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3. Euclid’s Axiomatic Method 27

3 Euclid’s Axiomatic Method

One of the remarkable features of Euclid’'s Elements is its orderly logical struc-
ture. Euclid took the great mass of geometrical material that had grown in the
previous two or three centuries, and organized it into one coherent logical
sequence. This is what we now call the axiomatic method: Starting from a small
number of definitions and assumptions at the beginning, all the succeeding
results are proved by logical deduction from what has gone before. Euclid’s text
has been a model of mathematical exposition, unchallenged for two thousand
years, and only recently (in the last hundred years or so) replaced by newer
mathematical systems that we consider more rigorous. As we read Euclid, let us
observe how he organizes his material, let us be curious about why he does
things the way he does, and let us explore the questions that come to mind
when we as modern mathematicians read this ancient text.

Definitions

Euclid begins with definitions. Some of these definitions are akin to the modern
notion of definition in mathematics, in that they give a precise meaning to the
term being defined. For example, the tenth definition tells us that if a line seg-
ment meets a line so that the angles on either side are equal, then these are
called right angles. This tells us the meaning of the term right angle, assuming
that we already know what is meant by a line, a line segment, an angle, and
equality of angles. Similarly, the fifteenth definition, rephrased, defines a circle
to be a set of points C, such that the line segments OA from a fixed point O to
any point A of the circle C, are all equal to each other, and the point O is called
the center of the circle. This tells us what a circle is, assuming that we already
know what a line segment is, and what is meant by equality of line segments.
On the other hand, some of Euclid's other definitions, such as the first, “a
point is that which has no part,” or the second, “a line is breadthless length,” or
the third, “a straight line is a line which lies evenly with the points on itself,”
give us no better understanding of these notions than we had before. It seems
that Euclid, instead of giving a precise meaning to these terms, is appealing to
our intuition, and alluding to some concept we may already have in our own
minds of what a point or a line is. Rather than defining the term, he is appealing
to our common understanding of the concept, without saying what that is. This
may have been very well in a society where there was just one truth and one
geometry and everyone agreed on that. But the modern consciousness sees this
as a rather uncertain way to set up the foundations of a rigorous discipline. What
if we say now, oh yes, we agree on what points and lines are, and then later it
turns out we had something quite different in mind? So the modern approach is
to say these notions are undefined, that is, they can be anything at all, provided
that they satisfy whatever postulates or axioms may be imposed on them later.
In the algebraic definition of an abstract group, for example, you never say what
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the elements of the group are, nor what the group operation is. Those are un-
defined. However, they must satisfy the group axioms that the operation is as-
sociative, there exists an identity, and that there exist inverses. The elements of
the group can then be anything as long as they satisfy these axioms. They could
be integers, or they could be cosets of a subgroup of the integers, or they could be
rotations of a geometrical object such as a cube, or anything else. So in our read-
ing of Euclid, perhaps we should regard “point” and “line” as undefined terms.

It may be worth noting some differences of language between Euclid's text
and modern usage. By a line he means something that may be curved, which we
would call a curve. He says straight line for what we call line. And then he says a
finite straight line (as in the statement of (1.1)) for what we would call a line seg-
ment. For Euclid, a plane angle results where two curves meet, and a rectilineal
plane angle is formed when two line segments meet. Note that Euclid requires
the two sides of an angle not to lie in a straight line. So for Euclid there is no
zero angle, and there is no straight angle (180°). So we should think of Euclid’s
concept of angle as meaning an angle of « degrees, with 0 < « < 180° (though
Euclid makes no mention of the degree measure of an angle).

Euclid’s notion of equality requires special attention. He never defines
equality, so we must read between the lines to see what he means. In Euclid’s
geometry there are various different kinds of magnitudes, such as line segments,
angles, and later areas. Magnitudes of the same kind can be compared: They can
be equal, or they can be greater or lesser than one another. Also, they can be
added and subtracted (provided that one is greater than the other) as is sug-
gested by the common notions.

