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Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

1. scalable physical system with well-characterized qubits
2. ability to initialize fiducial state |0)
'3. decoherence times > gate operation time

qubit-specific measurement capability E‘Z]

universal set of quantum gates H +
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Quantum noise on n qubits

Quantum noise on n qubits is represented by a completely positive trace-preserving map (CPTPM)
N : B((C?)®™) — B((C?)®n)
Operational problem: can we recover information subjected to such noise?

Using the Kraus decomposition N(P) — ZEES EIOET
it can be shown that it suffices to protect against against a certain set of errors &€

where an errorisalinearmap  E : (C?)®" — (C?)®n

Mathematical problem: Is there a recovery CFTPM R : B((C2)®n) — B((Cz)@m)

such that for “suitable” p R(EpET) X P forall £ € &
encoded state |W/)

Procedure: (isometrically) embed/ “encode”
(CH®F L (C?H)°n
] ~—

Y —> Y
U) @ [0)®nF

unencoded state + ancillas

QEC condition:| L protects against errors £ & (U|ETF|p) = c¢(E, F){¥|p)
forall E,F €& VU, 5L




LAY ° 7)) . = |
Topological” error-correcting codes S
& ,
Def: A “topological” code: protects against all local errors, e.g., -\ [ 4 '
and more generally errors with

III

“topologically trivial” support

does not protect against errors
with topologically non-trivial
support, e.g.,

Example: Kitaev’s toric code

n = 2L? qubits on the edges of a edges of a L x L periodic lattices

A
| [ — {\IJ c (C2)®n |Av\p = Bp\IJ =V for all v,p}
XX X I A, = X®* for each vertex v
i Z ] B, = Z®* for each plaquette p
Z
. k = log, dim £ = 2 encoded qubits



Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

1. scalable physical system with well-characterized qubits
2. ability to initialize fiducial state |0)

v/ 3. decoherence times >> gate operation time

8 4. qubit-specific measurement capability E‘Z]

5. universal set of quantum gates H +
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he code space of Kitaev’s toric code



Logical operators in Kitaev's toric code

The operators X 1,21, X9, Z>
e preserve the code space L, i.e., are logical
e satisfy Pauli commutation relations X, =

SlaRololiaole
NI
|

NN NN

= They define a factorization of the

code space £ = C? ® C? such that .
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Logical operators in Kitaev's toric code: commuting subalgebras
F(O,O)(Cl) F(l,O)(Cl) F(O,l)(Cl) F(1,1)(01)

these 4
commute:

Sl Rolalale
NNN NN
XNNNNNNNXNN

these 4
: X
commute: X XX XXX PAT AT AR AL XZXZXZXZ ZX

Fl0,0)(C2) E1,0)(C2) Fo,1)(C2) F1,1)(Cy)



N\

"Flux"-basis states associated with loops on a torus

Fo,0)(C) = F1,00(C) Fo.1y(C) Fuy(C)
id X X
X 4 x7
X Z X<
f:rclﬁ;?nite: X g Xg
X X
X 4 x?

(These are the
idempotents
of the Verlinde
algebra.)

we can use the following 4 orthogonal projections to label

basis states of the code space:
Poo(C) = %(id+X®L) - %(idJrZ@L) e
Pao(C) = = 3(d=X1)-3(d+2°0) e
P(O,l)(C) = %(Id + X®L) . ?(Id — Z®L) |m>c
Pi1)(C) = 5(id—X®L). 2 (id — Z®F) €)c

Every non-contractible closed loop C' gives rise to a basis B of the code space




Fault-tolerant gates (on Kitaev’s toric code)



Fault-tolerant execution logical gates: three ways

1) Apply a string-operator X, =

PR P

* only gives logical Pauli operators
* does not generalize

2) Apply a short (transversal) quantum circuit

e gives certain Clifford operations
* generalization?

3) Apply code deformation (sequence of codes) ?

* generalizes to other models: mapping class group Il '
st

representation
* gives universal gate sets (in certain models)!



Mapping class group representation and toric code

apply L CNOTs apply L CNOTs

relocate qubits relocate qubits

in parallel A in parallel A
2 2 |
@ & repeat L times
& > N > o
2 2
N N
A A
@\ CNOT gate
basis states of the code space: <T 5 27
|
1>C 1 B%
are eigenvectors —>
€)C . . -1
of this operation 4
Im) e L -1
with eigenvalues
€>C 1




Mapping class group representation and toric code

apply L CNOTs apply L CNOTs

relocate qubits relocate qubits

in parallel A in parallel A
R R
N & repeat L times
& > RN > o
% ]
= N
A A

|
= For every closed, no-contractible loop C, T S
there is a logical gate U(C') implementable in — P
depth L

Each C defines an element ¥~ € MCG of the mapping class group of the torus (twisting along C').
Yo — U(C) gives a (projective) representation of MCG
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The Levin-Wen/Turaev-Viro code ingredients:

* finite set of “particle labels”

* involution operation on particle labels
* set of allowed triples

e scalars and a tensor

vertex operator: A, = Z(i,j k) allowed k) (ijk| j

plaguette operator:

local Hilbert space C¢
associated to every edge

Code space L C (Cd)®N

L={|V) | B,|T) = ) Vp, 4,]T) = |T) Vo)

Levin & Wen, Phys.Rev. B71 (2005) 045110



Manifold-invariants from triangulations

Consider closed n-manifolds modulo homeomorphism

FACT: For n=2,3, every equivalence class has a triangulated representative.

