On the tensor rank
 of networks of entangled pairs

tensor surgery and the laser method

Matthias Christandl (Copenhagen) MMTH
Peter Vrana (Budapest) and Jeroen Zuiddam (Amsterdam) arXiv:1606.04085 and arXiv:1609.07476

Prelude

- Quantum Information

Tensors = multiparticle quantum states
Tensor rank = multiparticle entanglement

- Computer Science
- Physics

Tensor networks = description of ground states
Tensor structure = physical properties

- Relativity Theory, Engineering, ...

Overview

- Tensors, rank and networks of entangled pairs
- Tensor Surgery
- Laser Method

Overview

- Tensors, rank and networks of entangled pairs
- Tensor Surgery
- Laser Method

Tensors

tensor=quantum state

 overall normalisation does not matter- k -tensor t is an element in $\mathbb{C}^{n_{1}} \otimes \cdots \otimes \mathbb{C}^{n_{k}}$ basis

$$
b_{i_{1}} \otimes \cdots \otimes b_{i_{n}}
$$

- $\mathrm{k}=1$: vector $|+\rangle=|0\rangle+|1\rangle=b_{0}+b_{1}=\binom{1}{0}+\binom{0}{1}=\binom{1}{1} \quad b_{i}=$
$b_{i}=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)$
- $\mathrm{k}=2$: matrix $|00\rangle+|11\rangle=b_{0} \otimes b_{0}+b_{1} \otimes b_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
b_{i_{1}} \otimes b_{i_{2}}=\left(\begin{array}{ccc}
0 & \ldots & 0 \\
\vdots & \ddots & 1 \\
0 & \ldots & 0
\end{array}\right)
$$

- k=3: Cube $|001\rangle+|010\rangle+|100\rangle=b_{0} \otimes b_{0} \otimes b_{1}+b_{0} \otimes b_{1} \otimes b_{0}+b_{1} \otimes b_{0} \otimes b_{0}$

$$
\begin{array}{ll}
\mathbf{l}_{1} & 1_{0} \\
1_{0} & 0_{0}
\end{array}
$$

$$
b_{i_{1}} \otimes b_{i_{2}} \otimes b_{i_{3}}=
$$

Resource theory of tensors
 (Strassen 1991, Dür, Vidal \& Cirac 2000)

- Given k-tensors s and t.
- Can s be transformed into t by local operations? Do matrices A_{1}, \ldots, A_{k} exist, so that

$$
A_{1} \otimes \cdots A_{k} s=t
$$

- If yes, we write $s \geq t$.
- unit tensor (GHZ entangled state)

$$
T_{d}(k)=\sum_{i=1}^{d} b_{i} \otimes \cdots \otimes b_{i}
$$

Resource theory of tensors

- "entanglement cost" of a k-tensor t is the smallest d, s.th.

$$
T_{d}(k) \geq t
$$

- equals tensor rank $\mathrm{R}(\mathrm{t})$

$$
R(t)=\min \left\{d: t=\sum_{i} v_{1}^{(i)} \otimes \cdots \otimes v_{k}^{(i)}\right\}
$$

- "distillable entanglement" of a k -tensor t is the largest d, s.th.

$$
t \geq T_{d}(k)
$$

Tensor rank

- $\mathrm{k}=2$: tensor rank=matrix rank
\rightarrow easy to compute
Example:
Identity matrix (EPR state) $\mathrm{T}(\square-)=\sum_{i \in\{0,1\}} b_{i} \otimes b_{i} \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$
- k>2: NP hard (Håstad)

Examples:
Rank 2: GHZ state $\quad \mathrm{T}(\mathrm{D} \cdot)=\sum_{i \in\{0,1\}} b_{i} \otimes b_{i} \otimes b_{i} \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}$
Rank 3: W-state $\quad b_{0} \otimes b_{0} \otimes b_{1}+b_{0} \otimes b_{1} \otimes b_{0}+b_{1} \otimes b_{0} \otimes b_{0}$

Tensor rank versus tensor product

- Given s and t both k-tensors

$$
R(s \otimes t) \leq R(s) R(t)
$$

- Equality for 2-tensors, strict in general

$$
\begin{aligned}
& \mathrm{T}(.)=\sum_{i \in\{1,2\}} b_{i} \otimes b_{i} \otimes 1 \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C} \\
& \mathrm{~T}(\cdot)=\sum_{i \in\{1,2\}} b_{i} \otimes 1 \otimes b_{i} \in \mathbb{C}^{2} \otimes \mathbb{C} \otimes \mathbb{C}^{2} \\
& \mathrm{~T}(.)=\sum_{i \in\{1,2\}} 1 \otimes b_{i} \otimes b_{i} \in \mathbb{C} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}
\end{aligned}
$$

$$
\mathrm{T}\left(>^{\circ}\right)=\sum_{i, j, k \in\{1,2\}}\left(b_{i} \otimes b_{j}\right) \otimes\left(b_{j} \otimes b_{k}\right) \otimes\left(b_{k} \otimes b_{i}\right)
$$

