Minimal decompositions and the geometry of finite sets

Luca Chiantini
Universitá di Siena, Italy

QUANTUM PHYSICS AND GEOMETRY

Workshop - Levico Terme

$$
\text { July 5, } 2017
$$

Index of the talk

(1) Introduction
(2) The geometric setting
(3) New geometric achievements
(4) Other developments and work in progress

Setting the problem

Tensor rank decomposition

$T=$ tensor of a given type (general, symmetric, skew-symmetric, etc.) say over the complex field \mathbb{C}.

Setting the problem

Tensor rank decomposition

$T=$ tensor of a given type (general, symmetric, skew-symmetric, etc.) say over the complex field \mathbb{C}.

DECOMPOSITION: write T as a linear combinantion (of length k)

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

where the T_{i} are (previously chosen) elementary tensors.

Setting the problem

Tensor rank decomposition

$T=$ tensor of a given type (general, symmetric, skew-symmetric, etc.) say over the complex field \mathbb{C}.

DECOMPOSITION: write T as a linear combinantion (of length k)

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

where the T_{i} are (previously chosen) elementary tensors.

E.g. elementary tensors

$$
T=v_{1} \otimes \cdots \otimes v_{m} \quad v_{i} \in \mathbb{C}^{n_{i}}
$$

elementary tensors $=$ product tensors.

Setting the problem

Problems on decompositions

Setting the problem

Problems on decompositions

- Find a decomposition of a given T.

Setting the problem

Problems on decompositions

- Find a decomposition of a given T.
- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$ (length k), determine:

Setting the problem

Problems on decompositions

- Find a decomposition of a given T.
- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$ (length k), determine:
- if it is unique

Setting the problem

Problems on decompositions

- Find a decomposition of a given T.
- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$ (length k), determine:
- if it is unique (mod rearranging and scalars);

Setting the problem

Problems on decompositions

- Find a decomposition of a given T.
- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$ (length k), determine:
- if it is unique (mod rearranging and scalars);
- \quad if it is minimal (i.e. k is minimal);

Setting the problem

Problems on decompositions

- Find a decomposition of a given T.
- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$ (length k), determine:
- \quad if it is unique (mod rearranging and scalars);
- if it is minimal (i.e. k is minimal); or how far are we from a minimal decomposition.

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$ (length k), determine:
- if it is unique (mod rearranging and scalars);
- \quad if it is minimal (i.e. k is minimal);

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$ (length k), determine:
- if it is unique (mod rearranging and scalars);
- \quad if it is minimal (i.e. k is minimal);
uniqueness \Longrightarrow minimality

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
- if it is unique (mod rearranging and scalars);
- if it is minimal (i.e. k is minimal).

Example: Strassen's conjecture

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
- if it is unique (mod rearranging and scalars);
- \quad if it is minimal (i.e. k is minimal).

Example: Strassen's conjecture
Assume that T is a block tensor $T=T^{\prime}+T^{\prime \prime}$

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
- \quad if it is unique (mod rearranging and scalars);
- if it is minimal (i.e. k is minimal).

Example: Strassen's conjecture

Assume that T is a block tensor $T=T^{\prime}+T^{\prime \prime}$

$$
T^{\prime}=a_{1}^{\prime} T_{1}^{\prime}+\cdots+a_{k^{\prime}}^{\prime} T_{k^{\prime}}^{\prime} \quad T^{\prime \prime}=a_{1}^{\prime \prime} T_{1}^{\prime \prime}+\cdots+a_{k^{\prime \prime}}^{\prime \prime} T_{k^{\prime \prime}}^{\prime \prime}
$$

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
- if it is unique (mod rearranging and scalars);
- if it is minimal (i.e. k is minimal).

Example: Strassen's conjecture

Assume that T is a block tensor $T=T^{\prime}+T^{\prime \prime}$

$$
T^{\prime}=a_{1}^{\prime} T_{1}^{\prime}+\cdots+a_{k^{\prime}}^{\prime} T_{k^{\prime}}^{\prime} \quad T^{\prime \prime}=a_{1}^{\prime \prime} T_{1}^{\prime \prime}+\cdots+a_{k^{\prime \prime}}^{\prime \prime} T_{k^{\prime \prime}}^{\prime \prime}
$$

hence:

$$
T=a_{1}^{\prime} T_{1}^{\prime}+\cdots+a_{k^{\prime}}^{\prime} T_{k^{\prime}}^{\prime}+a_{1}^{\prime \prime} T_{1}^{\prime \prime}+\cdots+a_{k^{\prime \prime}}^{\prime \prime} T_{k^{\prime \prime}}^{\prime \prime}
$$

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
if it is unique (mod rearranging and scalars);
if it is minimal (i.e. k is minimal).

Example: Strassen's conjecture

Assume that T is a block tensor $T=T^{\prime}+T^{\prime \prime}$

$$
T^{\prime}=a_{1}^{\prime} T_{1}^{\prime}+\cdots+a_{k^{\prime}}^{\prime} T_{k^{\prime}}^{\prime} \quad T^{\prime \prime}=a_{1}^{\prime \prime} T_{1}^{\prime \prime}+\cdots+a_{k^{\prime \prime}}^{\prime \prime} T_{k^{\prime \prime}}^{\prime \prime}
$$

hence:

$$
T=a_{1}^{\prime} T_{1}^{\prime}+\cdots+a_{k^{\prime}}^{\prime} T_{k^{\prime}}^{\prime}+a_{1}^{\prime \prime} T_{1}^{\prime \prime}+\cdots+a_{k^{\prime \prime}}^{\prime \prime} T_{k^{\prime \prime}}^{\prime \prime}
$$

Is the decomposition above minimal?

