Quantum computation with Turaev-Viro codes

Robert König

joint work with Greg Kuperberg and Ben Reichardt

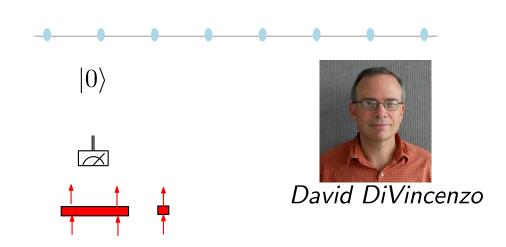
Table of contents

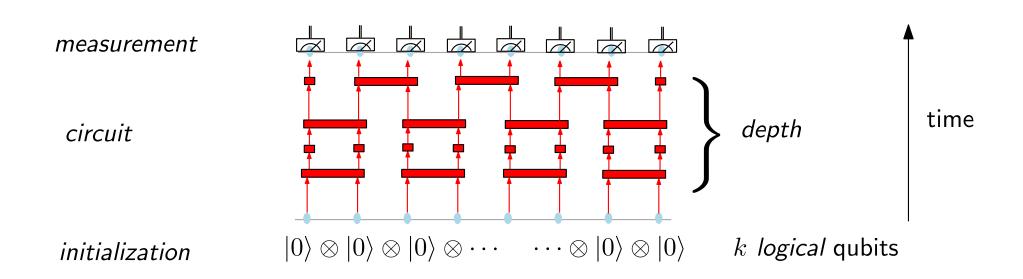
- Motivation: quantum fault-tolerance
- Case study: Kitaev's toric code
 - ground state (labeling)
 - mapping class group representation
 - protected gates
- Our work: The Turaev-Viro code
 - relationship to 3-manifold invariants
 - ground states
 - mapping class group representations
 - protected gates

Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

- 1. scalable physical system with well-characterized qubits
- 2. ability to initialize fiducial state
- 3. decoherence times \gg gate operation time
- 4. qubit-specific measurement capability
- 5. universal set of quantum gates





Quantum noise on n qubits

Quantum noise on n qubits is represented by a completely positive trace-preserving map (CPTPM)

$$\mathcal{N}: \mathcal{B}((\mathbb{C}^2)^{\otimes n}) \to \mathcal{B}((\mathbb{C}^2)^{\otimes n})$$

Operational problem: can we recover information subjected to such noise?

Using the Kraus decomposition $\mathcal{N}(\rho) = \sum_{E \in \mathcal{E}} E \rho E^\dagger$ it can be shown that it suffices to protect against against a certain set of errors \mathcal{E} where an error is a linear map $E: (\mathbb{C}^2)^{\otimes n} \to (\mathbb{C}^2)^{\otimes n}$

Mathematical problem: Is there a recovery CPTPM $\mathcal{R}:\mathcal{B}((\mathbb{C}^2)^{\otimes n}) o \mathcal{B}((\mathbb{C}^2)^{\otimes n})$

such that for ''suitable''
$$ho$$
 $\mathcal{R}(E
ho E^\dagger) \propto
ho$ for all $E \in \mathcal{E}$

Procedure: (isometrically) embed/"encode"

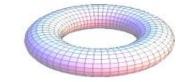
$$\begin{array}{ccc} (\mathbb{C}^2)^{\otimes k} & \to & \mathcal{L} \subset (\mathbb{C}^2)^{\otimes n} \\ \Psi & \mapsto & \overline{\Psi} \end{array}$$

encoded state $|\overline{\Psi}\rangle$ unitary encoder $|\Psi\rangle\otimes|0\rangle^{\otimes n-k}$ unencoded state + ancillas

QEC condition:[Knill, Laflamme]

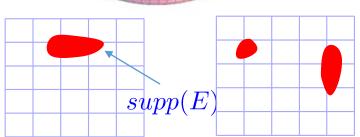
 ${\mathcal L}$ protects against errors ${\mathcal E}$ $\qquad\Leftrightarrow\qquad \langle \overline{\Psi}|E^\dagger F|\overline{\varphi} \rangle = c(E,F) \langle \overline{\Psi}|\overline{\varphi}
angle$ for all $E,F\in {\mathcal E},\ \overline{\Psi},\overline{\varphi}\in {\mathcal L}$

"Topological" error-correcting codes

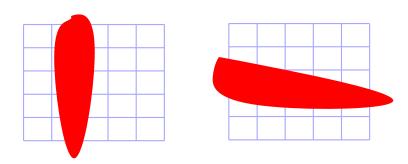


Def: A "topological" code:

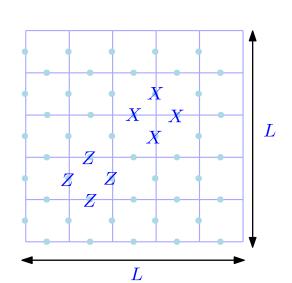
protects against all local errors, e.g., and more generally errors with "topologically trivial" support



does not protect against errors with topologically non-trivial support, e.g.,



Example: Kitaev's toric code



 $n=2L^2$ qubits on the edges of a edges of a $L \times L$ periodic lattices

$$\mathcal{L}=\{\Psi\in(\mathbb{C}^2)^{\otimes n}\;|A_v\Psi=B_p\Psi=\Psi \;\;\;\;\; ext{for all }v,p\}$$
 $A_v=X^{\otimes 4} \; ext{for each vertex }v$

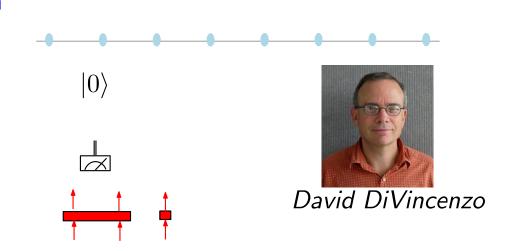
$$B_p = Z^{\otimes 4}$$
 for each plaquette p

