Topological Quantum Computation

July 2017 Levico Terme, Italy

Topological Quantum Computation

Topological Quantum Computation (TQC) is a computational model built upon systems of topological phases.

Co-creators: Freedman and Kitaev

- M. Freedman, P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA 1998.
- A. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Physics 2003. (preprint 1997).

Some Milestones

- ~1998: Freedman "Quantum field computer" and Kitaev "Anyonic quantum computation"
- 2002: Freedman, Kitaev, Larsen & Wang: quantum circuit model and topological model polynomially equivalent

- 2005: Microsoft Station Q (Santa Barbara): Freedman, Wang, Walker,...
- 2011-2017: Many more Stations Q–Delft (Kouwenhoven), Copenhagen (Marcus), Sydney (Reilly), Purdue (Manfra)...

Anyons

For Point-like particles:

- ▶ In \mathbb{R}^3 : bosons or fermions: $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$
- Particle exchange \rightsquigarrow reps. of symmetric group S_n
- ► In \mathbb{R}^2 : (abelian) anyons: $\psi(z_1, z_2) = e^{i\theta}\psi(z_2, z_1)$
- or, if state space has dimension > 1, $\psi_1(z_2, z_1) = \sum_j a_j \psi_j(z_1, z_2)$ non-abelian anyons.
- Particle exchange \rightsquigarrow reps. of braid group \mathcal{B}_n
- Why? $\pi_1(\mathbb{R}^3 \setminus \{z_i\}) = 1$ but $\pi_1(\mathbb{R}^2 \setminus \{z_i\}) = F_n$ Free group.

 $C_1 \not\approx C_2 \approx C_3$

The hero of 2D topological materials is the Braid Group
$$\mathcal{B}_n$$
:
generators σ_i , $i = 1, ..., n-1$ satisfying:
(R1) $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$
(R2) $\sigma_i \sigma_j = \sigma_j \sigma_i$ if $|i - j| > 1$
 1
 $\sigma_i \mapsto 1$
 $\cdots \mapsto 1$

Motions of *n* points in a disk

$$\mathcal{B}_n \hookrightarrow \operatorname{Aut} \pi_1(\mathbb{R}^2 \setminus \{z_1, \ldots, z_n\}) = \operatorname{Aut}(F_n)$$

Topological Phases of Matter Exist?

Fractional Quantum Hall Liquid

See also: 2016 Physics Nobel Prize...

- 1. How to model Anyons on Surfaces?
- 2. What are the state spaces?
- 3. What are the quantum gates?

Definition (Nayak, et al '08)

a (bosonic) system is in a topological phase if its low-energy effective field theory is a topological quantum field theory (TQFT). A (2+1)D **TQFT** assigns to any (surface, boundary data) (M, ℓ) a Hilbert space:

$$(M,\ell) \to \mathcal{H}(M,\ell).$$

Boundary \bigcirc labeled by $i \in \mathcal{L}$: finite set of colors \leftrightarrow (anyons). $0 \in \mathcal{L}$ is neutral \leftrightarrow vacuum. Orientation-reversing map: $x \to x^*$.

Basic pieces

Any surface can be built from the following basic pieces:

• disk:
$$\mathcal{H}(\bigcirc; i) = \begin{cases} \mathbb{C} & i = 0\\ 0 & else \end{cases}$$

• annulus: $\mathcal{H}(\bigcirc; a, b) = \begin{cases} \mathbb{C} & a = b^*\\ 0 & else \end{cases}$

pants:

P :=

$$\mathcal{H}(P; a, b, c) = \mathbb{C}^{N(a, b, c)}$$
 choices!

Axiom (Disjoint Union)

$$\mathcal{H}[(M_1,\ell_1) \coprod (M_2,\ell_2)] = \mathcal{H}(M_1,\ell_1) \otimes \mathcal{H}(M_2,\ell_2)$$

Axiom (Gluing)

If ${\cal M}$ is obtained from gluing two boundary circles of ${\cal M}_g$ together then

$$\mathcal{H}(M,\ell) = \bigoplus_{x \in \mathcal{L}} \mathcal{H}(M_g,\ell,x,x^*)$$

 (M_g, ℓ, x, x^*)

Fusion Channels

represents the number of ways a and b may fuse to cFusion Matrix: $a \rightarrow (N_a)_{b,c} = N(a, b, c)$

Computational State Spaces/Quantum Dimensions

Principle

The Computational Spaces $\mathcal{H}_n := \mathcal{H}(D^2; a, ..., a)$: the state space of *n* identical type *a* anyons in a disk.