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
- if it is unique (for the number k);
- if it is minimal (i.e. k is minimal).

Example: Comon's problem

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
- if it is unique (for the number k);
- if it is minimal (i.e. k is minimal).

Example: Comon's problem

Assume that T is a symmetric tensor and

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

is a minimal symmetric decomposition.

Setting the problem

Problems on decompositions

- Given a decomposition $T=a_{1} T_{1}+\cdots+a_{k} T_{k}$, determine:
- if it is unique (for the number k);
- if it is minimal (i.e. k is minimal).

Example: Comon's problem

Assume that T is a symmetric tensor and

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

is a minimal symmetric decomposition.
Is the decomposition above also minimal as a general decomposition? Is there a bound for the length of a minimal decomposition, in terms of k ?

Geometric tensors

mod out scalar multiplication

Geometric tensors

mod out scalar multiplication

For most purposes T and its scalar multiples $a T, a \neq 0$ are equivalent.

Geometric tensors

mod out scalar multiplication

For most purposes T and its scalar multiples $a T, a \neq 0$ are equivalent. In other words, most relevant sets of tensors are cones, i.e. are sets closed for scalar multiplication.

Geometric tensors

mod out scalar multiplication

For most purposes T and its scalar multiples $a T, a \neq 0$ are equivalent. In other words, most relevant sets of tensors are cones, i.e. are sets closed for scalar multiplication.
Thus one can identify T and its multiples $a T$.
The result is a projective space of tensors $\mathbb{P}\left(\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{m}}\right)$ or $\mathbb{P}\left(\operatorname{Sym}^{d}\left(\mathbb{C}^{n}\right)\right)$ or $\mathbb{P}\left(\Lambda^{d}\left(\mathbb{C}^{n}\right)\right)$, etc.

Geometric tensors

mod out scalar multiplication

For most purposes T and its scalar multiples $a T$, $a \neq 0$ are equivalent. In other words, most relevant sets of tensors are cones, i.e. are sets closed for scalar multiplication.
Thus one can identify T and its multiples $a T$.
The result is a projective space of tensors $\mathbb{P}\left(\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{m}}\right)$ or $\mathbb{P}\left(\operatorname{Sym}^{d}\left(\mathbb{C}^{n}\right)\right)$ or $\mathbb{P}\left(\Lambda^{d}\left(\mathbb{C}^{n}\right)\right)$, etc.

ADVANTAGE: the projective space is compact, a property that, in Geometry, makes usually things much easier to study.

Geometric tensors

Geometric elementary tensors

Geometric tensors

Geometric elementary tensors

In $\mathbb{P}\left(\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{m}}\right)=\mathbb{P}^{r}$ elementary tensors are points in the image of the Segre map:

$$
s:=s_{n_{1}, \ldots, n_{m}}: \mathbb{P}\left(\mathbb{C}^{n_{1}}\right) \times \cdots \times \mathbb{P}\left(\mathbb{C}^{n_{m}}\right) \rightarrow \mathbb{P}^{r}
$$

Geometric tensors

Geometric elementary tensors

In $\mathbb{P}\left(\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{m}}\right)=\mathbb{P}^{r}$ elementary tensors are points in the image of the Segre map:

$$
s:=s_{n_{1}, \ldots, n_{m}}: \mathbb{P}\left(\mathbb{C}^{n_{1}}\right) \times \cdots \times \mathbb{P}\left(\mathbb{C}^{n_{m}}\right) \rightarrow \mathbb{P}^{r}
$$

In $\mathbb{P}\left(\operatorname{Sym}^{d}\left(\mathbb{C}^{n}\right)\right)=\mathbb{P}^{r}$ elementary tensors are points in the image of the Veronese map:

$$
v:=v_{d, n}: \mathbb{P}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{P}^{r}
$$

Geometric tensors

Geometric elementary tensors

In $\mathbb{P}\left(\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{m}}\right)=\mathbb{P}^{r}$ elementary tensors are points in the image of the Segre map:

$$
s:=s_{n_{1}, \ldots, n_{m}}: \mathbb{P}\left(\mathbb{C}^{n_{1}}\right) \times \cdots \times \mathbb{P}\left(\mathbb{C}^{n_{m}}\right) \rightarrow \mathbb{P}^{r}
$$

In $\mathbb{P}\left(\operatorname{Sym}^{d}\left(\mathbb{C}^{n}\right)\right)=\mathbb{P}^{r}$ elementary tensors are points in the image of the Veronese map:

$$
v:=v_{d, n}: \mathbb{P}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{P}^{r}
$$

The Veronese map equals the Segre map restricted to the linear subspace of symmetric tensors.

Geometric tensors

Geometric decompositions

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

Geometric tensors

Geometric decompositions

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

iff
there are $T_{1}, \ldots T_{k}$ in the image X of the Segre map (resp. the Veronese map) such that T belongs to the linear space spanned by the T_{i} 's.