Euclid’s notion of equality corresponds to what we commonly call congruence
of geometrical figures. In high-school geometry one has the length of a line seg-
ment, as a real number, so one can say that two segments are congruent if they
have the same length. However, there are no lengths in Euclid's geometry, so we
must regard his equality as an undefined notion. Because of the first common
notion, “things which are equal to the same thing are also equal to one another,”
we may regard equality (which we will call congruence to avoid overuse of the
word equal) to be an equivalence relation on line segments. Similarly, we will
regard congruence of angles as an equivalence relation on angles.

Postulates and Common Notions

The postulates and common notions are those facts that will be taken for granted
and used as the starting point for the logical deduction of theorems. If you think
of Euclid’s geometry in the classical way as being the one true geometry that
describes the real world in its ideal form, then you may regard the postulates
and common notions as being self-evident truths for which no proof is required.
If you think of Euclid’s geometry in the modern way as an abstract mathematical
theory, then the postulates and common notions are merely those statements
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that are arbitrarily selected as the starting point of the theory, and from which
other results will be deduced. There is no question of their “truth,” because one
can begin a mathematical theory from any hypotheses one likes. Later on, how-
ever, there may arise a question of relevance, or importance of the mathemati-
cal theory constructed. The importance of a mathematical theory is judged by
its usefulness in proving theorems that relate to other branches of mathematics
or to applications. If you begin a mathematical theory with weird hypotheses as
your starting point, you may get a valid logical structure that is of no use. From
that point of view the choice of postulates is not so arbitrary. In any case, we can
regard Euclid's postulates and common notions collectively as the set of axioms
on which his geometry is based.

Some commentators say that the postulates (as in Heath’s edition) are those
statements that have a geometrical content, while the common notions are
those statements of a more universal nature, which apply to all the sciences.
Other commentators divide them differently, calling “postulates” those state-
ments that allow you to construct something, and calling “axioms” those state-
ments that assert that something is always true. One should also note that some
editors give extra axioms not listed in Heath's edition, such as “halves of equals
are equal,” which is used by Euclid in the proof of (I1.37), or “two straight lines
cannot contain a space.”

We have already noted the constructive nature of Euclid's approach to
geometry as expressed in Postulates 1-3. By the way, Euclid makes no explicit
statement about the uniqueness of the line mentioned in Postulate 1, though he
apparently meant it to be unique, because in the proof of (I1.4) he says “other-
wise two straight lines will enclose a space: which is impossible.”

In the list of Postulates and Common Notions, Postulate 5 stands out as being
much more sophisticated than the others. It sounds more like a theorem than an
axiom. We will have more to say about this later. For the moment let us just
observe that two thousand years of unsuccessful efforts to prove this statement
as a consequence of the other axioms have vindicated Euclid’s genius in realiz-
ing that it was necessary to include Postulate 5 as an axiom.

Intersections of Circles and Lines

As we read Euclid's Elements let us C
note how well he succeeds in his goal
of proving all his propositions by pure
logical reasoning from first principles.
We will find at times that he relies on
“intuition,” or something that is obvious A \ B

from looking at a diagram, but which is
not explicitly stated in the axioms. For
example, in the construction of the equi-
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lateral triangle on a given line segment AB (1.1) how does he know that the two
circles actually meet at some point C? While the fifth Postulate guarantees that
two lines will meet under certain conditions, there is nothing in the definitions,
postulates, or common notions that says that two circles will meet. Nor does
Euclid offer any reason in his proof that the two circles will meet.

If you carry out the construction with ruler and compass on a piece of paper,
you will find that they do meet. Or if you look at the diagram, it seems obvious
that they will meet. However, that is not a proof, and we must acknowledge that
Euclid is using something that is not explicitly guaranteed by his axioms and yet
is essential to the success of his construction.

There are two separate issues here. One is the relative position of the two
circles. Two circles need not always meet. If they are far apart from each other,
or if one is entirely contained in the other, they will not meet. In the present
case, part of one circle is inside the other circle, and part outside, so it appears
from the diagram that they must cross each other.

