Algebraic Topology, Quantum Algorithms

and BIG DATA
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A new Buzzword: BIG DATA

Figure 1
Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020
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ZB=1,000,000,000,000,000,000,000 =10721 Bytes
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What’s BIG DATA?

big data

All Images News Videos Books More v Search tools

About 130,000,000 results (0.47 seconds)

big data

noun COMPUTING

extremely large data sets that may be analysed computationally to reveal patterns,
trends, and associations, especially relating to human behaviour and interactions.
"much IT investment is going towards managing and maintaining big data"

Translations, word origin, and more definitions
Feedback

Big data - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Big_data v

Big data is a term for data sets that are so large or complex that traditional data
processing applications are inadequate. Challenges include analysis, capture, data
curation, search, sharing, storage, transfer, visualization, querying, updating and
information privacy.

Big Data (band) - Data curation - Data processing - Programming with Big Data in R

What Is Big Data? | SAS

www.sas.com/en th/insiahts/bia-data/what-is-bia-data.html v



219 data is |ike teenage say.

SVeryone talks about it

Nobody "@ally knows how to do it

QVEryone thinks everyone else s

doing it, so averyone claims they
are doing it...




And We(=Quantum Information Folks) make no difference.....
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Adiabatic Quantum Algorithm for Search Engine Ranking
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We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the
PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We
present extensive numerical simulations which provide evidence that this algorithm can prepare the
quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web
pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling
is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be
estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in
‘‘g-sampling™ protocols for testing properties of distributions, which require exponentially fewer
measurements than all classical schemes designed for the same task. This can be used to decide whether
to run a classical update of the PageRank.

PRL 113, 130503 (2014) PHYSICAL REVIEW LETTERS

week ending
26 SEPTEMBER 2014

Quantum Support Vector Machine for Big Data Classification

Patrick Rebentrost,"” Masoud Mohseni,” and Seth Lloydl 34
'Research Laboratory of Electmmcs, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
Google Research, Venice, California 90291, USA
Depamnem of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
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Supervised machine learning is the classification of new data based on already classified training
examples. In this work, we show that the support vector machine, an optimized binary classifier, can be
computer, with complexity logarithmic in the size of the vectors and the number
of training examples. In cases where classical sampling algorithms require polynomial time, an exponential
speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation
technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
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Quantum algorithms for supervised and unsupervised machine learning

Seth Lloyd"®, Masoud Mohseni®,
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Abstract: Machine-learning tasks frequently involve problems of manipulating and classi-

fying large numbers of vectors in high-dimensional spaces. Classical algorithms for solving

such problems typically take time polynomial in the number of vectors and the dimension

of the space. Quantum computers are good at manipulating high-dimensional vectors in

large tensor product spaces. This paper provides supervised and unsupervised quantum

machine learning algorithms for cluster assignment and cluster finding. Quantum machine

learning can take time logarithmic in both the number of vectors and their dimension, an

exponential speed-up over classical algorithms.
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Quantum principal component analysis

Seth Lloyd"?*, Masoud Mohseni® and Patrick Rebentrost?

The usual way to reveal prope of an

ifi ds hy. M itallows
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to perform of different and to

analyse the results statistically*. For non-sparse but low-rank
states, and

- for
us to perform qunmum PCA (qPCA) of an unknown low-rank
density matrix to construct the eigenvectors correspcmdmg to the
large eigenvalues of the state (the principal components) in time

elgenvalues In classical form scales super-linearly with the

system dimenslon®. Here we show that multiple coples of

lqumtumly:hm-mnmmlxpnnbomodh

unitary e, As a result, one

can pudoml quantum principal component analysis of an

unknown low-rank density matrix, revealing in quantum form

ing to the large elgenvalues In

time exponentlally faster than any existing algorithm. We

discuss applications to data analysls, process tomography and
state discrimination.

Onantum tamaoranhy ic the nrncess of discoverine featnres of

O(logd), an exp | speed-up over existing algorithms. We also
show how qPCA can provide new methods of state discrimination
and cluster assignment.

that one is presented with n copies of p. A simple trick
allows one to apply the unitary transformation e~** to any density
matrix o up to nth order in t. Note that

tr, e M p @0 ¢ = (cos’ At)o + (sin® At)p—isin At cos At[p,0]

= o —iAtlp,0]+0(AF) m

Here tr. i the nartial trace over the first varishle and S ic the



Today’s Talk is about yet another Big Quantum Data approach:
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Quantum algorithms for topologlcal and geometric
analysis of data

Seth Lond', Silvano Garnerone? & Paolo Zanardi3
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Extracting Small Patterns out Big Data: TOPOLOGY

Classification of vast sets of complex objects in terms of simple topological invariants



Topological Invariants: Euler’s Characteristics

E (# pieces) — (# holes) + (# voids)

,/, Ay \'} Y o —_— R,
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spheres torus 2-holed torus
E=1-0+1=2 E=1-2+1=0 E=2-6+2=-2

=2(1-g), g=genus

Let’s refine this concept for triangulable spaces (homeomorphic to polyhedra): Simplicial Complexes



Background

A simplicial complex is built from points, edges,
triangular faces, etc.