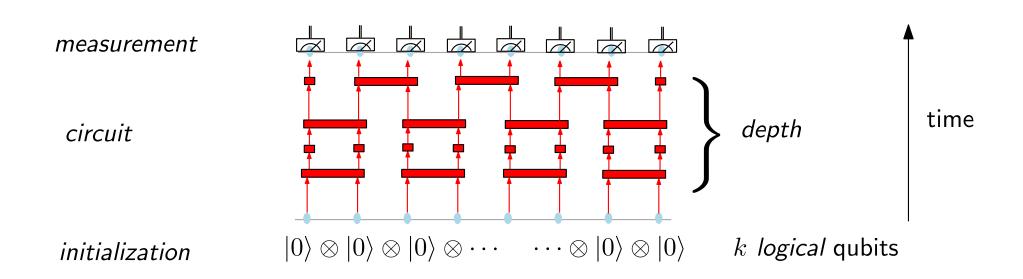
$$k = \log_2 \dim \mathcal{L} = 2$$
 encoded qubits

Quantum fault-tolerance: the DiVincenzo criteria

DiVicenzo criteria for fault-tolerant quantum computation

- 1. scalable physical system with well-characterized qubits
- 2. ability to initialize fiducial state
- \checkmark 3. decoherence times \gg gate operation time
 - 4. qubit-specific measurement capability
 - 5. universal set of quantum gates



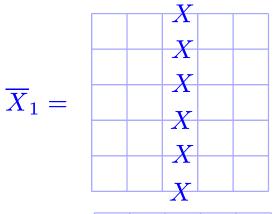


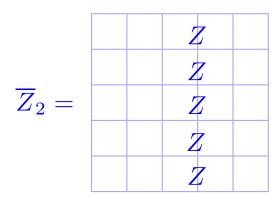
The code space of Kitaev's toric code

Logical operators in Kitaev's toric code

The operators $\overline{X}_1, \overline{Z}_1, \overline{X}_2, \overline{Z}_2$

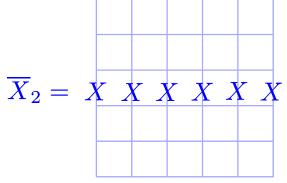
- preserve the code space \mathcal{L} , i.e., are *logical*
- satisfy Pauli commutation relations



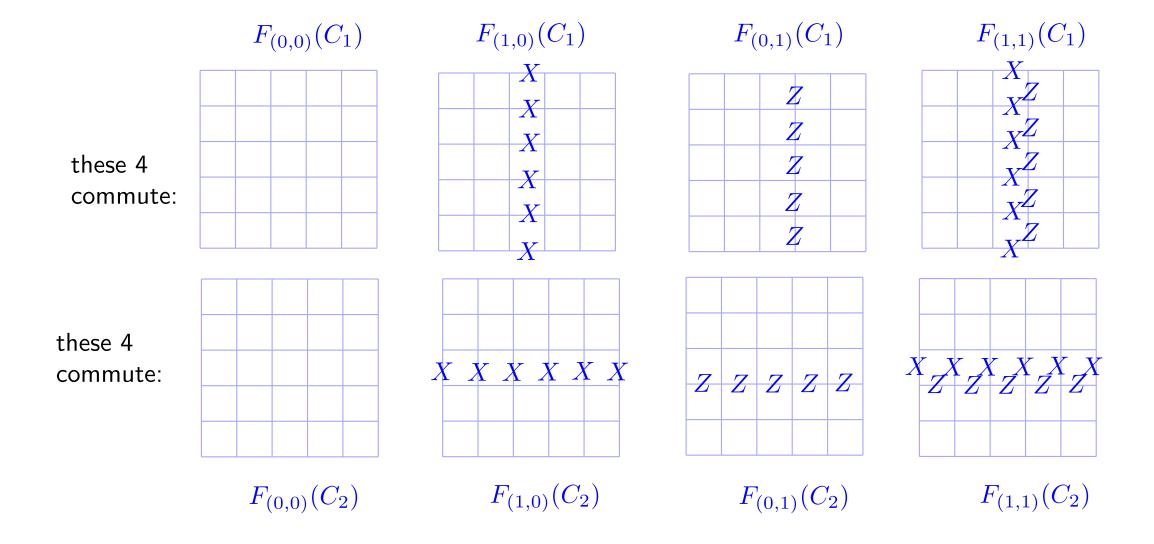


 \Rightarrow They define a factorization of the code space $\mathcal{L}\cong\mathbb{C}^2\otimes\mathbb{C}^2$ such that

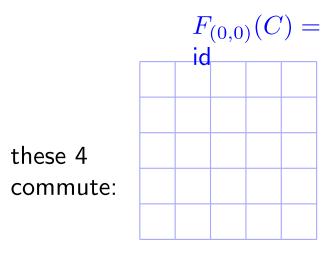
$$\begin{array}{l} \overline{X}_1 \cong X \otimes I \\ \overline{Z}_1 \cong Z \otimes I \\ \overline{X}_1 \cong X \otimes I \\ \overline{X}_2 \cong I \otimes X \end{array}$$

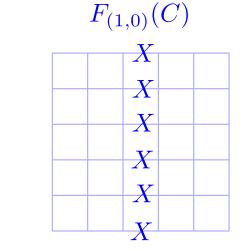


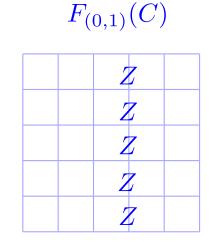
Logical operators in Kitaev's toric code: commuting subalgebras

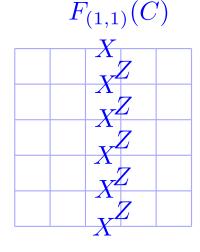


"Flux"-basis states associated with loops on a torus



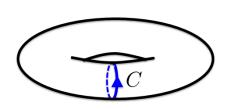






we can use the following 4 orthogonal projections to label basis states of the code space:

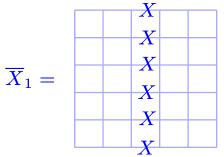
$$\begin{array}{lll} P_{(0,0)}(C) & = & \frac{1}{2}(\operatorname{id} + X^{\otimes L}) \cdot \frac{1}{2}(\operatorname{id} + Z^{\otimes L}) & |1\rangle_{C} \\ P_{(1,0)}(C) & = & \frac{1}{2}(\operatorname{id} - X^{\otimes L}) \cdot \frac{1}{2}(\operatorname{id} + Z^{\otimes L}) & |e\rangle_{C} \\ P_{(0,1)}(C) & = & \frac{1}{2}(\operatorname{id} + X^{\otimes L}) \cdot \frac{1}{2}(\operatorname{id} - Z^{\otimes L}) & |m\rangle_{C} \\ P_{(1,1)}(C) & = & \frac{1}{2}(\operatorname{id} - X^{\otimes L}) \cdot \frac{1}{2}(\operatorname{id} - Z^{\otimes L}) & |\epsilon\rangle_{C} \end{array}$$

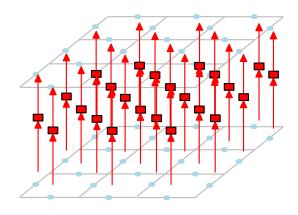


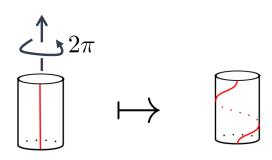
Fault-tolerant gates (on Kitaev's toric code)

Fault-tolerant execution logical gates: three ways

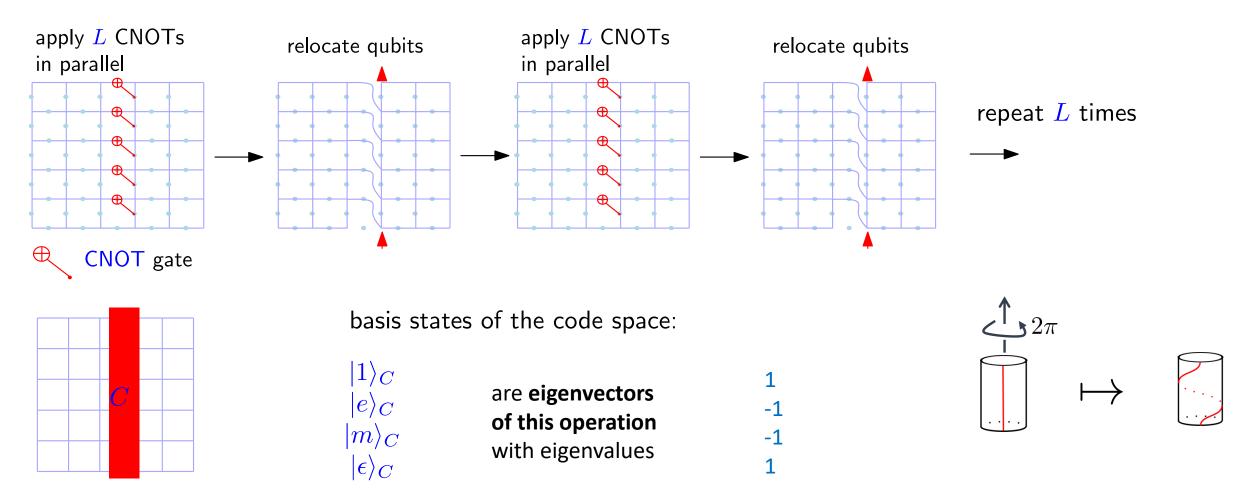
- 1) Apply a string-operator
 - only gives logical Pauli operators
 - does not generalize
- 2) Apply a short (transversal) quantum circuit
 - gives certain Clifford operations
 - generalization?
- 3) Apply code deformation (sequence of codes)
 - generalizes to other models: mapping class group representation
 - gives universal gate sets (in certain models)!

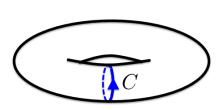




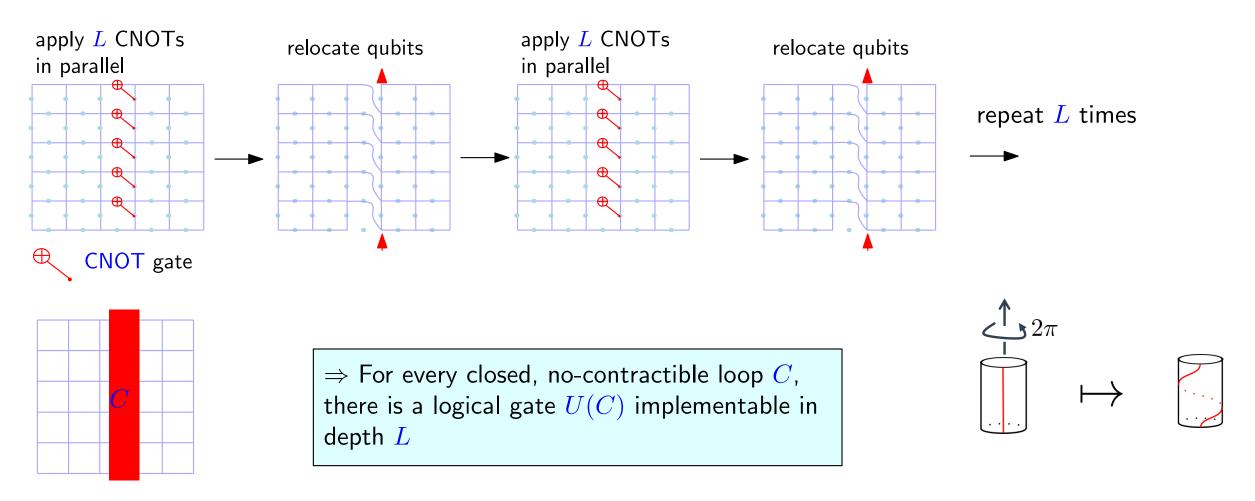


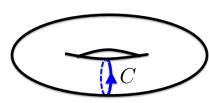
Mapping class group representation and toric code