Definition

Let dim(a) be the maximal eigenvalue of N_a .

Fact

- 1. dim $(a) \in \mathbb{R}$
- 2. dim(a) ≥ 1
- 3. *Physically:* Loop amplitudes \bigcirc_a
- 4. dim $\mathcal{H}_n \approx \text{dim}(a)^n$ highly non-local Herein Lies Fault-Tolerance: Errors are local.

Are There Any Non-trivial Examples?!

Quantum Groups at roots of unity:

$$\mathfrak{g} \rightsquigarrow U\mathfrak{g} \rightsquigarrow U_q\mathfrak{g} \overset{q=e^{\pi i/\ell}}{\rightsquigarrow} \operatorname{\mathsf{Rep}}(U_q\mathfrak{g}) \overset{/\langle Ann(Tr) \rangle}{\rightsquigarrow} \mathcal{C}(\mathfrak{g},\ell)$$

Anyons↔Objects (representations)

Computational space $\mathcal{H}_n \longleftrightarrow \operatorname{End}_{\mathcal{C}(\mathfrak{g},\ell)}(X_a^{\otimes n})$

Example (Fibonacci)

•
$$\mathcal{L} = \{0,1\}$$
: $N(a, b, c) = \begin{cases} 1 & a = b = c \text{ or } a + b + c \in 2\mathbb{Z} \\ 0 & else \end{cases}$
• $N_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \dim(X_1) = \frac{1+\sqrt{5}}{2} G_2 \text{ at } \ell = 15$

Example (lsing)

•
$$\mathcal{L} = \{0, 1, 2\}$$
: $N(a, b, c) = \begin{cases} 1 & a + b + c \in 2\mathbb{Z} \\ 0 & else \end{cases}$
• $N_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \dim X_1 = \sqrt{2} SU(2) \text{ at } \ell = 4.$

Most generally: Modular Tensor Categories

Fix anyon $a \mathcal{B}_n$ acts on state spaces:

▶ Braid group representation ρ_a on $\mathcal{H}(D^2 \setminus \{z_i\}; a, ..., a) = \operatorname{End}(X_a^{\otimes n})$ by particle exchange

▶ (Topological) Quantum Gates: $\rho_a(\sigma_i)$, circuits: $\rho_a(\beta)$, $\beta \in \mathcal{B}_n$

- Simulate TQC on QCM?
- Simulate (universal) QCM on TQC?
- Computes What? Complexity?

[Freedman, Kitaev, Wang] showed that TQCs have hidden locality: Let $U(\beta) \in \mathbf{U}(\mathcal{H}_n)$ be a unitary braiding matrix. Goal: simulate U on $V^{\otimes k(n)}$ for some v.s. V.

Set
$$V = \bigoplus_{(a,b,c) \in \mathcal{L}^3} \mathcal{H}(P; a, b, c)$$
 and $W_n = V^{\otimes (n-1)}$

► TQFT axioms (gluing, disjoint union) imply:

$$\mathcal{H}_n \hookrightarrow W_n$$

Remark

V can be quite large and $U(\beta)$ only acts on the subspace \mathcal{H}_n . Forced to project, etc...

Definition (R, V) is a braided vector space if $R \in Aut(V \otimes V)$ satisfies $(R \otimes I_V)(I_V \otimes R)(R \otimes I_V) = (I_V \otimes R)(R \otimes I_V)(I_V \otimes R)$

Induces a sequence of local \mathcal{B}_n -reps $(\rho^R, V^{\otimes n})$ by

$$\rho^{R}(\sigma_{i}) = I_{V}^{\otimes i-1} \otimes R \otimes I_{V}^{\otimes n-i-1}$$

 $v_1 \otimes \cdots \otimes v_i \otimes v_{i+1} \otimes \cdots \otimes v_n \stackrel{\rho^R(\sigma_i)}{\longrightarrow} v_1 \otimes \cdots \otimes R(v_i \otimes v_{i+1}) \otimes \cdots \otimes v_n$ Idea: braided QCM gate set $\{R\}$

Definition (R,Wang '12)

A localization of a sequence of \mathcal{B}_n -reps. (ρ_n, V_n) is a braided vector space (R, W) and injective algebra maps $\tau_n : \mathbb{C}\rho_n(\mathcal{B}_n) \to \operatorname{End}(W^{\otimes n})$ such that the following diagram commutes:

Idea: Push braiding gates inside a braided QCM.