The second issue is, assuming that
they are in a position so that they ap-
pear to meet, does the intersection '9
point actually exist? Today we will im-
mediately think of continuity and the
intermediate value theorem: If y = f(x) =[x
is a real-valued continuous function 3
defined on the unit interval [0,1] of _
the real numbers, and if f(0) < 0 and 0 / 1 x
f(1) > 0, then there is some point a e
[0,1] with f(a) = 0. In other words, the
graph of the function must intersect the
x-axis at some point in the interval.

However, we must bear in mind that the concepts of real numbers and con-
tinuous functions were not made rigorous until the late nineteenth century, and
that this kind of mathematical thinking is foreign to the spirit of Euclid's Ele-
ments.

To make the same point in a differ- J
ent way, suppose we consider the Car- _—
tesian plane over the field of rational (
numbers @, where points are ordered
pairs of rational numbers, and let AB
be the unit interval on the x-axis. Then
the vertex C of the equilateral triangle, x
which would have to be the point o lq
(1,2/3), actually does not exist in this
geometry.

So later on, when we set up a new system of axioms for Euclidean geometry,
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we will have to include some axiom that guarantees the existence of the inter-
section points of circles with other circles, or with lines, at least those that arise
in the ruler and compass constructions of Euclid's Elements. Some modern
axiom systems (such as Birkhoff (1932) or the School Mathematics Study Group
geometry) build the real numbers into the axioms with a postulate of line mea-
sure, or include Dedekind’s axiom that essentially guarantees that we are work-
ing over the real numbers. In this book, however, we will reject such axioms as
not being in the spirit of classical geometry, and we will introduce only those
purely geometric axioms that are needed to lay a rigorous foundation for
Euclid’s Elements.

The issue of intersecting circles arises again in (1.22), where Euclid wishes to
construct a triangle whose sides should be equal to three given line segments
a, b, c. This requires that a circle with radius a at one endpoint of the segment b
should meet a circle of radius ¢ at the other end of the segment b. Euclid correctly
puts the necessary and sufficient condition that this intersection should exist in
the statement of the proposition, namely that any two of the line segments
should be greater than the third. However, he never alludes to this hypothesis
in his proof, so that we do not see in what way this hypothesis implies the exis-
tence of the intersection point. While some commentators have criticized Euclid
for this, Simson ridicules them, saying “For who is so dull, though only begin-
ning to learn the Elements, as not to perceive ... that these circles must meet
one another because FD and GH are together greater than FG.” Still, Simson has
only discussed the position of the circles and has not addressed the second issue
of why the intersection point exists. (See Plate V, p. 109)

The Method of Superposition

Let us look at the proof of (1.4), the A
side-angle-side criterion for congru-
ence of two triangles (SAS for short).
Suppose that AB = DE, and AC = DF,
and the included angle / BAC equals B

/. EDF. We wish to conclude that the tri- D
angles are congruent, that is to say, the

remaining sides and pairs of angles are

congruent to each other, respectively.

Euclid's method is to “apply the tri- g
angle” ABC to the triangle DEF. That €

is, he imagines moving the triangle ABC onto the triangle DEF, so that the point
A lands on the point D, and the side AB lands on the side DE. Then he goes on
to argue that the ray AC must land on the ray DF, because the angles are
equal, and hence C must land on F because the sides are equal. From here he
concludes that the triangles coincide entirely, hence are congruent.