Mapping class group representation and toric code



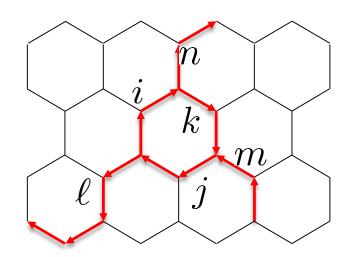


Each C defines an element $\vartheta_C \in \mathsf{MCG}$ of the mapping class group of the torus (twisting along C). $\vartheta_C \mapsto U(C)$ gives a (projective) representation of MCG

Table of contents

- Motivation: quantum fault-tolerance
- Case study: Kitaev's toric code
 - ground state (labeling)
 - mapping class group representation
 - protected gates
- Our work: The **Turaev-Viro code**
 - relationship to 3-manifold invariants
 - ground states
 - mapping class group representations
 - protected gates

The Levin-Wen/Turaev-Viro code



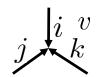
local Hilbert space \mathbb{C}^d associated to every edge

ingredients:

- finite set of "particle labels"
- involution operation on particle labels
- set of allowed triples
- scalars and a tensor

vertex operator:

$$A_v = \sum_{(i,j,k) \text{ allowed}} |ijk\rangle\langle ijk|$$



plaquette operator:

$$B_p = \frac{1}{\mathcal{D}^2} \sum_{\vec{k}, \vec{k}', \vec{m}} \sum_{i} d_i \left(\prod_{t=1}^r F_{ik'_{t-1}(k'_t)^*}^{m_t k_t^* k_{t-1}} \right) |\vec{k}', \vec{m}\rangle \langle \vec{k}, \vec{m}|$$

$$|\vec{k}, \vec{m}\rangle = k_2 \qquad p \qquad k_{r-1}$$

$$m_1 \qquad k_r \qquad m_r$$

$$k_r \qquad m_r$$

Code space

$$\mathcal{L} \subset (\mathbb{C}^d)^{\otimes N}$$

$$\mathcal{L} = \{ |\Psi\rangle \mid B_p |\Psi\rangle = |\Psi\rangle \ \forall p, A_v |\Psi\rangle = |\Psi\rangle \ \forall v \}$$

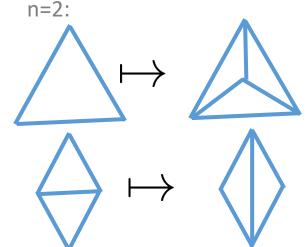
Manifold-invariants from triangulations

Consider closed n-manifolds modulo homeomorphism

FACT: For n=2,3, every equivalence class has a triangulated representative.

FACT (Pachner): n-manifolds homeomorphic triangulations related sequence of Pachner moves.

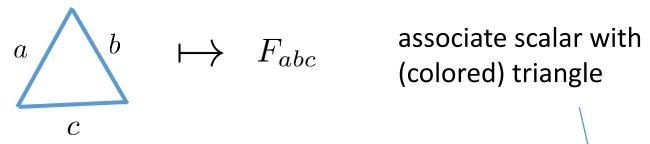
Pachner moves: finite list of local changes of triangulation, e.g., in



Recipe for constructing invariants:

- associate scalar to every triangulation
- show invariance under Pachner moves

Example: State-sum invariants



define invariant by summing over edge colorings:

$$I(M) = \mathcal{D}^{-\# \text{triangles}} \sum_{\phi} \prod_{\text{triangles } t} g_t^{\phi}$$

triangulated 2-manifold

sum over all colorings

Compatibility with Pachner moves

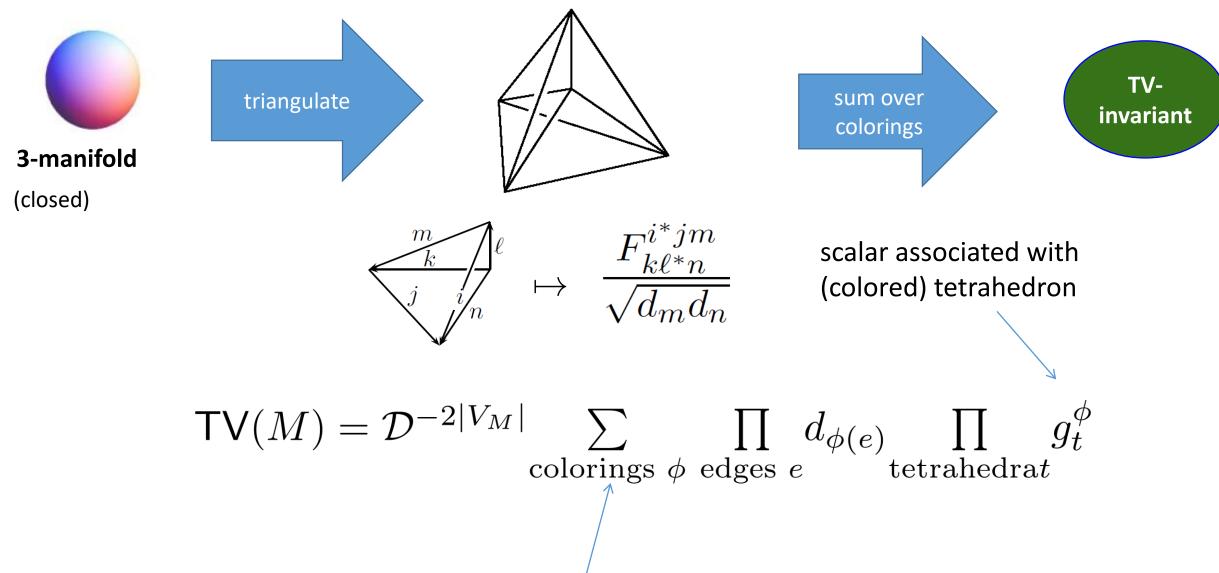
$$I(\triangle) = I(\triangle)$$

is equivalent to algebraic conditions

$$\mathcal{D}^{-1}F_{abc} = \mathcal{D}^{-3}\sum_{x,y,z}F_{axz}F_{xby}F_{zyc}$$

$$I(\ igotimes) = I(\ igotimes) \qquad \sum_x F_{abx} F_{cxd} = \sum_y F_{ayc} F_{dyb}$$