VY A

0-simplex 1-simplex 2-simplex 3-simplex .exr?lrppleofa
(solid) simplicial complex

Homology counts components, holds, voids, etc.

Homology of a simplicial
complexis computable
void via linear algebra.

(contains faces but
empty interior)

hole



Boundary Map & Chain Complexes

»=n-th Chain Group= Formal linear combinations of simplices of the complex

n
Onon (A™) = Z(_l)" [P0y s Pkt Pis1s " Pn Boundary Map: sends a simplex to a combination of its faces
k=0

On ©Ont1 = 0pg1.n-1]

Nilpotency=boundary of boundary is O




Homology Groups
H,(X) := ker(d,) /im(8n11) = Zn(X)/Bn(X),
B«=# of generators of Hk= Betti Number

Bo=#of connected components,

A solid 2-<}imcnsional blob A s;ﬂcrc
B:=#of holes, Gt b=l g
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A 2D blob with three holes
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Complexes from Point Cloud Data (PCD)

Data can be represented by “clouds” of points in a high dimensional space: how dowe do topology with that?!?

Cech complex

12 Vietoris-Rips complex

For each scale of £ one builds a simplicial complex S- out of the PCD increasing € makes S: growing
Varying € over a range of scales one obtains a family of nested simplicial complexes aka a Filtration



Complex Filtrations and BarCodes

Tracking how Betti numbers change as function of the scale & reveals how topological features
come into existence and go away as the data is analyzed at different &

|
1
1

A topological feature that persists over many length scales can be
identified with a ‘true’ feature of the structure: Persistent Homology
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Quantum Algorithm for Persistent Homology:
The Sketch

sssssssss | Silvano Garnerone? & Paolo Zanardi®

0) Store (or compute) distances between data points in a Q-RAM

1) Fix &, construct a quantum state encoding simplicial complex at
the scale € (Grover Search Algorithm)

2) Find the kernel of the Laplacian to get the Betti Numbers
(Quantum Phase estimation Algorithm)

3) Iterate over the € and look for persistent features across scales |

How About computational complexity?!?



Computational Complexity: Classical vs Quantum

Table 1 | Computational cost comparison.

Procedural steps Classical cost Quantum cost

Input pairwise distances, O(n?) bits O(n?) bits

n points

Construct simplicial 0(2") ops o(n?) ops on O(n) qubits
complex

Diagonalize Laplacian/find Betti numbers 022" log(1/5)) ops O(n°/3) quantum ops

4 Is the multiplicative accuracy to which the Betti numbers and the elgenvalues of the combinatorial Laplacian are determined. Note the trade-off between the exponential quantum speed-up and
accuracy: the quantum algor ithms obtain an exponential speed-up over classical algorithms but provide an accuracy that scales polynomially in 1/4 rather than exponentially. This feature arises from the
nature of the guantum phase estimation/matrix inversion algorithms, which obtain thelr exponential speed-up by estimating eigenvectors and elgenvalues using a ‘pointer-variable’ measurement
interaction® %0 By contrast, classical algorithms need only keep O(log(1/4)) bits of precision, but must perform O(227) steps to diagonalize 27 x 27 sparse matrices.

NATURE COMMUNICATIONS|6:10138 | DOL 10.1038/ncomms10138 | www.nature.comy/ naturecommunications

Our Quantum algorithm provides and exponential speed-up over the classical one!

QUANTUM SUPREMACY....... ‘\P




The Guts of the Quantum Algorithm | -
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Quantum algorithms for topological and geometric
analysis of data
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Let sk a k-simplex we map it onto a quantum state |sk>=|j1,j2,...,jn> where jp=1 iff p is in sk

€
Hk l Space generated by the k-simplex states in the £-Complex, |SZ| --dimensional

Quantum Pipeline 1: Encoding the £-Complex

1
C—
Grover’s Search Algorithm: V)= |S‘
\V 19k

> s,

SKES

Takes time O(n2 (Ci)_'/z) where Ci is fraction of simplices actually present in the
g-Complex; Classical time o™
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Combinatorial Hodge Theory: Betti numbers are the dimensions of the kernels of
the £-complex Laplacian operators (0—eigenvectors=Harmonic forms = to Homology cIasses)

A = 5:51( +8~k+ 187:*-1

If B, = (;T ?)") then B¢ = Bi s B; B ... B B; is the £-complex Dirac operator
k

B2 = A &AL & ... & A

Quantum Pipeline 2

Run the Quantum Phase Algorithm for B¢ over the uniform mixture of all simplices
Determines the dimensions of Ker A,. i.e., the Betti’s numbers

2
Classically: O((Z)) ~ 0(22") Quantumly (n-sparsity—>) O(ns)
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We live in the BIG DATA age AND in the Quantum Information Age

Big Quantum Data algorithms with exponential speedups e.g., Q-machine learning

We described a topological data analysis quantum algorithm for persistent homology

Quantum Information Processing in kicking in BIG time in the Big DATA scene
we are excited!
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