1
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effe. Nam quum de realiqua fermonem inftituimus : ca nobis tacité per definitio-
nem fubitin animum : Non enim duos angulos zquales efle cogitabo , nifi quid fic
aquales efle angulos concipiam. Quod refpiciens Euclides;angulorum zqualitatem
proponere , atque cadem opera definire voluit : ve hoc Theorema pro [efinitione
haberemus. Nemo enim fignificantius explicabit angulorum zqualitatem, quim fi
dixerit duos angulos zquales fieri, quum duo latera vnum angulum continentia,
duobus alterum angulum continentibus fiunt @qualia , & bafes que latera conne-
¢tunt, xquales. Conftatenim angulum tantum efle , quanta cft duarum linearum
ipfum continentium apertio, feu didu&io , hanc veré rantamefle , quanta cft bafis,
hoceft, linea ipfas conneétens: Atque vt claré dicam , tantuscftan gulus BA C,
quanta eft remotio linez A ¢ abipfa A 5 :tanta verd efficitur remotio, quantam
exhibetlinea B c. Hocautem in Ifofcelibus eft evidentius. Sint enim duo Ifofcelia
ABc & D E F:quorum vniusduolatera A 3 & A ¢ duobus p £ & b F alte-

rius fint gqualia:angulusg; A angulo p.Ac jro-
Aitis centris in A & p punétis , ducantur duo
Circuli:prior fecundum A B, alter fecundum
p £ {patium.Horum priormanifeftd tranfibic
per B & cualter verd per £ & Fpunéta:quum
AB &Ac,itemd p E & E F fintzqualia,
& i centro viring; exeuntia. Atque, ex defini-
tione &qualium angulorum, eruntarcus s ¢ & ¢ zquales. Angulorum enini
magnitudo defignatur ex arcubus Circulorum qui per extremas lineas qua angulos
continén,tranfeunt. Ac conuerfo modo,zquales anguli atque qualibus lineis com-
prehenfi, quales fubtendunt peripherias. Quum cnim @qualia fint fpatia B ¢ &
E ¥, carqualibusredis lineis claudi oportet : propterea quod re@a linga,cft 3 pun-
€o ad punétum via breuiffima. Atque haud diffimili iudicio , cx lateruth ratione 82
bafium , quanta fit angulorum magnitudo ftimabimus. Quur ergo Euclides hoc
inter Theoremata repofuit,non inter Principia premifit? Nimirim,quum {peciem
quodammodo mixtam Principij & Theorematis prefe ﬁ;rrct:P}ihciPij ; quod in
communi animi iudicio conﬁﬂcret:Thcorcmathquéd fpeciatim Tran Trian-
gulis comparanda proponetet : maluit Euclides inte*ficapernata refiffe : prafer-
tim quum multa haberet capita, Principium veré fimplex ac velur nadum effe de-
beat. Ex hoc pretered Axiomate tanquam gx Tocupletifsimo Demontftrationum
themate , multz Propofitiones confequi debébant , ciufdem propé faciliratis & iu-
dicij: quas, quia erant notiffima,inter Principia annumerari non conueniebat.Pau-
cis enim Principijs Geometriam contentam effe oportebat : immo mulea Princi pia
confultd fupprimuntur,ne fit onerofa multitudo:ve etiam qug exprimunrur,tantum
ad exemplum exprimi videantur. Hic accedit,quod primum Theorema facile,per-
{picuum, ac fenfui obuium effe debebar, pro Geometriz lege, qua ex paruis humi-
libusg; initijs, in progreflus mirabiles (efc extollit.

Huius itaque Propofitionis veritatem non aliunde quim 3 communi iudicio pe-
temus : cogitabimusq; Figuras Figuris fuperponere , Mechanicum quippiam effe:
intelligere vero , id demim effe Mathematicum. Jam verd quum fuerit confeflam
duo Triangula invicem efle zquilatera, ipfa quoque inter ¢ 2qualia fateri erit ne-
ceffarium. Etenim nulla euidentiori fpecic xqualitas Figurarum dignofcicur , quim
ex laterum zqualitate : quanquam Circulorum equalitas ex diametris definitur:
fed non aliam ob caufam,quim qudd linea obliqua fui copiam aded aperté non fa-
cit vt reéta : Cuius menfuram facile capimus, ac per cam, obliquarum inter (& com-
parationem facimus.

At fi hzc fuperpofitio aliqua ratione admittenda fit : tolerabilior rane fuerithoc
qui fequitur modo.