The Turaev-Viro 3-manifold invariant



sum over all ``allowed'' colorings

Algebraic conditions for invariance (via Pachner moves)

$$\mathsf{TV}_{\mathcal{C}}(M) = \mathcal{D}^{-2|V_M|} \sum_{ ext{colorings } \phi ext{ edges } e} \prod_{e ext{ tetrahedra}} g_t^{\phi}$$

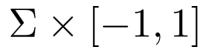
$$\begin{aligned} &\text{If} & d_1 = 1 \\ & d_1 = 1 \\ & d_i = d_{i^*} \\ & \mathcal{D} = \sqrt{\sum_i d_i^2} \\ & d_i d_j = \sum_k \delta_{ijk} d_k \\ & \sum_m \delta_{ijm^*} \delta_{mkl^*} = \sum_m \delta_{jkm^*} \delta_{iml^*} \\ & ^* : \text{involution on} & F_{k\ell n}^{ijm} \delta_{ijm} \delta_{k\ell m^*} = F_{k\ell n}^{ijm} \delta_{i\ell n} \delta_{jkn^*} \\ & \text{set of colors} & \sum_n F_{kpn}^{m\ell q} F_{mns}^{jip^*} F_{\ell kr}^{jsn} = F_{q^*kr}^{jip^*} F_{m\ell s}^{r^*iq^*} \\ & 1: \text{special color} & (F_{k\ell n}^{ijm})^* = F_{k^*\ell^*n^*}^{ii^*} \\ & \delta_{ijk} \in \mathbb{N} \cup \{0\} \\ & F_{k\ell n}^{ijm} \in \mathbb{R} & F_{\ell kn^*}^{jim} = F_{k^*n\ell}^{\ell km^*} - F_{k^*n\ell}^{imj} \sqrt{\frac{d_m d_n}{d_j d_\ell}} \\ & F_{j^*jk}^{ij} = \sqrt{\frac{d_k}{d_i d_j}} \delta_{ijk} \end{aligned}$$

then $\mathsf{TV}_{\mathcal{C}}$ is a 3-manifold invariant

A *spherical category C* is/provides a solution to these equations.

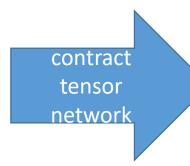
(Barrett and Westbury, hep-th/9311155)

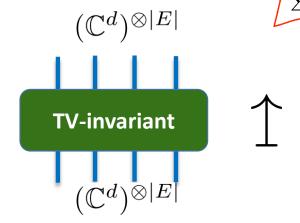
The Turaev-Viro code $\subset (\mathbb{C}^d)^{\otimes |E|} \cong {}^{\mathrm{edge\ colorings\ of}}_{\mathrm{surface\ triangulation}}$





from $\Sigma \times \{\pm 1\}$)

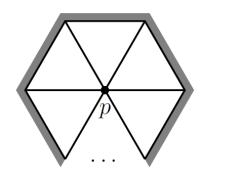




Turaev-Viro code: support of this projection in the Hilbert space $(\mathbb{C}^d)^{\otimes |E|}$

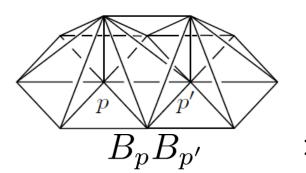
Local stabilizers: attaching blisters - set of local operators which are

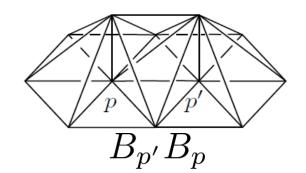
- projections
- mutually commuting
- stabilize code space



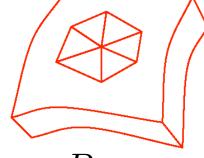
Blisters: properties from (manifold)invariance

commuting:





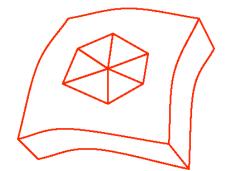
stabilize code space:



 $B_p P_{TV}$

project onto code space

$$\prod_p B_p$$



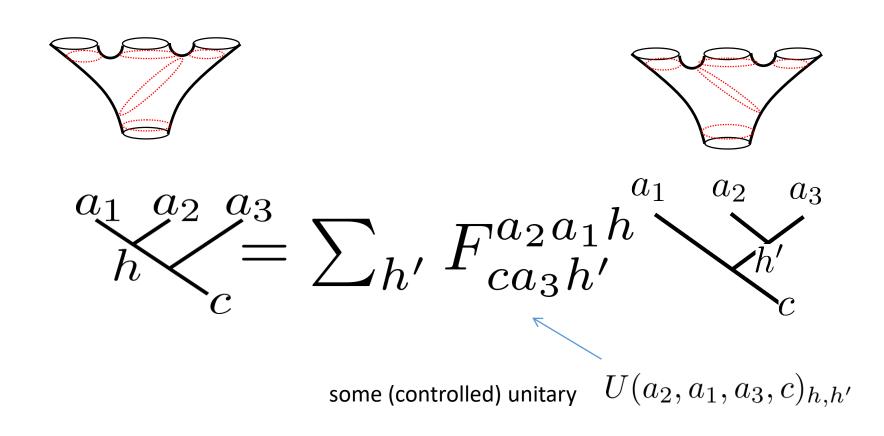
The code space of the Turaev-Viro code

"Standard bases" from maximal sets of commuting observables

Any DAP-decomposition correspond to a "complete set of observables" and defines a basis of the code space.

surface	DAP- decomposition(s)	elements of standard basis/bases
	use idempotents of the Verlinde algebra each loop	for a
		$a \downarrow b$ c
	- analogy to three spin-1/2s: $(\vec{S}_1 + \vec{S}_2)^2 (\vec{S}_1 + \vec{S}_2 + \vec{S}_3)^2 \qquad S_{\rm total}^Z$	a_1 a_2 a_3 c
	$(\vec{S}_2 + \vec{S}_3)^2 (\vec{S}_1 + \vec{S}_2 + \vec{S}_3)^2 S_{ ext{total}}^Z$	a_1 a_2 a_3 b'