Geometric tensors

Geometric decompositions

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

iff
there are $T_{1}, \ldots T_{k}$ in the image X of the Segre map (resp. the Veronese map) such that T belongs to the linear space spanned by the T_{i} 's.

$$
T \in\left\langle T_{1}, \ldots, T_{k}\right\rangle
$$

Geometric tensors

Geometric decompositions

$$
T=a_{1} T_{1}+\cdots+a_{k} T_{k}
$$

iff
there are $T_{1}, \ldots T_{k}$ in the image X of the Segre map (resp. the Veronese map) such that T belongs to the linear space spanned by the T_{i} 's.

$$
T \in\left\langle T_{1}, \ldots, T_{k}\right\rangle
$$

In other words, there are points $P_{1}, \ldots, P_{k} \in \mathbb{P}\left(\mathbb{C}^{n_{1}}\right) \times \cdots \times \mathbb{P}\left(\mathbb{C}^{n_{m}}\right)$ (resp. $\left.P_{1}, \ldots, P_{k} \in \mathbb{P}\left(\mathbb{C}^{n}\right)\right)$ such that T lies in the span of $s\left(P_{1}\right), \ldots, s\left(P_{k}\right)$ $\left(\right.$ resp. $\left.v\left(P_{1}\right), \ldots, v\left(P_{k}\right)\right)$.

Geometric tensors

Geometric decompositions
$T=a_{1} T_{1}+\cdots+a_{k} T_{k} \quad$ iff there are $T_{1}, \ldots T_{k}$ in the image X of the Segre map (resp. the Veronese map) such that $T \in\left\langle T_{1}, \ldots, T_{k}\right\rangle$.

Secant varieties

The sets of points spanned by k points of X are the strict secant varieties.

Geometric tensors

Geometric decompositions
$T=a_{1} T_{1}+\cdots+a_{k} T_{k} \quad$ iff there are $T_{1}, \ldots T_{k}$ in the image X of the Segre map (resp. the Veronese map) such that $T \in\left\langle T_{1}, \ldots, T_{k}\right\rangle$.

Secant varieties

The sets of points spanned by k points of X are the strict secant varieties. Their closures are the secant varieties of X

$$
\sigma_{k}(X)
$$

Geometric tensors

$$
\sigma_{2}(X)
$$

Geometric tensors

$$
\sigma_{2}(X)
$$

one must include also the limits of secant lines, e.g. tangent lines.

Geometric tensors

$$
\sigma_{3}(X)
$$

one must include also the limits.

Kruskal's result for uniqueness

Theorem (Kruskal 1977)

Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$. Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Kruskal's result for uniqueness

Theorem (Kruskal 1977)
Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$.
Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Kruskal's rank

Kruskal's result for uniqueness

Theorem (Kruskal 1977)

Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$.
Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Kruskal's rank

Each T_{j} corresponds to a point $P_{j} \in Y:=\mathbb{P}^{n_{1}-1} \times \mathbb{P}^{n_{2}-1} \times \mathbb{P}^{n_{3}-1}$. There are obvious projections $\pi_{i}: Y \rightarrow \mathbb{P}^{n_{i}-1}$.

Kruskal's result for uniqueness

Theorem (Kruskal 1977)

Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$.
Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Kruskal's rank

Each T_{j} corresponds to a point $P_{j} \in Y:=\mathbb{P}^{n_{1}-1} \times \mathbb{P}^{n_{2}-1} \times \mathbb{P}^{n_{3}-1}$. There are obvious projections $\pi_{i}: Y \rightarrow \mathbb{P}^{n_{i}-1}$.
The i-th Kruskal rank r_{i} corresponds to the maximal integer such that the points $\pi_{i}\left(P_{j}\right)$'s are in r_{i}-th Linear General Position (LGP),

Kruskal's result for uniqueness

Theorem (Kruskal 1977)

Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$.
Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Kruskal's rank

Each T_{j} corresponds to a point $P_{j} \in Y:=\mathbb{P}^{n_{1}-1} \times \mathbb{P}^{n_{2}-1} \times \mathbb{P}^{n_{3}-1}$. There are obvious projections $\pi_{i}: Y \rightarrow \mathbb{P}^{n_{i}-1}$.
The i-th Kruskal rank r_{i} corresponds to the maximal integer such that the points $\pi_{i}\left(P_{j}\right)$'s are in r_{i}-th Linear General Position (LGP),
i.e. any set of cardinality $\leq r_{i}$ is linearly independent (no three points on a line, no four points on a plane, etc.).

Example: Kruskal's result for uniqueness

Theorem (Kruskal 77)

Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$. Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Remarks

Kruskal's originary criterion works for 3-way tensors.

Example: Kruskal's result for uniqueness

Theorem (Kruskal 77)

Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$. Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Remarks

Kruskal's originary criterion works for 3-way tensors.
(Domanov-DeLathauwer) It can be extended to k-way tensor by repacking them in groups of three.

Example: Kruskal's result for uniqueness

Theorem (Kruskal 77)

Let $a_{1} T_{1}+\cdots+a_{k} T_{k}$ be a decomposition of $T \in \mathbb{C}^{n_{1}} \otimes \mathbb{C}^{n_{2}} \otimes \mathbb{C}^{n_{3}}$. Let r_{i} be the i-th Kruskal's rank of the T_{i} 's. If

$$
k \leq \frac{r_{1}+r_{2}+r_{3}-2}{2}
$$

the the decomposition is minimal and unique.

Remarks

Kruskal's originary criterion works for 3-way tensors.
(Domanov-DeLathauwer) It can be extended to k-way tensor by repacking them in groups of three.
(LC-Ottaviani-Vannieuwenhoven) It can be extended to symmetric tensor by reshaping.

Symmetric reshaping

Theorem (LC-Ottaviani-Vannieuwenhoven SIAM J.MatrixAn. 2017)

Consider tensors in $\mathbb{P}\left(\right.$ Sym $\left.^{d^{d}} \mathbb{C}^{n}\right) \subset \mathbb{P}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{d_{3}}\right)$, where $d_{1}+d_{2}+d_{3}=d$. Then use Kruskal's citerion.

