefficients.