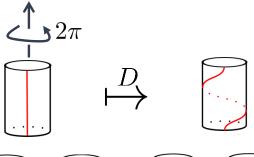
F-move: basis change between bases associated with different DAP-decompositions



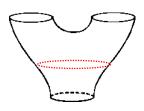
....analogous to spin-1/2- 6j symbols

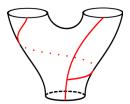
Mapping class group (generators) and basis elements

Dehn-twist:

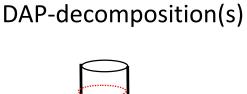


Braid-move:





surface



elements of standard basis/bases

topological phase

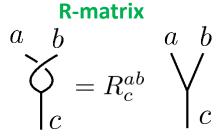
$$d = \theta_i \Big|_{i}$$

Note: this is just a fancy way of writing equation

$$D|i\rangle = \theta_i|i\rangle$$

$$D = twist$$





 $B|b,a;c
angle=R_c^{ab}|a,b;c
angle$ $B\!=\!$ braid

Conditions for MCG-representations:

(Moore and Seiberg)

Consistency of basis changes:

$$\sum_{n} F_{kpn}^{m\ell q} F_{mns}^{jip*} F_{\ell kr}^{jsn} = F_{q*kr}^{jip*} F_{m\ell s}^{r*iq*}$$
 (pentagon-identity)

•Compatibility of basis changes with action of braiding generators:

$$R_m^{ki} F_{\ell j^* g}^{k^* i^* m} R_g^{kj} = \sum_n F_{\ell j^* n}^{i^* k^* m} R_\ell^{kn} F_{\ell k^* g}^{j^* i^* n}$$

$$\theta_i = (R_1^{i^* i})^* \quad \text{(hexagon-identity)}$$

spherical

braided

• unitarity of representation:

.....

modular

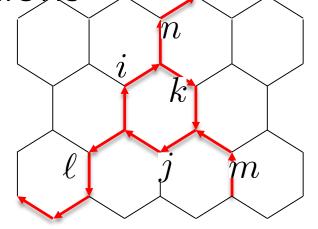
category

Basis states for the Turaev-Viro code

Levin-Wen ground space and local relations

qudit lattice Hamiltonian

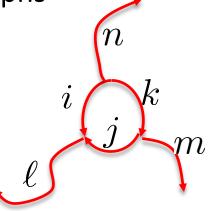
$$H = -\sum_{p} v$$



ground state coefficients in computational basis satisfy discrete local "skein" relations, e.g.,

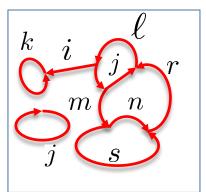
Consequence: Ground space is isomorphic to Hilbert space of ribbon graphs ("pictures") modulo local equivalence relations

ribbon graph space \mathcal{H}_{Σ}



Ribbon graphs Hilbert space \mathcal{H}_{Σ} for general category

trivalent labeled directed graphs (with loops) embedded in $\, \Sigma \,$



State: formal linear combination of ribbon graphs

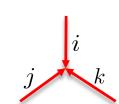
$$\alpha \left[\begin{array}{c|c} \alpha & \beta \end{array} \right] + \beta \left[\begin{array}{c} \alpha & + \gamma \end{array} \right] + \gamma \left[\begin{array}{c} a & \beta \\ a & \beta \end{array} \right] + \cdots$$

modulo local relations

$$(i = i)$$
 $O_i = d_i$ q-dimensions
 $O_i = 0$

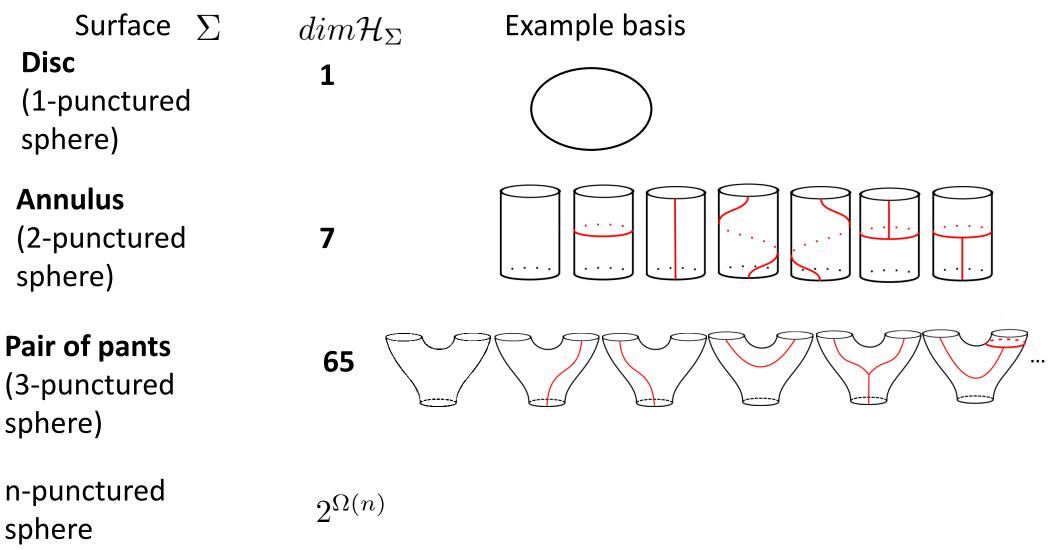
$$\sum_{j=k}^{m-\ell} = \sum_{n} F_{k\ell n}^{ijm} \sum_{j=k}^{i-\ell} ext{F-symbol}$$

fusion rules (set of allowed triples):