Symmetric reshaping

Theorem (LC-Ottaviani-Vannieuwenhoven SIAM J.MatrixAn. 2017)

Consider tensors in $\mathbb{P}\left(S^{\prime} m^{d^{n}} \mathbb{C}^{n}\right) \subset \mathbb{P}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{d_{3}}\right)$, where $d_{1}+d_{2}+d_{3}=d$. Then use Kruskal's citerion.
Most effective for $d_{1}=d_{2}=\left\lfloor\frac{1}{2}(d-1)\right\rfloor$ and $d_{3}=d-2 d_{1}$:

$$
k \leq \begin{cases}\frac{3}{2}(n-1)+\frac{1}{2} & \text { if } d=3 \\ 2(n-1) & \text { if } d=4 \\ \binom{d_{1}+n-1}{d_{1}}+\frac{1}{2}\binom{d_{3}+n}{d_{3}}-1 & \text { if } d \geq 5\end{cases}
$$

Symmetric reshaping

Theorem (LC-Ottaviani-Vannieuwenhoven SIAM J.MatrixAn. 2017)

Consider tensors in $\mathbb{P}\left(S^{\prime} m^{d^{n}} \mathbb{C}^{n}\right) \subset \mathbb{P}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{d_{3}}\right)$, where $d_{1}+d_{2}+d_{3}=d$. Then use Kruskal's citerion.
Most effective for $d_{1}=d_{2}=\left\lfloor\frac{1}{2}(d-1)\right\rfloor$ and $d_{3}=d-2 d_{1}$:

$$
k \leq \begin{cases}\frac{3}{2}(n-1)+\frac{1}{2} & \text { if } d=3 \\ 2(n-1) & \text { if } d=4 \\ \binom{d_{1}+n-1}{d_{1}}+\frac{1}{2}\binom{d_{3}+n}{d_{3}}-1 & \text { if } d \geq 5\end{cases}
$$

The criterion is effective:

Symmetric reshaping

Theorem (LC-Ottaviani-Vannieuwenhoven SIAM J.MatrixAn. 2017)

Consider tensors in $\mathbb{P}\left(\right.$ Sym $\left.^{d^{d}} \mathbb{C}^{n}\right) \subset \mathbb{P}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{d_{3}}\right)$, where $d_{1}+d_{2}+d_{3}=d$. Then use Kruskal's citerion.
Most effective for $d_{1}=d_{2}=\left\lfloor\frac{1}{2}(d-1)\right\rfloor$ and $d_{3}=d-2 d_{1}$:

$$
k \leq \begin{cases}\frac{3}{2}(n-1)+\frac{1}{2} & \text { if } d=3, \\ 2(n-1) & \text { if } d=4, \\ \binom{d_{1}+n-1}{d_{1}}+\frac{1}{2}\binom{d_{3}+n}{d_{3}}-1 & \text { if } d \geq 5\end{cases}
$$

The criterion is effective: it ends with a positive answer outside a set of measure 0 .

Symmetric reshaping

Theorem (LC-Ottaviani-Vannieuwenhoven SIAM J.MatrixAn. 2017)

Consider tensors in $\mathbb{P}\left(S^{\prime} m^{d^{n}} \mathbb{C}^{n}\right) \subset \mathbb{P}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{d_{3}}\right)$, where $d_{1}+d_{2}+d_{3}=d$. Then use Kruskal's citerion.
Most effective for $d_{1}=d_{2}=\left\lfloor\frac{1}{2}(d-1)\right\rfloor$ and $d_{3}=d-2 d_{1}$:

$$
k \leq \begin{cases}\frac{3}{2}(n-1)+\frac{1}{2} & \text { if } d=3, \\ 2(n-1) & \text { if } d=4, \\ \binom{d_{1}+n-1}{d_{1}}+\frac{1}{2}\binom{d_{3}+n}{d_{3}}-1 & \text { if } d \geq 5\end{cases}
$$

The criterion is effective: it ends with a positive answer outside a set of measure 0 .

Theorem (Dersken 2013)

Kruskal's range is sharp.

Toy example: 4ics in 4 variables

Toy example: 4ics in 4 variables

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.

Toy example: 4ics in 4 variables

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

Toy example: 4ics in 4 variables

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

Toy example: 4ics in 4 variables

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.

Toy example: 4ics in 4 variables

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.

Count of parameters:
Quartics in 4 variables are a space of dimension 35.
9 linear forms in 4 variables have 36 parameters.

Toy example: 4ics in 4 variables

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.

Count of parameters:
Quartics in 4 variables are a space of dimension 35.
9 linear forms in 4 variables have 36 parameters.
In geometric terms, the abstract (projective) secant variety $A \sigma_{4}(X)$, X being the image of the 4 -veronese map of \mathbb{P}^{3}, has dimension 35 , so the map to $\mathbb{P}\left(\operatorname{Sym}^{4} \mathbb{C}^{4}\right)=\mathbb{P}^{34}$ cannot be generically one-to-one (birational).

4ics in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable.

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable.

Through 8 points of the parameter space of elementary objects \mathbb{P}^{3} one can draw an elliptic curve C (complete intersection of two quadrics),

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable.

Through 8 points of the parameter space of elementary objects \mathbb{P}^{3} one can draw an elliptic curve C (complete intersection of two quadrics), and the 4-Veronese map maps C to an elliptic normal curve $Y \subset \mathbb{P}^{17}$.

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable.