Manente duorum Triangulorum 4 5 ¢ & b & ¢ conditione,continuabo & b

Plate II. The commentary on (1.4) from Peletier’'s Euclid of (1557). He says the truth of
this proposition belongs among the common notions, because to superimpose one figure

on another is mechanics, not mathematics.

32
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This is another situation where Euclid is using a method that is not explicitly
allowed by his axioms. Nothing in the Postulates or Common Notions says that
we may pick up a figure and move it to another position. We call this the method
of superposition.

Euclid uses this method again in the proof of (1.8), but it appears that he was
reluctant to use it more widely, because it does not appear elsewhere. If it were
a generally accepted method, for example, then Postulate 4, that all right angles
are equal to each other, would be unnecessary, because that would follow easily
from superposition.

If we think about the implications of this method, it has far-reaching con-
sequences. It implies that one can move figures from one part of the plane to
another without changing their sides or angles. Thus it implies a certain homo-
geneity of the geometry: The local behavior of figures in one part of the plane
is the same as in another part of the plane. If you think of modern theories of
cosmology, where the curvature of space changes depending on the presence of
large gravitational masses, this is a nontrivial assumption about our geometry.

To state more precisely what assumptions the method of superposition is
based on, let us define a rigid motion of the plane to be a one-to-one transforma-
tion of the points of the plane to itself that preserves straight lines and such that
segments and angles are carried into congruent segments and angles. To carry
out the method of superposition, we need to assume that there exist sufficiently
many rigid motions of our plane that

(a) we can take any point to any other point,

(b) we can rotate around any given point, so that one ray at that point is taken
to any other ray at that point, and

(c) we can reflect in any line so as to interchange points on opposite sides of the
line.

If we were working in the real Cartesian plane R* with coordinates x, y, we
could easily show the existence of sufficient rigid motions by using translations,
rotations, and reflections defined by suitable formulas in the coordinates.

For example, a translation taking the
point (0, 0) to (a, b) is given by

7
x =x+a,
Yy =y+b,
and a rotation of angle « around the ’ (qu)

origin is given by

x' = xcosa — ysina,
Yy =xsina + ycosa.
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Thus we can easily justify the use of the method of superposition in the real
Cartesian plane. However, since there are no coordinates and no real numbers
in Euclid's geometry, we must regard his use of the method of superposition as
an additional unstated postulate or axiom.

To formalize this, we could postulate the existence of a group of rigid motions
acting on the plane and satisfying the conditions (a), (b), (c) mentioned above.
Indeed, there is an extensive modern school of thought, exemplified by Felix
Klein's Erlanger Programm in the late nineteenth century, which bases the study
of geometry on the groups of transformations that are allowed to act on the
geometry. This point of view has had wide-ranging applications in differential
geometry and in the theory of relativity, for example.

We will discuss the rigid motions in Euclidean geometry in greater detail
later (Section 17). For the moment let us just note that the proof of the (SAS)
criterion for congruence in (1.4) requires something more than what is in Euclid’s
axiom system. Hilbert's axioms for geometry actually take (SAS) as an axiom in
itself. This seems more in keeping with the elementary nature of Euclid’s geome-
try than postulating the existence of a large group of rigid motions.

Finally let us note that Euclid’s use of the method of superposition in the
proof of (1.4) gives us some more insight into his concepts of “equality” for line
segments and angles. In Common Notion 4 he says that things that coincide
with one another are equal (congruent) to one another. In the proof of (1.4) he
also uses the converse, namely, if things (line segments or angles) are equal to
one another (congruent), then they will coincide when one is moved so as to be
superimposed on the other. So it appears that Euclid thought of line segments or
angles being congruent if and only if they could be moved in position so as to
coincide with each other.

Betweenness

Questions of betweenness, when one point is between two others on a line, or
when a line through a point lies inside an angle at that point, play an important,
if unarticulated, role in Euclid's Elements. To explain the notion of points on a
line lying between each other, one could simply postulate the existence of a
linear ordering of the points. Similarly, for angles at a point one could talk of
a circular ordering.