Let
$$R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Theorem (Franko,R,Wang '06) (R, \mathbb{C}^2) localizes (ρ_n^X, \mathcal{H}_n) for $X = X_1 \in \mathcal{C}(\mathfrak{sl}_2, 4)$

Remark

Notice: object X is not a vector space! $(\dim(X) = \sqrt{2})$ hidden locality has $\dim(V) = 10$, $\dim(W) = 10^{n-1}$ while $\dim(\mathcal{H}_n) \in O(2^n)$.

What do TQCs compute?

Answer

(Approximations to) Link invariants!

Associated to $X \in C$ is a link invariant $Inv_L(X)$ approximated by the corresponding Topological Model efficiently.

For $C(\mathfrak{sl}_2, \ell)$, $Inv_L(X) = V_L(q)$ Jones polynomial at $q = e^{2\pi i/\ell}$ Theorem (Vertigan, Freedman-Larsen-Wang)

- ► (Classical) exact computation of $V_L(q)$ at $q = e^{\pi i/\ell}$ is: $\begin{cases}
 FP & \ell = 3, 4, 6 \\
 FP^{\sharp P} - complete & else
 \end{cases}$
- (Quantum) approximation of $|V_L(q)|$ at $q = e^{\pi i/\ell}$ is BQP

Question (Quantum Information)

When does an anyon x provide universal computation models? Informally: when can any unitary gate be (approximately) realized by particle exchange?

Example

Fibonacci dim $(X) = \frac{1+\sqrt{5}}{2}$ is universal.

Example

lsing dim $(X) = \sqrt{2}$ is not universal: particle exchange generates a finite group.

Anyon a is

- Abelian/non-abelian if $\rho_a(\mathcal{B}_n)$ is abelian/non-abelian
- Universal if ρ_a(B_n) ⊃ Π_iSU(n_i) for n >> 0 where ρ_a = ⊕ρⁱ_a irreps.
- ► Localizable if \(\rho_a(\mathcal{B}_n)\) simulated on QCM via Yang-Baxter operator gate \(R\)
- Classical if Inv_a(L) is in FP

Principle

All (conjecturally) determined by dim(a):

- Abelian anyons: dim(a) = 1
- ▶ Non-abelian anyons: dim(a) > 1 (PRA 2016, with Wang)
- Universal anyons: dim $(a)^2 \notin \mathbb{Z}$ (conj. 2007)
- Localizable and Classical anyons: dim(a)² ∈ Z (conj. 2010, with Wang)

- For fixed n = |L| classify TQFTs by |L|. (Recently: finitely many for fixed |L| Bruillard-Ng-R-Wang JAMS 2016)
- Measurement assisted?
- Gapped boundaries/defects?
- Fermions?
- 3D Materials/loop excitations?

THANK YOU!

Modeling Anyons on Surfaces

Topology of marked surfaces+quantum mechanics

Marks↔ anyons↔ boundary components.

Principle Superposition: a state is a vector in a Hilbert space $|\psi\rangle \in \mathcal{H}$.

Principle

The **composite state space** of two physically separate systems A and B is the **tensor product** $\mathcal{H}_A \otimes \mathcal{H}_B$ of their state spaces.

Interpretation

Key to: Entanglement

Principle

Locality: the global state is determined from pieces.

Interpretation

The Hilbert space of a marked surface M is a direct sum over all boundary labelings of a surface M_g obtained by cutting M along a circle.

 $\mathcal{H}(T^2; a, b, c, d, e) =$

 $\bigoplus_{x} \mathcal{H}(A; a, b, c, d, e, x, x^*)$ (x* is anti-particle to x)