Through 8 points of the parameter space of elementary objects \mathbb{P}^{3} one can draw an elliptic curve C (complete intersection of two quadrics), and the 4 -Veronese map maps C to an elliptic normal curve $Y \subset \mathbb{P}^{17}$. Thus any point F of rank 8 has indeed a decomposition in terms of elementary tensors belonging to Y,

4ics in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable.

Through 8 points of the parameter space of elementary objects \mathbb{P}^{3} one can draw an elliptic curve C (complete intersection of two quadrics), and the 4-Veronese map maps C to an elliptic normal curve $Y \subset \mathbb{P}^{17}$. Thus any point F of rank 8 has indeed a decomposition in terms of elementary tensors belonging to Y, and it is well known that, with respect to an elliptic normal curve, points have two minimal decompositions (LC-Ciliberto J.LondonMath.Soc. 2006).

4ics in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.

An exception to the general non-sense principle that tensors of subgeneric rank are identifiable.

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.

An exception to the general non-sense principle that tensors of subgeneric rank are identifiable.
Indeed all the exceptions are classified (for symmetric tensors).
(Ballico 2005, LC - Ottaviani - Vannieuwenhoven - TAMS 2016)
(for generic rank Galuppi-Mella 2017)

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.

In the set of real quartic form in 4 variables, of rank 8,

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.

In the set of real quartic form in 4 variables, of rank 8, there are euclidean open non-empty subsets such that:

- The two decompositions are both non-real (real rank 9).
- Both decompositions are real.
- One decomposition is real and one is not

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.

In the set of real quartic form in 4 variables, of rank 8, there are euclidean open non-empty subsets such that:

- The two decompositions are both non-real (real rank 9).
- Both decompositions are real.
- One decomposition is real and one is not (real identifiability).

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9, and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.

In the set of real quartic form in 4 variables, of rank 8, there are euclidean open non-empty subsets such that:

- The two decompositions are both non-real (real rank 9).
- Both decompositions are real.
- One decomposition is real and one is not (real identifiability).
(Angelini - Bocci - LC, Lin.Multlin.Alg. 2017)

4ics in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.
- Quartics of rank 7.

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.
- Quartics of rank 7.
- Quartics of rank ≤ 6. The general one is identifiable. Kruskal's reshaped criterion applies.

$4 i c s$ in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.
- Quartics of rank 7.
- Quartics of rank ≤ 6. The general one is identifiable. Kruskal's reshaped criterion applies.

So we have a trustable method to determine wether a quartic of rank ≤ 6 is identifiable or not.

4ics in 4 variables (toy example)

Consider symmetric tensors $F \in \mathbb{P}\left(\right.$ Sym $\left.^{4} \mathbb{C}^{4}\right)$.
F corresponds to a quartic homogeneous polynomial (form) in 4 variables, hence, in geometric terms, to a surface of degree 4 in \mathbb{P}^{3}.

What is known for such tensors

- The general quartic in 4 variables has rank 9 , and it is never identifiable.
- Quartics of rank 8 are not identifiable: they have two minimal decompositions.
- Quartics of rank 7.
- Quartics of rank ≤ 6. The general one is identifiable. Kruskal's criterion applies.

Quartics of rank 7 in 4 variables

F non identifiable of rank 7.

Quartics of rank 7 in 4 variables

F non identifiable of rank 7.

F belongs to the spans of two sets of 7 points.

Quartics of rank 7 in 4 variables

F non identifiable of rank 7.

F belongs to the spans of two sets of 7 points.
The spans are two \mathbb{P}^{6} 's meeting at F.

Quartics of rank 7 in 4 variables

F non identifiable of rank 7.

The spans are two \mathbb{P}^{6} 's meeting at F. The two \mathbb{P}^{6} 's span a \mathbb{P}^{12} and not a \mathbb{P}^{13}.

Quartics of rank 7 in 4 variables

F non identifiable of rank 7.

The 14 points span a \mathbb{P}^{12} and not a \mathbb{P}^{13}.
They do not impose independent conditions to hyperplanes H.

Quartics of rank 7 in 4 variables

F non identifiable of rank 7.

The pre-images of the 14 points in \mathbb{P}^{3} do not impose independent conditions to quartics.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have a decomposition

$$
F=T_{1}+\cdots+T_{7}
$$

of a quadric in 4 variables.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have a decomposition

$$
F=T_{1}+\cdots+T_{7}
$$

of a quadric in 4 variables.
We want to know if the decomposition is (minimal and) unique.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have a decomposition

$$
F=T_{1}+\cdots+T_{7}
$$

of a quadric in 4 variables.
We want to know if the decomposition is (minimal and) unique.
Take the set Z of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have a decomposition

$$
F=T_{1}+\cdots+T_{7}
$$

of a quadric in 4 variables.
We want to know if the decomposition is (minimal and) unique.
Take the set Z of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's and study the existence of another set of $(\leq) 7$ points Z^{\prime} such that $Z \cup Z^{\prime}$ does not impose independent conditions to quartics of \mathbb{P}^{3}.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have a decomposition

$$
F=T_{1}+\cdots+T_{7}
$$

of a quadric in 4 variables.
We want to know if the decomposition is (minimal and) unique.
Take the set Z of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's and study the existence of another set of $(\leq) 7$ points Z^{\prime} such that $Z \cup Z^{\prime}$ does not impose independent conditions to quartics of \mathbb{P}^{3}.

The question is translated in terms of simple points interpolation in a projective space of dimension 3 .

Quartics of rank 7 in 4 variables

Interpolation for simple points

Given a finite set $W \subset \mathbb{P}^{n}$, determine how many conditions the points impose to forms of given degree d.