Strassen's 7er

- Define $b_{+}:=b_{0}+b_{1}$ and $b_{-}:=b_{0}-b_{1}$ in \mathbb{C}^{2}

$$
b_{x y}:=b_{x} \otimes b_{y} \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}
$$

$-b_{-0} \otimes b_{0+} \otimes b_{11} \quad-b_{11} \otimes b_{-0} \otimes b_{0+} \quad-b_{0+} \otimes b_{11} \otimes b_{-0}$
$+b_{-1} \otimes b_{1+} \otimes b_{00} \quad+b_{00} \otimes b_{-1} \otimes b_{1+} \quad+b_{1+} \otimes b_{00} \otimes b_{-1}$
$+\left(b_{00}+b_{11}\right) \otimes\left(b_{00}+b_{11}\right) \otimes\left(b_{00}+b_{11}\right)$.
takes half an hour to verify

Border rank

- Sometimes, tensor of rank r can be approximated arbitrarily by tensors of rank $b<r$

$$
\begin{aligned}
& \left(b_{0}+\epsilon b_{1}\right)^{\otimes 3}-b_{0}^{\otimes 3} \\
& \quad=\epsilon\left(b_{0} \otimes b_{0} \otimes b_{1}+b_{0} \otimes b_{1} \otimes b_{0}+b_{1} \otimes b_{0} \otimes b_{0}\right)+O\left(\epsilon^{2}\right)
\end{aligned}
$$

- Smallest b is called border rank $\underline{R}(t)$
- More generally, approximate transformation from s to t.

Resource theory of tensors

- Given k-tensors s and t.

When is $s^{\otimes m} \geq t^{\otimes n}$?

- Best ratio m / n denoted by $\omega(s, t)$
- Asymptotic log rank $\omega(t):=\omega\left(T_{2}(k), t\right)$
- Asymptotic log subrank $q(t):=\omega\left(t, T_{2}(k)\right)^{-1}$
- Theorem (Strassen \& co):

$$
q(t) \leq \omega(t) \leq \log \underline{R}(t) \leq \log R(t)
$$

$q(t) \leq \omega(t) \leq \log \underline{R}(t) \leq \log R(t)$

matrix multiplication exponent

- Mamu

- W state

$$
\underline{R}(t)=7 \quad R(t)=7
$$

Landsberg

$b_{0} \otimes b_{0} \otimes b_{1}+b_{0} \otimes b_{1} \otimes b_{0}+b_{1} \otimes b_{0} \otimes b_{0}$

$$
q(W)=h\left(\frac{1}{3}\right) \approx 0.92 \quad \omega(t)=1
$$

Coppersmith-Winograd

$$
\underline{R}(t)=2 \quad R(t)=3
$$

Motivation for our work

- Log rank is a lower bound on the quantum communication complexity of a function $f(x, y)$
- Exact for non-deterministic case

Equality game = unit tensor
Pairwise equality (among 3) = Mamu Savings over the classical case: $\quad \log _{2} 7<3$

- What about more players? Pairwise equality in a circle or graph.

Benchmark: lower bound

- Rank, Border rank and asymptotic rank are decreasing under grouping of particles
- Group k particles into set S and complement

$$
R(t) \geq R_{S}(t)
$$

- this is matrix rank \rightarrow easy to compute
- For a graph of entangled pairs

$$
R_{S}(t)=2^{\# \text { edges leaving } S} \quad \omega(T(G)) \geq \operatorname{maxcut} G
$$

- Upper bound = \# edges in graph

$\#$ edges $\geq \omega(T(G)) \geq \operatorname{maxcut} G$

Cycle graph

5
4

Can we match the lower bounds?

Overview

- Tensors, rank and networks of entangled pairs
- Tensor Surgery
- Laser Method

Tensor surgery

- Transform non-trivial decomposition of initial tensor into non-trivial decomposition of target tensor
- Example:
rank 7 decomposition of 3 cycle \rightarrow rank 31 decomposition of 5 cycle
- Procedure:

1) cut open, generates virtual pair 2) insert 2 pairs and absorb virtual pair

31<32 ...