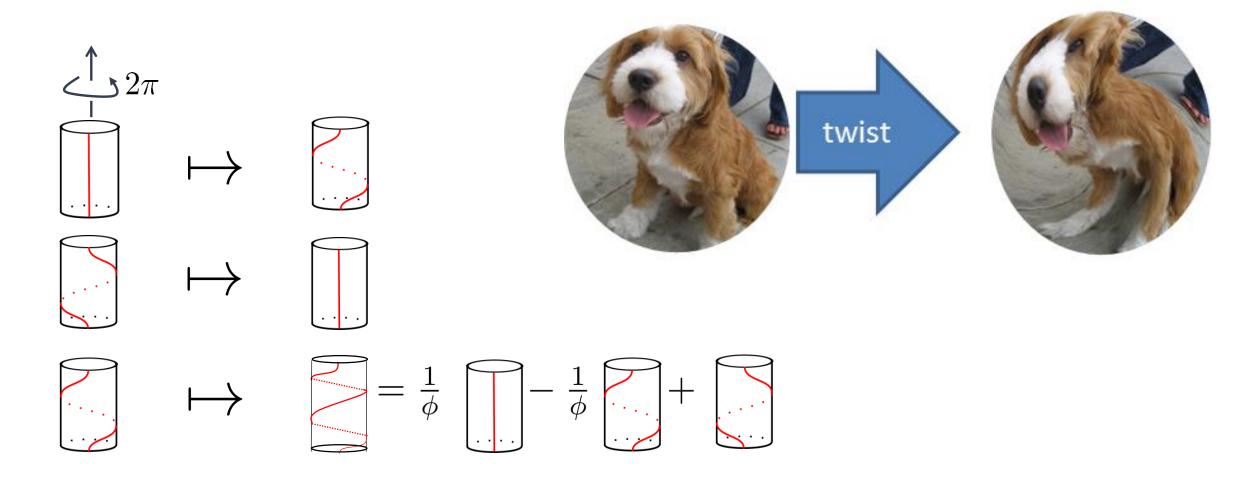
dual labels: i^* =trivial label (absence of string): 1

Ribbon graph bases of \mathcal{H}_{Σ} for Fib



Next: Description of bases compatible with action of (generators of) mapping class group!

Action of Dehn twist on \mathcal{H}_{Σ_2} for Fib



Goal: identify "fusion tree basis" (eigenvectors of twist)

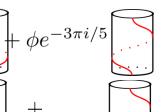
Eigenvector
$$+ \phi e^{-3\pi i/5}$$

$$+ \phi e^{3\pi i/5}$$

$$+ \phi e^{3\pi i/5}$$

$$+\phi$$
 \cdots

 $+\frac{1}{\phi}$



eigenvalue (twist)

$$1\otimes 1$$

name

 $au \otimes au$

 $1 \otimes \tau$

 $\tau \otimes 1$

 τ, τ

 τ , 1

fusion basis obtained by diagonaliz ation

Anyonic

$$e^{-4\pi i/5}$$

 $e^{4\pi i/5}$

$$au \otimes au$$

$$au \otimes au$$

 $\tau \otimes \tau$

$$V_i^i = \mathbb{C} \left| i \right|$$

topological phase

$$d = \theta_i | i$$

anyon type

$$i$$
of "doubled" theory

$Fib\otimes Fib'$

multiplicity index

for different realizations as subspaces of \mathcal{H}_{Σ_2}

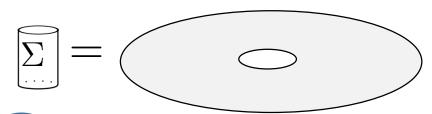
Anyonic fusion basis from "doubled" manifold $\Sigma \times [-1,1]$

Goal: find anyonic fusion basis states on

Intermediate step: identify relevant ribbon graphs on

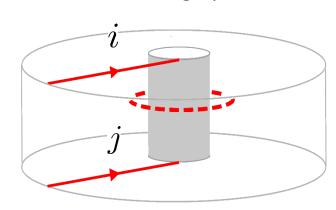
$$\Sigma \times [-1,1]$$

Example: find element for annulus



some ribbon graph on

 $\uparrow i \otimes j$



$$:= \frac{1}{\sum_i d_i^2} \sum_j d_j \, \big|_j$$

simple derivation of topological phase:

A recipe which

does not

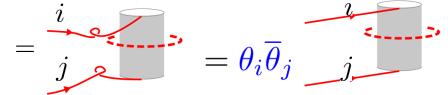
involve

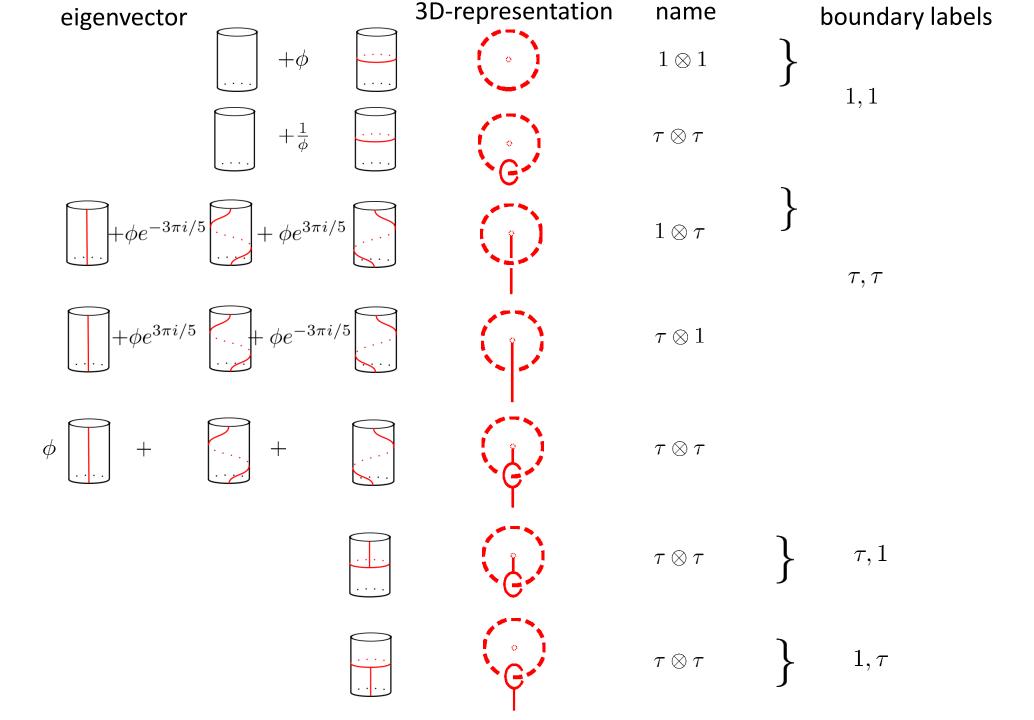
diagonalization

Map ribbon graphs

$$\Sigma \times [-1,1] \to \Sigma$$

using "vacuum" lines





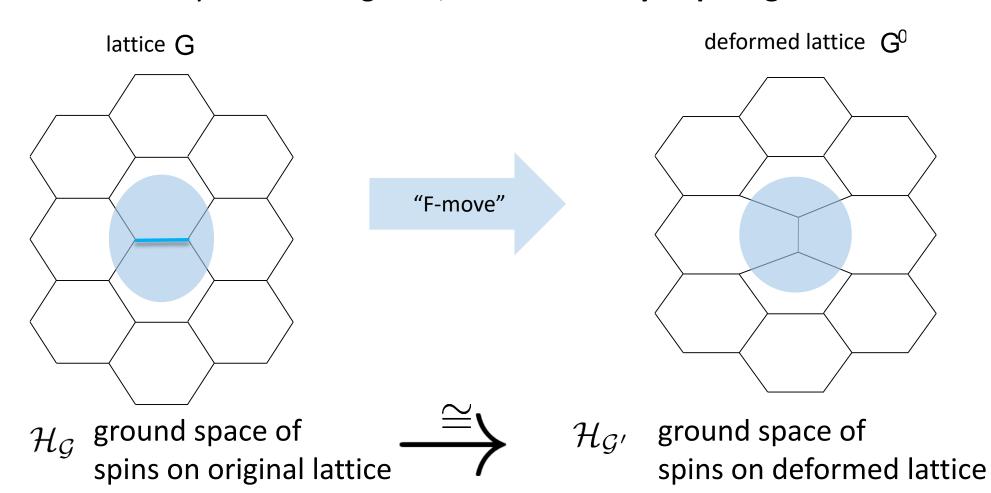
Derived categories: basic data

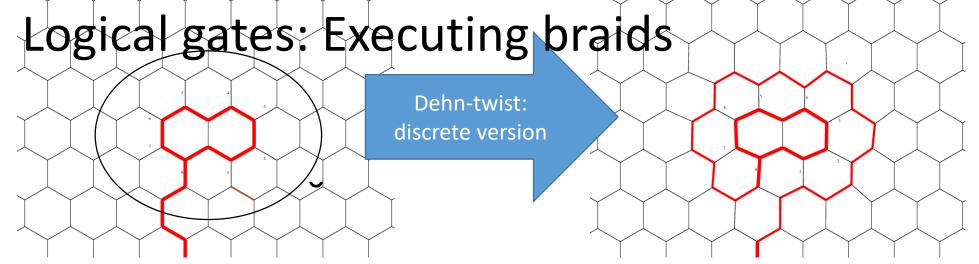
		modular tensor category ${\cal C}$	dual category ${\cal C}'$	doubled category $\mathcal{C}\otimes\mathcal{C}'$
Unitary, braided, semisim ple, *	Particles	$\{1,i,j,\ldots\}, *$ $\downarrow i = \downarrow i^*$	$\{i' \mid i \in \mathcal{C}\}$	$\left\{i\otimes j'\mid \underset{j'\in\mathcal{C}'}{i\in\mathcal{C}},\right\}$
	Fusion rules	j k (set of) allowed triples	j' k' k i k	$j \otimes j' \qquad k \otimes k' \Leftrightarrow \qquad j \qquad k \\ j \otimes j' \qquad k' \qquad k'$
	q-dim	$\bigcirc_i = d_i$	$d_{i'} = d_i$	$d_{i\otimes j'} = d_i d_{j'}$
	F-matrix	$= \sum_{n} F_{dcn^*}^{bam}$	$F_{d'c'n'^*}^{b'a'm'} = F_{dcn^*}^{bam}$	$F\otimes F'$
	top. phase		$\theta_{i'} = \overline{\theta}_i$	$\theta_{i\otimes j'}=\theta_i\theta_{j'}$
	R-matrix	$\stackrel{a b}{\rightleftharpoons} R_c^{ab} \stackrel{a b}{\rightleftharpoons}$	$R_{c'}^{a'b'} = \overline{R_c^{ab}}$	$R\otimes R'$

Computation with Turaev-Viro codes

Different lattices and F-move isomorphism

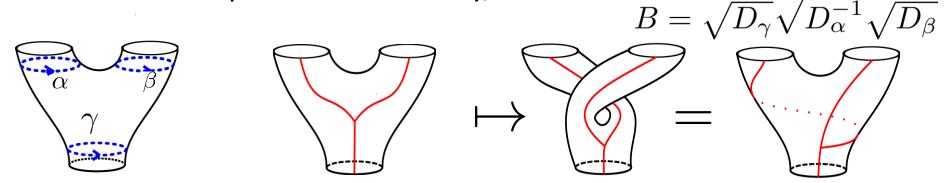
For unitary tensor categories, this is a unitary 5-qudit gate.





Can be implemented by sequence of $O(|\gamma|^2)$ F-moves (5-qudit gates)

 π -twists can be implemented similarly, therefore braids:



universal gate set:

- braids generate dense subgroup of unitaries on subspace of \mathcal{H}_{Σ} for (doubled) Fib
- for approriate encoding, approximation of universal gate set by Solovay-Kitaev (Freedman, Larsen, Wang'02)

Gate sets obtained from the mapping class group

model-dependent

universal

TQFT	mapping class group (braiding) contained in
$D(\mathbb{Z}_2)$	Pauli group
abelian anyon model	generalized Pauli group
Fibonacci model	universal
Ising model	Clifford group

generic anyon model

generic anyon model

Conclusions and open problems

• Turaev-Viro codes offer a rich class of examples for potential platforms for topological quantum computation.

- The mapping class group representation can be "decomposed" using the string-net formalism
- Explicit constructions of protected/transversal gates for TQFTs?

Performing syndrome-measurement & error correction, thresholds for fault-tolerance?

Higher-dimensional generalizations?