Quartics of rank 7 in 4 variables

Interpolation for simple points

Given a finite set $W \subset \mathbb{P}^{n}$, determine how many conditions the points impose to forms of given degree d.
l.e. determine the dimension of the cokernel of the inclusion

$$
I_{d} \rightarrow R_{d}
$$

where R is the polynomial ring $R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and I is the homogeneous ideal of W (the subscripts indicate the degree).

Quartics of rank 7 in 4 variables

Interpolation for simple points

Given a finite set $W \subset \mathbb{P}^{n}$, determine how many conditions the points impose to forms of given degree d.
l.e. determine the dimension of the cokernel of the inclusion

$$
I_{d} \rightarrow R_{d}
$$

where R is the polynomial ring $R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ and I is the homogeneous ideal of W (the subscripts indicate the degree).

Hilbert function of W

$$
H_{W}(d)=\operatorname{dim}\left(R_{d} / I_{d}\right)
$$

Quartics of rank 7 in 4 variables

There is a huge literature on the properties of Hilbert functions of (finite or infinite) algebraic projective varieties.

Quartics of rank 7 in 4 variables

There is a huge literature on the properties of Hilbert functions of (finite or infinite) algebraic projective varieties.

Lemma

In our situation, the two decompositions of F determine a set $W=Z \cup Z^{\prime} \subset \mathbb{P}^{3}$, of (at most) 14 points and not less than 10 points, which imposes only 7 conditions to quadrics. I.e. $H_{W}(2) \leq 7$.

Quartics of rank 7 in 4 variables

There is a huge literature on the properties of Hilbert functions of (finite or infinite) algebraic projective varieties.

Lemma

In our situation, the two decompositions of F determine a set $W=Z \cup Z^{\prime} \subset \mathbb{P}^{3}$, of (at most) 14 points and not less than 10 points, which imposes only 7 conditions to quadrics. I.e. $H_{W}(2) \leq 7$.

Castelnuovo's Theorem

If a set W of at least $n+6$ points in \mathbb{P}^{n}
imposes non more than $n+4$ conditions to quadrics, then the points are contained in a rational normal curve (a curve of degree n in \mathbb{P}^{n}).

Quartics of rank 7 in 4 variables

There is a huge literature on the properties of Hilbert functions of (finite or infinite) algebraic projective varieties.

Lemma

In our situation, the two decompositions of F determine a set $W=Z \cup Z^{\prime} \subset \mathbb{P}^{3}$, of (at most) 14 points and not less than 10 points, which imposes only 7 conditions to quadrics. I.e. $H_{W}(2) \leq 7$.

Castelnuovo's Theorem

If a set W of at least $n+6$ points in \mathbb{P}^{n} in uniform position imposes non more than $n+4$ conditions to quadrics, then the points are contained in a rational normal curve (a curve of degree n in \mathbb{P}^{n}).

Quartics of rank 7 in 4 variables

Castelnuovo's Theorem
 If a set W of at least $n+6$ points in \mathbb{P}^{n} in uniform position imposes non more than $n+4$ conditions to quadrics, then the points are contained in a rational normal curve (a curve of degree n in \mathbb{P}^{n}).

Castelnuovo's Theorem revisited (LC-Ottaviani-Vannieuwenhoven)

Quartics of rank 7 in 4 variables

> Castelnuovo's Theorem
> If a set W of at least $n+6$ points in \mathbb{P}^{n} in uniform position imposes non more than $n+4$ conditions to quadrics, then the points are contained in a rational normal curve (a curve of degree n in \mathbb{P}^{n}).

Castelnuovo's Theorem revisited (LC-Ottaviani-Vannieuwenhoven)

If a set W of at least $n+6$ points in \mathbb{P}^{n}, with at least $\mathbf{n}+4$ of them in uniform position
imposes non more than $n+4$ conditions to quadrics, then the points are contained in a rational normal curve (a curve of degree n in \mathbb{P}^{n}).

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.
Take the sets Z (resp. Z^{\prime}) of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's (resp. $T_{i}^{\prime \prime}$ s). Then $Z \cup Z^{\prime}$ is contained in a rational normal curve.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.
Take the sets Z (resp. Z^{\prime}) of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's (resp. $T_{i}^{\prime \prime}$ s). Then $Z \cup Z^{\prime}$ is contained in a rational normal curve. In particular Z is contained in a rational normal curve C.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.
Take the sets Z (resp. Z^{\prime}) of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's (resp. $T_{i}^{\prime \prime}$ s). Then $Z \cup Z^{\prime}$ is contained in a rational normal curve. In particular Z is contained in a rational normal curve C.

7 general points in \mathbb{P}^{3} are not contained in a rational normal curve.

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.
Take the sets Z (resp. Z^{\prime}) of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's (resp. $T_{i}^{\prime \prime}$ s). Then $Z \cup Z^{\prime}$ is contained in a rational normal curve. In particular Z is contained in a rational normal curve C.

7 general points in \mathbb{P}^{3} are not contained in a rational normal curve. So we have already a criterion to determine the identifiability of F, once we have Z :

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.
Take the sets Z (resp. Z^{\prime}) of 7 points in \mathbb{P}^{3}, pre-images of the T_{i} 's (resp. $\left.T_{i}^{\prime \prime} \mathrm{s}\right)$. Then $Z \cup Z^{\prime}$ is contained in a rational normal curve. In particular Z is contained in a rational normal curve C.

