Topological Quantum Computation

Eric Rowell

July 2017
Levico Terme, Italy

Topological Quantum Computation

Topological Quantum Computation (TQC) is a computational model built upon systems of topological phases.

Co-creators: Freedman and Kitaev

- M. Freedman, $P /$ NP, and the quantum field computer. Proc. Natl. Acad. Sci. USA 1998.
- A. Kitaev, Fault-tolerant quantum computation by anyons. Ann. Physics 2003. (preprint 1997).

Some Milestones

- ~1998: Freedman "Quantum field computer" and Kitaev "Anyonic quantum computation"
- 2002: Freedman, Kitaev, Larsen \& Wang: quantum circuit model and topological model polynomially equivalent

- 2005: Microsoft Station Q (Santa Barbara): Freedman, Wang, Walker,...
- 2011-2017: Many more Stations Q-Delft (Kouwenhoven), Copenhagen (Marcus), Sydney (Reilly), Purdue (Manfra)...

Anyons

For Point-like particles:

- In \mathbb{R}^{3} : bosons or fermions: $\psi\left(z_{1}, z_{2}\right)= \pm \psi\left(z_{2}, z_{1}\right)$
- Particle exchange \rightsquigarrow reps. of symmetric group S_{n}
- In \mathbb{R}^{2} : (abelian) anyons: $\psi\left(z_{1}, z_{2}\right)=e^{i \theta} \psi\left(z_{2}, z_{1}\right)$
- or, if state space has dimension >1,

$$
\psi_{1}\left(z_{2}, z_{1}\right)=\sum_{j} a_{j} \psi_{j}\left(z_{1}, z_{2}\right) \text { non-abelian anyons. }
$$

- Particle exchange \rightsquigarrow reps. of braid group \mathcal{B}_{n}
- Why? $\pi_{1}\left(\mathbb{R}^{3} \backslash\left\{z_{i}\right\}\right)=1$ but $\pi_{1}\left(\mathbb{R}^{2} \backslash\left\{z_{i}\right\}\right)=F_{n}$ Free group.

$$
C_{1} \not \approx C_{2} \approx C_{3}
$$

The hero of 2D topological materials is the Braid Group \mathcal{B}_{n} : generators $\sigma_{i}, i=1, \ldots, n-1$ satisfying:
(R1) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
(R2) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $|i-j|>1$

Motions of n points in a disk.

$$
\mathcal{B}_{n} \hookrightarrow \operatorname{Aut} \pi_{1}\left(\mathbb{R}^{2} \backslash\left\{z_{1}, \ldots, z_{n}\right\}\right)=\operatorname{Aut}\left(F_{n}\right)
$$

Topological Phases of Matter Exist?

Fractional Quantum Hall Liquid

See also: 2016 Physics Nobel Prize...

Topological Model

Physics
measure (fusion)
braid anyons
create anyons

Foundational (Math) Questions

1. How to model Anyons on Surfaces?
2. What are the state spaces?
3. What are the quantum gates?

Modeling Anyons on Surfaces

Definition (Nayak, et al '08)
a (bosonic) system is in a topological phase if its low-energy effective field theory is a topological quantum field theory (TQFT).
A $(2+1)$ D TQFT assigns to any (surface, boundary data) (M, ℓ) a Hilbert space:

$$
(M, \ell) \rightarrow \mathcal{H}(M, \ell)
$$

Boundary \bigcirc labeled by $i \in \mathcal{L}$: finite set of colors \leftrightarrow (anyons). $0 \in \mathcal{L}$ is neutral \leftrightarrow vacuum. Orientation-reversing map: $x \rightarrow x^{*}$.

Basic pieces

Any surface can be built from the following basic pieces:

- disk: $\mathcal{H}(\bigcirc ; i)= \begin{cases}\mathbb{C} & i=0 \\ 0 & \text { else }\end{cases}$
- annulus: $\mathcal{H}(\bigcirc ; a, b)= \begin{cases}\mathbb{C} & a=b^{*} \\ 0 & \text { else }\end{cases}$
- pants:

Two more axioms

Axiom (Disjoint Union)

```
H}[(\mp@subsup{M}{1}{},\mp@subsup{\ell}{1}{})\amalg(\mp@subsup{M}{2}{},\mp@subsup{\ell}{2}{})]=\mathcal{H}(\mp@subsup{M}{1}{},\mp@subsup{\ell}{1}{})\otimes\mathcal{H}(\mp@subsup{M}{2}{},\mp@subsup{\ell}{2}{}
```

Axiom (Gluing)
If M is obtained from gluing two boundary circles of M_{g} together then

$$
\mathcal{H}(M, \ell)=\bigoplus_{x \in \mathcal{L}} \mathcal{H}\left(M_{g}, \ell, x, x^{*}\right)
$$

(M, ℓ)
$\left(M_{g}, \ell, x, x^{*}\right)$

Fusion Channels

The state-space dimension $N(a, b, c)$ of:

represents the number of ways a and b may fuse to c
Fusion Matrix: $a \rightarrow\left(N_{a}\right)_{b, c}=N(a, b, c)$

Computational State Spaces/Quantum Dimensions

Principle

The Computational Spaces $\mathcal{H}_{n}:=\mathcal{H}\left(D^{2} ; a, \ldots, a\right)$: the state space of n identical type a anyons in a disk.