FACT (Pachner): n-manifolds homeomorphic <:>
triangulations related sequence of Pachner moves.

Pachner moves: finite
list of local changes of
triangulation, e.g., in
n=2:

— Recipe for constructing invariants:

* associate scalar to every triangulation

—

* show invariance under Pachner moves



Example: State-sum invariants

a b — F associate scalar with
/\ abe (colored) triangle

C

define invariant by summing over edge colorings:

@4) — D—#triaﬂgles Zqﬁ Htriangles t giq;b

triangulated sum over all
2-manifold colorings
Compatibility with Pachner moves is equivalent to algebraic conditions

I( A) — I( A) D—lFabc — D_3 Zm,y,z Faszxbszyc
I( e ) = I( <l> ) 2o FavoFena = 22y FayeFays



The Turaev-Viro 3-manifold invariant

triangulate sum over
colorings
3- manlfold
z *im

(closed)
kﬁ*n scalar associated with
lored) tetrahedron
dm dn (co

N\

TV(M) =D 2Vl 3~ [T deeey I 9

colorings ¢ edges e tetrahedrat

/

sum over all “"allowed” colorings

—




Algebraic conditions for invariance o

(via Pachner moves) i/ Féefg’
— N—2|V, b
TV(M) =D>IVml 3~ Il deey 11 9
colorings ¢ edges e tetrahedrat

1 = 1
di =1
If d; = d;- then TVC is a 3-manifold
>, d7 invariant
did; = Z(kadk
ym®* 77’2, 5 m* 277’2, o
2 b Z st __ Aspherical category C
“involution on _Fimiene = Fi it is/provides a solution to
set of colors LZ F;nﬁqF%gng;n — Fm; P ;q } th t
1: special col P o ig i~ ese eguations.
5 N { } kﬁn) :Fk * PR *
ijk < U0 M 1m m* 1my
Fij,n,j . Fygn' = Egeme = Ffbm" = B0, dd?g
kén = i1 k
FI = %dj(sijk
di € R>o (Barrett and Westbury, hep-th/9311155)



surface triangulation

The Turaev-Viro code C (C4)®IEl o e 5

__ Y
> X _ 1, 1] (CH®IE]
% contract
tensor T
ﬁ network
(extend triangulation ((Cd)@)IE

from 3 x {1}

Turaev-Viro code: support of this projection in the Hilbert space (C¢)®I#

Local stabilizers: attaching blisters - set of local operators which are

* projections

* mutually commuting

* stabilize code space



Blisters: properties -

N /

rom (manifo

commuting:

B, B,
VY
stabilize code space: A
N

=
=
=
|

project onto code Hp B,

space




The code space of the Turaev-Viro code



“Standard bases” from maximal sets of commuting observables

Any DAP-decomposition correspond to a “complete set of observables” and defines
a basis of the code space.

elements of
surface DAP- N standard
decomposition(s) basis/bases
3
D ! use idempotents of the Verlinde algebra for q
— each loop
> / a b
' v
<- analogy to three spin-1/2s: al a2 as
(S1+S9)%  (S1+ 52+ S3)? StZOtal \h<<
a1 as as
— — — 2 Z /
(S1+824+55)%  Sigial \2}2



F-move: basis change between
bases associated with different DAP-
decompositions

aip a2

h
\<(_ Zh’ gcfgaf;l’ \Q//

some (controlled) unitary U(a’Qa ai, as, C)h,h’

....analogous to spin-1/2- 6j symbols



Mapping class group (generators) and basis elements

Dehn-twist:

Braid-move:

surface

N B

N

elements of topological phase
standard basis/bases ()
¢ 1 \ i
R-matrix
a b a b
a b

Yo gy

Note: this is just a
fancy way of
writing equation

Dli) = 0;]i)
D=twig

Blb, a;c) = R¢’la, b;c)
B=braid



Conditions for MCG-representations:

*Consistency of basis changes:

mlq jip* jsn _ pgipt prtigt
Zn kan F”mSFEkT I *krFmES

(pentagon-identity)

*Compatibility of basis changes with
action of braiding generators:

kz 1t m kj § : *k*m kn ppj it n

m Ej g

0; = (RZ ”') (hexagon-identity)

e unitarity of representation:

(Moore and Seiberg)