But when a hypothesis of relative position of points and lines in one part of a
diagram implies a relationship for other parts of the figure far away, it seems
clear that something important is happening, and it may be dangerous to rely on
intuition.

For example, how do you know that the angle bisector at a vertex A of a tri-
angle ABC meets the opposite side BC between the points BC and not outside?
Of course, it is obvious from the picture, but what if you had to explain why
without drawing a picture?
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We have already seen that the relative position of two circles may affect
whether they meet or not. Let us look at some other instances where between-
ness plays an important role in a proof.

Consider (1.7), which is used in the
proof of the side-side-side (SSS) crite-
rion for congruence of triangles (1.8). In
(1.7) Euclid shows that it is not possible
to have two distinct triangles ABC and
ABD on the same side of a segment AB
and having equal sides AC = AD and
BC = BD.

The proof goes like this. Since AC =
AD, the triangle ACD is isosceles, and
so the base angles are equal (1.5). In the
diagram /1 = /4. On the other hand,
since BC = BD, the triangle BCD is isos-
celes, so its base angles are equal (1.5) —
in our diagram £ 2 = £ 3. But now L2 is
less than /1, which is equal to /4,
which is less than /3. So /2 is much
less than /3. But they are also equal,
and this is impossible.

Note that this proof depends in an essential way on the relative position of
the lines meeting at C and D, which determines the inequalities between the
angles. If the line AD should reach the point D outside of the triangle BCD, as in
our second (impossible) picture, then £2 < £1 and /3 < /4, and there is no
contradiction. Thus the original proof depends on a certain configuration of
lines being inside certain angles, which in turn depends on some global proper-
ties of the entire two-dimensional figure, and these relationships would be hard
to explain convincingly without using a diagram. So as soon as we realize that
we are depending on a diagram for part of our proof, a mental red flag should
pop up to alert us to the question, What exactly is going on here, and what
unstated assumptions are we using?
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For another example where similar
questions arise, look at the proof of
(1.16) to show that an exterior angle of A
a triangle is greater than the opposite F
interior angle.

Let ABC be the given triangle. Bisect
AC at E, draw BE, and extend that line
to F so that BE = EF. Draw CF. Then
by SAS (1.4), Euclid shows that the tri-
angle BEA is congruent to the triangle
FEC, and so the angle at A is equal to
the angle /. ACF. He then says that the b c D
angle / ACF is less than the exterior
angle /. ACD, which proves the result.

How do we know this relation among the angles? Because the line CF lies
inside the angle ACD. But why is it inside? Since the line CF was constructed
using the point F, which in turn was constructed using the point E, this is a
global property of the whole figure, which is clear from the diagram, but would
be hard to explain without a diagram.

To illustrate the danger of relying on diagrams in geometrical proofs, we will
present a well-known fallacy due to W.W. Rouse Ball (1940). The following pur-
ports to be a proof that every triangle is isosceles. See if you can find the flaw in
the argument.

Example 3.1

Let ABC be any triangle. Let D be the
midpoint of BC. Let the perpendicular
to BC at D meet the angle bisector at A
at the point E. Drop perpendiculars EF
and EG to the sides of the triangle, and
draw BE, CE. The triangles AEF and
AEG have the side common and two
angles equal, so they are congruent by
AAS (1.26). Hence AF = AG and EF =
EG. The triangles BDE and CDE have
DE common, two other sides equal, and
the included right angles equal. Hence
they are congruent by SAS (1.4). In par-
ticular BE = CE.

Now, the triangles BEF and CEG are right triangles with two sides equal, so
they are congruent (see lemma below), and hence BF = CG. Adding equals to
equals, we find AB = AF + FB is equal to AC = AG + GC. So the triangle ABC is
isosceles.

8 ' D
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There are several other cases to
consider. If the point E lies outside the
triangle, one can use this second figure
and exactly the same proof to conclude
that AB and AC are the differences of
equal segments AF = AG and BF = CG,
hence equal.