Definition

Let $\operatorname{dim}(a)$ be the maximal eigenvalue of N_{a}.
Fact

1. $\operatorname{dim}(a) \in \mathbb{R}$
2. $\operatorname{dim}(a) \geq 1$
3. Physically: Loop amplitudes \bigcirc a
4. $\operatorname{dim} \mathcal{H}_{n} \approx \operatorname{dim}(a)^{n}$ highly non-local Herein Lies Fault-Tolerance: Errors are local.

Are There Any Non-trivial Examples?!

Quantum Groups at roots of unity:

Computational space $\mathcal{H}_{n} \longleftrightarrow \operatorname{End}_{\mathcal{C}(\mathfrak{g}, \ell)}\left(X_{a}^{\otimes n}\right)$

Example (Fibonacci)

- $\mathcal{L}=\{0,1\}: N(a, b, c)= \begin{cases}1 & a=b=c \text { or } a+b+c \in 2 \mathbb{Z} \\ 0 & \text { else }\end{cases}$
- $N_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right) \operatorname{dim}\left(X_{1}\right)=\frac{1+\sqrt{5}}{2} G_{2}$ at $\ell=15$

Example (Ising)

- $\mathcal{L}=\{0,1,2\}: N(a, b, c)= \begin{cases}1 & a+b+c \in 2 \mathbb{Z} \\ 0 & \text { else }\end{cases}$
- $N_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \operatorname{dim} X_{1}=\sqrt{2} S U(2)$ at $\ell=4$.

Most generally: Modular Tensor Categories

Braiding Gates

Fix anyon a \mathcal{B}_{n} acts on state spaces:

- Braid group representation ρ_{a} on $\mathcal{H}\left(D^{2} \backslash\left\{z_{i}\right\} ; a, \ldots, a\right)=\operatorname{End}\left(X_{a}^{\otimes n}\right)$ by particle exchange

- (Topological) Quantum Gates: $\rho_{a}\left(\sigma_{i}\right)$,circuits: $\rho_{a}(\beta), \beta \in \mathcal{B}_{n}$

More Foundational Questions

- Simulate TQC on QCM?
- Simulate (universal) QCM on TQC?
- Computes What? Complexity?

Simulating TQCs on QCM

[Freedman, Kitaev, Wang] showed that TQCs have hidden locality: Let $U(\beta) \in \mathbf{U}\left(\mathcal{H}_{n}\right)$ be a unitary braiding matrix.
Goal: simulate U on $V^{\otimes k(n)}$ for some v.s. V.

- Set $V=\bigoplus_{(a, b, c) \in \mathcal{L}^{3}} \mathcal{H}(P ; a, b, c)$ and $W_{n}=V^{\otimes(n-1)}$
- TQFT axioms (gluing, disjoint union) imply:

$$
\mathcal{H}_{n} \hookrightarrow W_{n}
$$

Remark

V can be quite large and $U(\beta)$ only acts on the subspace \mathcal{H}_{n}.
Forced to project, etc...

Local \mathcal{B}_{n} representations: Yang-Baxter eqn.

Definition

(R, V) is a braided vector space if $R \in \operatorname{Aut}(V \otimes V)$ satisfies

$$
\left(R \otimes I_{V}\right)\left(I_{V} \otimes R\right)\left(R \otimes I_{V}\right)=\left(I_{V} \otimes R\right)\left(R \otimes I_{V}\right)\left(I_{V} \otimes R\right)
$$

Induces a sequence of local \mathcal{B}_{n}-reps $\left(\rho^{R}, V^{\otimes n}\right)$ by

$$
\rho^{R}\left(\sigma_{i}\right)=I_{V}^{\otimes i-1} \otimes R \otimes I_{V}^{\otimes n-i-1}
$$

$v_{1} \otimes \cdots \otimes v_{i} \otimes v_{i+1} \otimes \cdots \otimes v_{n} \xrightarrow{\rho^{R}\left(\sigma_{i}\right)} v_{1} \otimes \cdots \otimes R\left(v_{i} \otimes v_{i+1}\right) \otimes \cdots \otimes v_{n}$
Idea: braided QCM gate set $\{R\}$

Square Peg, Round Hole?

Definition (R,Wang '12)

A localization of a sequence of \mathcal{B}_{n}-reps. $\left(\rho_{n}, V_{n}\right)$ is a braided vector space (R, W) and injective algebra maps $\tau_{n}: \mathbb{C} \rho_{n}\left(\mathcal{B}_{n}\right) \rightarrow \operatorname{End}\left(W^{\otimes n}\right)$ such that the following diagram commutes:

$$
\mathbb{C} \rho_{n}\left(\mathcal{B}_{n}\right) \xrightarrow{\rho_{n}} \stackrel{\rho_{n}}{\rho_{n}} \operatorname{End}\left(W^{\otimes n}\right)
$$

Idea: Push braiding gates inside a braided QCM.