— spherical

—  braided

— modular category




Basis states for the Turaev-Viro code



Levin-Wen ground space and local relations . ...
T

qudit lattice Hamiltonian

Hz—zp)i;(—zv)\

ground state coefficients in computational basis satisfy discrete local “skein” relations, e.g.,

o(L0)=a(10 ) o)) =aa(L 1)

Consequence: Ground space is isomorphic to Hilbert space of ribbon graphs
(“pictures”) modulo local equivalence relations n

ribbon graph space Hs



Ribbon graphs Hilbert space Hs for general category
trivalent labeled directed graphs (with loops) embedded in by

State: formal linear combination of ribbon graphs

a@‘? +8 | (°, ’YC‘@

+ ...

modulo local relations

k i ¢
. S
€ — z> - 5 pigm ~ L
— . F-symbol
i n = kin ; r p Y

() — @i qg-dimensions

“=0j =0
; dual labels: i

_— = e

fusion rules Z, i1 label (ab € trinon.
(set of allowed triples): ; N 1 tr|V|a: abe (1a sencio string):



Ribbon graph bases of Hs for Fib

Surface Y dimHs Example basis

Disc 1
(1-punctured O

sphere)

Annulus =
(2-punctured 7 [j [—j 9
sphere) R S
Pair of pants S ar e Uay suWs S Lo W S W=
(3-punctured 65

sphere)

n-punctured 52(n)
sphere

Next: Description of bases compatible with action of (generators of) mapping class
group!



Action of Dehn twist on Hs, for Fib

LT_SQ’]T
@

—
R
=

Goal: identify “fusion tree basis” (eigenvectors of twist)



Eigenvector

|

(:
\:

!

_|_¢6371"L/5

A I AC AT AT

fusion space basis element

eigenvalue (twist)

1

8471'@'/5

6—471'@'/5

topological phase

name

1®1 }

T®T

1®T }

TR 1

TXRT

TXRT }
TXRT }

anyon type
?
of “doubled” theory

Fib® Fit’

boundary labels

1,1
Anyonic

fusion

basis
obtained

by
T, T diagonaliz
ation

1,7

multiplicity index
for different
realizations

as subspaces of

Hs,



Anyonic fusion basis from“doubled” manifold = x [-1,1]

Goal: find
anyonic
fusion basis
states on

>

A recipe which
does not
involve

Intermediate
step: identify
relevant ribbon
graphs on

» x [—1,1]

diagonalization

simple derivation of
topological phase:
Map ribbon graphs using “vacu

Y x[=1,1] = X

-------

Example: find element + . :
for annulus 1]

- =

some ribbon graph on

- -
ﬁ______l

um” lines

------




boundary labels

— e~ — =
— . = _
~ ~
@
c © ® ® ® ® ® ®
c
O
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G
m —
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EFZE..TZ

637rz/5
37m/5

J@ 1_¢

—3%1/5
eS?Tz/S

eigenvector



Derived categories: basic data

/  doubled /
modular tensor category C dual category C category C X C

Unitary, Particles {1,2’,]’, .. .},* *75: +z* {’5, ’ (NS C} {Z & j | ec }

l
braided, J'eC
semisim .

le, * Fusion ' i X
P P k (set of) allowed i/ ) = I
rules J triol ! At ko 1R awd @k y 17’
riples J/ J N
g-dim —
Oi = d; dy = d; digjr = did;r

C

F-matrix bam b
\{{_Z den* n Fhonh = Fpem FeF

top. — = 0. 97, ;= 919’
phase Q)‘Z 9 * 91 9?’ * ’

a b a b 'y - —b /
R-matrix ?: Rgb Y Rg/ = Rg’ R® R



Computation with Turaev-Viro codes



Different lattices and F-move isomorphism

SO 2 B [0

n
For unitary tensor categories, this is a unitary 5-qudit gate.

ERAY

lattice G deformed lattice G°
@ N %
H 8round space of Hg, ground space of

spins on original Iattlce spins on deformed lattice



Dehn-twist:
discrete version

)
/-
e

S

V.
o e ee

Can be implemented by sequence of O(]7]*)  F-moves (5-qudit gates)

T _twists can be implemented similarly, therefore braids:

B=./D,/D;"'\/Ds

T/ %_ @ i
) = \G
universal gate set:

* braids generate dense subgroup of unitaries on subspace of s for (doubled) Fib
* for approriate encoding, approximation of universal gate set by Solovay-Kitaev
(Freedman, Larsen, Wang’02)




Gate sets obtained from the mapping class group

TQFT mapping class group (braiding)
contained in
D(Zs) Pauli group
abelian anyon model generalized Pauli group
Fibonacci model universal
Ising model Clifford group
generic anyon model model-dependent
generic anyon model universal




Conclusions and open problems

* Turaev-Viro codes offer a rich class of examples for potential platforms for topological
guantum computation.

 The mapping class group representation can be “decomposed” using the string-net
formalism
» Explicit constructions of protected/transversal gates for TQFTs?

* Performing syndrome-measurement & error correction, thresholds for fault-tolerance?

* Higher-dimensional generalizations?