- works for all k-cycles $\mathrm{R}\left(\mathrm{T}\left(C_{k}\right)\right) \leq 2^{k}-1$
- works for border rank as well
- and asymptotic rank without knowledge of the decomposition, always using the " 7 " mamu upper bound

$$
\begin{aligned}
& \quad \omega_{k} \leq \omega_{k-2}+\omega_{3} \\
& \text { If } \omega=2, \text { then } \omega_{k}=k-1 \text { for all odd } k
\end{aligned}
$$

- uniformly bounded away from k

$$
\omega_{k} \leq k-\alpha\left(1+\frac{1-\alpha}{k-1+\alpha}\right) \leq k-\alpha-
$$

Other graphs and hypergraphs

$$
\omega(\mathrm{T}(G))=32
$$

$$
6 \leq \omega(\mathrm{T}(H)) \leq 6 \omega / 2
$$

Works well for sparse graphs and hypergraphs!
Your tensor?
What about dense graphs?

Dense graphs

- Tensor surgery needs a good starting tensor The best we have is mamu!
- in tensor sugergy asymptotic log rank per edge increases (no problem for sparse graphs)

2
2/3

$$
\begin{gathered}
\frac{k^{2}}{4} \\
\frac{k^{2}}{4} /\binom{k}{2} \approx \frac{1}{2}
\end{gathered}
$$

- best upper bounds from mamu covering $2.38 / 3 \approx 0.79$
- Can we beat this for some graph?

Overview

- Tensors, rank and networks of entangled pairs
- Tensor Surgery
- Laser Method

$$
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Laser method

- by Strassen for upper bound on mamu exponent
- with Coppersmith and Winograd starting tensor

1) choose starting tensor with low border rank with suitable coarse outer structure (W type) and fine inner structure (Mamu-type)
2) take many copies and extract unit tensors from W, each inner tensor is Mamu-type
3) The Mamu-type tensors can be a little different. Schönhage's asymptotic sum inequality makes them equal (coherent - thus the name "laser")

versus

starting tensor

$$
\underline{R} \leq q+2
$$

outer structure

$$
\begin{aligned}
W= & b_{1} \otimes b_{1} \otimes b_{2} \\
& + \text { permutations }
\end{aligned}
$$

$$
\begin{aligned}
D_{2,2}= & b_{1} \otimes b_{1} \otimes b_{2} \otimes b_{2} \\
& + \text { permutations }
\end{aligned}
$$

inner structure
(1 copy)

$$
\mathrm{o}_{\mathrm{q}}{ }^{\circ}{ }^{\circ} \text { or ... }
$$

(many copies)

unbalanced

versus

extract $\quad W^{\otimes n} \geq\left(b_{1} \otimes b_{1} \otimes b_{1}\right.$ $D_{2,2}^{\otimes n} \geq\left(b_{1} \otimes b_{1} \otimes b_{1} \otimes b_{1}\right.$ diagonal $\left.\left.\quad+b_{2} \otimes b_{2} \otimes b_{2}\right)^{\otimes n q(W)} \quad+b_{2} \otimes b_{2} \otimes b_{2} \otimes b_{2}\right)^{\otimes n q\left(D_{2,2}\right)}$
inner tensor

total tensor

lasering

versus

starting tensor

$$
\underline{R} \leq q+2
$$

final tensor

$R \leq(q+2)^{n}$

$$
\text { Coppersmith-Winograd }=h\left(\frac{1}{3}\right) \approx 0.92
$$

we show=1
goal tensor

$$
\begin{aligned}
\tau \leq & \log _{q}(q+2) \\
& -\log _{q}(2) q(W)
\end{aligned}
$$

$$
\tau \leq \log _{q}(q+2)
$$

$$
-\log _{q}(2) q\left(D_{2,2}\right)
$$

$$
\tau \leq 0.79
$$

$$
\tau \leq 0.7 \underset{\sim}{7}
$$

Summary

- Tensor Surgery

nontrivial rank results for k-cycle optimal asymptotic rank results good for sparse graphs

- Laser Method

$$
0-0+0_{0}^{0}+{ }_{0}^{0} 9
$$

beating matrix multiplication for best asymptotic rank per edge

Advertisement

- Tensor rank is not multiplicative under the tensor product
- with Asger Kjærulf-Jensen \& Jeroen Zuiddam
- arxiv:1705.09379
- Main Results:

3-tensor

$$
\begin{aligned}
R(\underbrace{W \otimes W}_{6-\text { tensor }}) & \leq 8<9=R(W)^{2} \\
R\left(t^{\otimes n}\right) & \leq \operatorname{poly}(n) \underline{R}(t)^{n}
\end{aligned}
$$