7 general points in \mathbb{P}^{3} are not contained in a rational normal curve.
So we have already a criterion to determine the identifiability of F, once we have Z :
detect if Z sits in a rational normal curve (e.g. with algoritmhs of computer algebra).

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.
Then the sets Z of the pre-images of the T_{i} 's is contained in a rational normal curve.

A rational normal curve in \mathbb{P}^{3} is mapped by the 4 -Veronese of \mathbb{P}^{3} to a rational normal curve in \mathbb{P}^{12},

Quartics of rank 7 in 4 variables

SUMMARIZING

Assume we have two decompositions

$$
F=T_{1}+\cdots+T_{7}=T_{1}^{\prime}+\cdots+T_{7}^{\prime}
$$

of a quadric in 4 variables.
Then the sets Z of the pre-images of the T_{i} 's is contained in a rational normal curve.

A rational normal curve in \mathbb{P}^{3} is mapped by the 4 -Veronese of \mathbb{P}^{3} to a rational normal curve in \mathbb{P}^{12}, and if F belongs to the 7 -secant variety of a curve in \mathbb{P}^{12}, then it has indeed infinitely many decomposition with 7 summands.

Quartics of rank 7 in 4 variables

FINAL CONSEQUENCE

Quartics of rank 7 in 4 variables

FINAL CONSEQUENCE

Assume we have:

$$
F=T_{1}+\cdots+T_{7}
$$

Then F has rank 7 and the decomposition is unique unless the pre-images of the 7 points belong to a rational normal curve,

Quartics of rank 7 in 4 variables

FINAL CONSEQUENCE

Assume we have:

$$
F=T_{1}+\cdots+T_{7}
$$

Then F has rank 7 and the decomposition is unique unless the pre-images of the 7 points belong to a rational normal curve, in which case F has infinitely many decompositions,

Quartics of rank 7 in 4 variables

FINAL CONSEQUENCE

Assume we have:

$$
F=T_{1}+\cdots+T_{7}
$$

Then F has rank 7 and the decomposition is unique unless the pre-images of the 7 points belong to a rational normal curve, in which case F has infinitely many decompositions, and the Terracini's tangent space to F has dimension less than the expected one (13).

Quartics of rank 7 in 4 variables

FINAL CONSEQUENCE

Assume we have:

$$
F=T_{1}+\cdots+T_{7}
$$

Then F has rank 7 and the decomposition is unique unless the pre-images of the 7 points belong to a rational normal curve, in which case F has infinitely many decompositions, and the Terracini's tangent space to F has dimension less than the expected one (13).

Since the dimension of the Terracini's tangent space can easily be detecyted by linear algebra, we get a rather effective method for deciding the uniquess and the rank of F, as soon as we heve a decomposition of F with 7 summands. (LC - Ottaviani - Vannieuwenhoven 2017).

Developments

Developments

Quartics in higher number of variables

Developments

Quartics in higher number of variables

$$
F=T_{1}+\cdots+T_{k}
$$

where k is 1 bigger than the reshaped Kruskal's upper numerical bound.

Developments

Quartics in higher number of variables

$$
F=T_{1}+\cdots+T_{k}
$$

where k is 1 bigger than the reshaped Kruskal's upper numerical bound. The same procedure applies, and we get that the decomposizion is unique unless we have a rational normal curve, hence infinitely many decompositions,

Developments

Quartics in higher number of variables

$$
F=T_{1}+\cdots+T_{k}
$$

where k is 1 bigger than the reshaped Kruskal's upper numerical bound. The same procedure applies, and we get that the decomposizion is unique unless we have a rational normal curve, hence infinitely many decompositions, easy to detect via linear algebra.

Developments

Quartics in higher number of variables

$$
F=T_{1}+\cdots+T_{k}
$$

where k is 1 bigger than the reshaped Kruskal's upper numerical bound. The same procedure applies, and we get that the decomposizion is unique unless we have a rational normal curve, hence infinitely many decompositions, easy to detect via linear algebra.

General non-sense, Ballico-LC 2012

When the rank is small $(k<3 d / 2)$ then F is identifiable, unless F has infinitely many decompositions.

Developments

Quartics in higher number of variables

Study the identifiability of:

$$
F=T_{1}+\cdots+T_{k}
$$

where k is $2+$ bigger than the reshaped Kruskal's upper numerical bound.

Developments

Quartics in higher number of variables

Study the identifiability of:

$$
F=T_{1}+\cdots+T_{k}
$$

where k is $2+$ bigger than the reshaped Kruskal's upper numerical bound. NEED: an extension of Castelnuovo's lemma.

Developments

Quartics in higher number of variables

Study the identifiability of:

$$
F=T_{1}+\cdots+T_{k}
$$

where k is $2+$ bigger than the reshaped Kruskal's upper numerical bound. NEED: an extension of Castelnuovo's lemma.

We have the extension when all the points of $Z \cup Z^{\prime}$ are in uniform position. (Petrakiev 2006)

Developments

Quartics in higher number of variables

Study the identifiability of:

$$
F=T_{1}+\cdots+T_{k}
$$

where k is $2+$ bigger than the reshaped Kruskal's upper numerical bound. NEED: an extension of Castelnuovo's lemma.

We have the extension when all the points of $Z \cup Z^{\prime}$ are in uniform position. (Petrakiev 2006) UNKNOWN: if we just have that the points of Z are in uniform position.

Developments

Quartics in higher number of variables

Study the identifiability of:

$$
F=T_{1}+\cdots+T_{k}
$$

where k is $2+$ bigger than the reshaped Kruskal's upper numerical bound. NEED: an extension of Castelnuovo's lemma.