Example $\mathcal{C}\left(\mathfrak{s l}_{2}, 4\right)$

Let $R=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right)$
Theorem (Franko,R,Wang '06)
$\left(R, \mathbb{C}^{2}\right)$ localizes $\left(\rho_{n}^{X}, \mathcal{H}_{n}\right)$ for $X=X_{1} \in \mathcal{C}\left(\mathfrak{s l}_{2}, 4\right)$
Remark
Notice: object X is not a vector space! $(\operatorname{dim}(X)=\sqrt{2})$ hidden locality has $\operatorname{dim}(V)=10, \operatorname{dim}(W)=10^{n-1}$ while $\operatorname{dim}\left(\mathcal{H}_{n}\right) \in O\left(2^{n}\right)$.

What do TQCs compute?

Answer
(Approximations to) Link invariants!
Associated to $X \in \mathcal{C}$ is a link invariant $\operatorname{Inv} v_{L}(X)$ approximated by the corresponding Topological Model efficiently.

$$
\operatorname{Prob}(\odot) \sim x^{t}\left|\operatorname{lnv}_{l}(\odot)\right|
$$

Complexity of Jones Polynomial Evaluations

For $\mathcal{C}\left(\mathfrak{s l}_{2}, \ell\right), \operatorname{Inv}_{L}(X)=V_{L}(q)$ Jones polynomial at $q=e^{2 \pi i / \ell}$
Theorem (Vertigan,Freedman-Larsen-Wang)

- (Classical) exact computation of $V_{L}(q)$ at $q=e^{\pi i / \ell}$ is: $\left\{\begin{array}{lc}F P & \ell=3,4,6 \\ F P^{\sharp} P-\text { complete } & \text { else }\end{array}\right.$
- (Quantum) approximation of $\left|V_{L}(q)\right|$ at $q=e^{\pi i / \ell}$ is $B Q P$

Universal Anyons

Question (Quantum Information)

When does an anyon x provide universal computation models? Informally: when can any unitary gate be (approximately) realized by particle exchange?

Example

Fibonacci $\operatorname{dim}(X)=\frac{1+\sqrt{5}}{2}$ is universal.

Example
Ising $\operatorname{dim}(X)=\sqrt{2}$ is not universal: particle exchange generates a finite group.

Anyon a is

- Abelian/non-abelian if $\rho_{a}\left(\mathcal{B}_{n}\right)$ is abelian/non-abelian
- Universal if $\overline{\rho_{a}\left(\mathcal{B}_{n}\right)} \supset \Pi_{i} S U\left(n_{i}\right)$ for $n \gg 0$ where $\rho_{a}=\oplus \rho_{a}^{i}$ irreps.
- Localizable if $\rho_{a}\left(\mathcal{B}_{n}\right)$ simulated on QCM via Yang-Baxter operator gate R
- Classical if $\operatorname{Inv} v_{a}(L)$ is in FP

Principle

All (conjecturally) determined by $\operatorname{dim}(a)$:

- Abelian anyons: $\operatorname{dim}(a)=1$
- Non-abelian anyons: $\operatorname{dim}(a)>1$ (PRA 2016, with Wang)
- Universal anyons: $\operatorname{dim}(a)^{2} \notin \mathbb{Z}$ (conj. 2007)
- Localizable and Classical anyons: $\operatorname{dim}(a)^{2} \in \mathbb{Z}$ (conj. 2010, with Wang)

Other questions...

- For fixed $n=|\mathcal{L}|$ classify TQFTs by $|\mathcal{L}|$. (Recently: finitely many for fixed $|\mathcal{L}|$ Bruillard-Ng-R-Wang JAMS 2016)
- Measurement assisted?
- Gapped boundaries/defects?
- Fermions?
- 3D Materials/loop excitations?

THANK YOU!

Modeling Anyons on Surfaces

Topology of marked surfaces+quantum mechanics
Marks \leftrightarrow anyons \leftrightarrow boundary components.

Principle
Superposition: a state is a vector in a Hilbert space $|\psi\rangle \in \mathcal{H}$.

Principle

The composite state space of two physically separate systems A and B is the tensor product $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ of their state spaces.

Interpretation

Key to: Entanglement

Principle

Locality: the global state is determined from pieces.
Interpretation
The Hilbert space of a marked surface M is a direct sum over all boundary labelings of a surface M_{g} obtained by cutting M along a circle.

$$
\mathcal{H}\left(T^{2} ; a, b, c, d, e\right)=
$$

$\bigoplus_{x} \mathcal{H}\left(A ; a, b, c, d, e, x, x^{*}\right)$ (x^{*} is anti-particle to x)

