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To describe any physical system we need to identify:

* States

* Observables

* Probability function
* Evolution equation

* Composition rule of systems
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Classical systems
A symplectic manifold (M, w)

States: probability distibutions or probability measures, Liouville measure,
COmparison measure

Observables: F (M ,R)

Probability function: for any Borelian B C R, p a state, f observable:
/ odu; = Probability to find a value of fin |3 when the system
f=H(B)

is in the state p

d d

Evolution: irw = —dH gf = {H, f} S {p,H}

Composition: (M x Ms,wi & ws)
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Quantum systems

(Schrodinger picture) “wave mechanics: H complex separable Hilbert space

(Pure) States: raysin H , PH complex projective space, Hilbert manifold

)Wl
(1)

Observables: real elements in B(H) «— H @ H*

Probability function: for any res. of the identity Z lej)e;| =1, / )z (a

and any vector V), p;(¥) = & |<¢¢>|<¢>‘€j> ,p; >0, ij =

(z[) (lz)
(¥[¢)

, ¥ (z)y(z) = 0, /w*(x)w(a:)dx =l

d
Eovolution: Zﬁ |¢> H|y) = th= Py = H, py]

similarly V" (z)¥(z) =

Composition: > = Hi @ Hs
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Quantum systems

(Heisenbery picture) ‘matrix mechanics”: a C*-algebra A
Observables: real elements in A: A = Al

States: normalized, positive, linear functionals on A
p(M) =1, p(ATA) >0, p(A+B)=p(A)+ p(B)
GNS construction gives back a Hilbert space Haons

Probability function.:

El=E;cA, Y E; =1, E; -Ex =6;E;, p(E;) =p;(p) 20, > pi(p)=1
J J
d

. d
Evolution: A =[AH, h—p=[H,]

Composition: A, = A, ® A
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Quantum systems

Other pictures:

* Weyl-Wigner

* Generalized coherent states
* Jomographic picture

* Linearity versus nonlinearity
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‘Probabilistic-statistical interpretation of quantum mechanics.

The primary object is the space of states (we shall consider only
finite-dimensional systems).

Schrodinger-Dirac picture: The Hilbert manifold of pure states.

Heisenberg, Born-Jordan: A connected closed complete and convex
set S in some affine topological space E.

The space of states is a stratified manifold (the boundary is not a
smooth manifold) with two compatible contravariant tensor fields:

A Skew-symmetric, defines a Poisson bracKet

R Symmetric, defines a Jordan algebra
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Observables are real-valued functions on S
with the following properties:

A(df) = Xy Hamiltonian vector fields with the Killing property Lx, R =0
R(ASf) =Y¢ Gradient vector fields

Hamiltonian and gradient vector fields generate the tangent bundle of
S, for every stratum, and close on the Lie algebra of SL(N ,C)

We find that:
* Observables constitute a Lie-Jordan algebra;
* By extension to complex-valued combinations of observables we

generate a C™-algebra.
By using a GNS construction we recover a Hilbert space.
The irriducibility requirement (a minimality condition) allows to

recover the Hilbert space of the Schrodinger-Dirac picture
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Example: Q:bit

States, Bloch ballin E =R? c R*
1

p:§(00—|—f-5’) S ={z: [
el O X &
_ G 13 o A || e
=m0 ) 55 O g
Observables [ =a;a’, a; €R

- 0 0 o,
k
Xf —= 6‘17 Clk.fll'l % . Yf = aj @ = (akxk) <x3@)

They generate the Lie algebra of SL(2,C)

If we consider a realization of the Lie algebra in terms of matrices we

get back_the complex matrix algebra generated by 0o, 01, 02, 03
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Example: Q:bit
The Lie-Jordan algebra:

faf' 29} = A(doBllE s e{ka:l
) @z =R(da! ,dz") + 72" = 0' =1, 2/ ©zF =0
We can define ) x2® =27 Oz + {2’ 2"} so that:

(09t bk add) o) k) =~k (of wa = ok wa)

: 1
J i
x’ Ox 5
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Example: Q:bit

Remark; since we are using tensor fields, we are free to perform
every nonlinear change of coordinates. The convexity is hidden.
For instance, in spherical coordinates we have:

IR ) @ oy 1% & 0 1 o0 0

A= —— — _ o
rsin989®8g0 87“@(%+r2(‘99®89+7‘281n98gp®8g&

R =(1—-1%)

It is clear by inspection that Hamiltonian and gradient vector
fields are tangent to the sphere of pure states, r=1.

The interior of the ball is an orbit of SL(2,C)

S isgeneratedﬁy rcos®, rsinfsiny, rsin@cosgpﬁy Means of R, A
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Let us consider the KossakowsKi-Lindblad equation:

Cp=L(p). plt="0)=p
L(p) = —[H, p] %Z ([Vip"’ﬂ A [‘W"?D N

saywith Tr(v;) =0, T?“(V;L-Vk) = 0 if ek

We see immediately that the equations of motion split into:
* Hamiltonian term;

* Symmetric term;

* Kraus term.
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It is possible to write a vector field with this equation of motion.
It turns out that the one associated with the Kraus term is a
nonlinear vector field, similar to the nonlinear vector field

associated with the symmetric tensor (the gradient vector field).

Example: the phase-damping of a q-bit

L(p) = —v (o3 p03 — p)
0 G
- (l’laggl ' %7)

The “miracle” of the KossakowsKi-Lindblad equation is that
the two nonlinearities camcel each other so that the resulting

vector field is actually linear!
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Summarizing

* On the space of quantum states, Hamiltonian and gradient vector
fields generate the action of a Lie group: SL(H C)

* To describe semigroups we have to introduce Kraus vector fields.

* Having described the dynamics in terms of vector fields will
provide a framework_to describe non-Markovian dynamics.

* The tensorial description allows for generic nonlinear
transformations, hopefully more flexible to deal with

nonlinearities, like entanglement, entropies and so on.
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