We have the extension when all the points of $Z \cup Z^{\prime}$ are in uniform position. (Petrakiev 2006) UNKNOWN: if we just have that the points of Z are in uniform position. Similar problems for extensions to quintics, etc. (WORK IN PROGRESS).

Developments

When one does not have the LGP for the reshaped tensor

Developments

When one does not have the LGP for the reshaped tensor
 Uniqueness and minimality can still be detected, in some range, from the LGP of the points before the reshaping,

Developments

When one does not have the LGP for the reshaped tensor
 Uniqueness and minimality can still be detected, in some range, from the LGP of the points before the reshaping, much cheaper to compute.

Developments

When one does not have the LGP for the reshaped tensor
 Uniqueness and minimality can still be detected, in some range, from the LGP of the points before the reshaping, much cheaper to compute.

Work in progress with J. Migliore.

Developments

What if one just looks for minimality?

Developments

What if one just looks for minimality?
NB: non necessarily symmetric tensors.

Developments

What if one just looks for minimality?
NB: non necessarily symmetric tensors.
Theorem, Ballico-Bernardi-LC-Guardo 2017
Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$.

Developments

What if one just looks for minimality?
NB: non necessarily symmetric tensors.

Theorem, Ballico-Bernardi-LC-Guardo 2017

Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$. Fix a partition $E \sqcup F=\{1, \ldots, k\}$ and call $Z(E)$ (resp. $Z(F)$) the projections of Z to the factor of the partition in E (resp. in F).

Developments

What if one just looks for minimality?
NB: non necessarily symmetric tensors.

Theorem, Ballico-Bernardi-LC-Guardo 2017

Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$. Fix a partition $E \sqcup F=\{1, \ldots, k\}$ and call $Z(E)$ (resp. $Z(F)$) the projections of Z to the factor of the partition in E (resp. in F). If $Z(E), Z(F)$ are linearly independent in the corresponding Segre embedding, then the decomposition is minimal.

Applications

- it applies to tensors of type $3 \times 4 \times 6$ with a decomposition in 6 summands, (outside Kruskal's range).

Developments

What if one just looks for minimality?
NB: non necessarily symmetric tensors.

Theorem, Ballico-Bernardi-LC-Guardo 2017

Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$.
Fix a partition $E \sqcup F=\{1, \ldots, k\}$ and call $Z(E)$ (resp. $Z(F)$) the projections of Z to the factor of the partition in E (resp. in F). If $Z(E), Z(F)$ are linearly independent in the corresponding Segre embedding, then the decomposition is minimal.

Applications

- it applies to tensors of type $3 \times 4 \times 6$ with a decomposition in 6 summands, (outside Kruskal's range).
- Comon's problem has a positive answer for general forms of degree 8 in 3 variables.

Developments

What if one just looks for minimality?

Theorem (Ballico-Bernardi-LC-Guardo 2017)

Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$. Fix a partition $E \sqcup F=\{1, \ldots, k\}$ and call $Z(E)$ (resp. $Z(F)$) the projections of Z to the factor of the partition in E (resp. in F). If $Z(E), Z(F)$ are linearly independent in the corresponding Segre embedding, then the decomposition is minimal.

IDEA: use the Segre function, which is the analogue of the Hilbert function for non-symmetric tensors,

Developments

What if one just looks for minimality?

Theorem (Ballico-Bernardi-LC-Guardo 2017)

Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$.
Fix a partition $E \sqcup F=\{1, \ldots, k\}$ and call $Z(E)$ (resp. $Z(F)$) the projections of Z to the factor of the partition in E (resp. in F). If $Z(E), Z(F)$ are linearly independent in the corresponding Segre embedding, then the decomposition is minimal.

IDEA: use the Segre function, which is the analogue of the Hilbert function for non-symmetric tensors, i.e. try to compute the number of conditions imposed by the projections of the points of Z to some sub-products of our given product of projective spaces.

Developments

What if one just looks for minimality?

Theorem (Ballico-Bernardi-LC-Guardo 2017)

Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$.
Fix a partition $E \sqcup F=\{1, \ldots, k\}$ and call $Z(E)$ (resp. $Z(F)$) the projections of Z to the factor of the partition in E (resp. in F). If $Z(E), Z(F)$ are linearly independent in the corresponding Segre embedding, then the decomposition is minimal.

IDEA: use the Segre function, which is the analogue of the Hilbert function for non-symmetric tensors,
i.e. try to compute the number of conditions imposed by the projections of the points of Z to some sub-products of our given product of projective spaces.(LC-Sacchi 2015, Proc.Segre conference).

Developments

What if one just looks for minimality?

Theorem (Ballico-Bernardi-LC-Guardo 2017)

Let T be a tensor of type $n_{1} \times \cdots \times n_{k}$.
Take a decomposition $T=T_{1}+\cdots+T_{k}$ and put $Z=\left\{T_{1}, \ldots, T_{k}\right\}$.
Fix a partition $E \sqcup F=\{1, \ldots, k\}$ and call $Z(E)$ (resp. $Z(F)$) the projections of Z to the factor of the partition in E (resp. in F). If $Z(E), Z(F)$ are linearly independent in the corresponding Segre embedding, then the decomposition is minimal.

IDEA: use the Segre function, which is the analogue of the Hilbert function for non-symmetric tensors,
i.e. try to compute the number of conditions imposed by the projections of the points of Z to some sub-products of our given product of projective spaces.(LC-Sacchi 2015, Proc.Segre conference).

WORK IN PROGRESS

Final remark

Final remark

Thank you for your attention