If E lands at the point D, or if the
angle bisector at A is parallel to the per-
pendicular to AB at D, the proof be-
comes even easier, and we leave it to
the reader.

We still need to prove the following lemma.

Lemma 3.2 (Right-Angle-Side-Side) (RASS)
If two right triangles have two sides equal, not containing the right angle, they are

still congruent.

Proof This result, though not stated by
Euclid, is often useful. We give two
proofs. The first method is to use (1.47)
to conclude that the square on BC is
equal to the square on EF. Then BC =
EF, and we can apply (SSS) (1.8).

The second proof does not make use
of (I1.47) and the theory of area. Extend
FE to G and make EG = BC. Then the
triangles ABC and DEG are congruent
by SAS (1.4). Therefore, AC = DG. It
follows that DF = DG, so the triangle
DFG is isosceles. Therefore, the angles
at F and G are equal. Then the triangles
DEG and DEF are congruent by AAS
(1.26). But DEG is congruent to ABC, so
the two original triangles are congruent.

The Theory of Parallels
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Book I of Euclid's Elements can be divided naturally into three parts. The first
part, (1.1)-(1.26), deals with triangles and congruence. The second part, (1.27)-




(1.34), deals with parallel lines and their applications, including the well-known
(1.32) that the sum of the angles of a triangle is two right angles. The third part,
(1.35)-(1.48), deals with the theory of area.

Two lines are parallel if they never meet, even if extended indefinitely in
both directions (Definition 23). The fifth postulate gives a criterion for two lines
to meet under certain conditions, hence to be not parallel, so we often refer to
the fifth postulate as the parallel postulate. Euclid postponed using this postulate
as long as possible so that in fact, the first part of Book I about triangles and
congruence does not use the parallel postulate at all. It is first used in (1.29).
Let us examine closely Euclid’s theory of parallels and his use of the parallel
postulate.

The first result about parallel lines,

(1.27), says that if a line falling on two

other lines makes the alternate interior /
angles equal, then the lines are par-

allel. This is proved using (I.16): If not,

the lines would meet on one side or

the other, and would form a triangle ]

having an exterior angle equal to one /

of its opposite interior angles, which is

impossible.

The next result (1.28) is similar, and follows directly from this one using
vertical angles (I1.15) or supplementary angles (1.13).

The fifth postulate is used to prove the converse of (1.27), which is (1.29): If
the lines are parallel, then the alternate interior angles will be equal. For if
not, then one would be greater than the other, and so the sum of the interior
angles on one side of the transversal would be less than two right angles. In
this situation, the fifth postulate applies and forces the lines to meet, which is a
contradiction.

As for the existence of parallel lines,
Euclid gives a construction in (1.31) for
a line through a point P, parallel to a
given line I. Draw any line through P,
meeting I, and then reproduce the angle

P

it makes with [ at the point P (1.23). It Y
follows from (1.27) that this line is par- /
allel to L.

Why does Euclid place this construction after (1.29), even though it does not
depend on (1.29) and does not make use of the parallel postulate? Presumably,
the answer, although Euclid does not say so, is that using (1.29) one can show
that this parallel just constructed is unique. If there were any other line parallel
to I through P, it would make the same angle with the transversal (by (1.29)) and
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hence would be equal to this one. Thus using the parallel postulate we can
prove the following statement:

P. For each point P and each line [, there exists at most one line through P par-
allel to I.

This statement (P) is often called “Playfair's axiom,” after John Playfair
(1748-1819), even though it already appears in the commentary of Proclus. Of
course, in Euclid’s development of geometry, this is not an axiom, but a theorem
that can be proved from the axioms. Some authors, however, like to take the
statement (P) as an axiom instead of using Euclid’s fifth postulate. So I would
like to explain in what sense we can say that Euclid’s fifth postulate is equivalent
to Playfair's axiom (P).

Since the parallel postulate plays such a special role in Euclid’s geometry, let
us make a special point of being aware when we use this postulate, and which
theorems are dependent on its use. Let us call neutral geometry the collection of
all the postulates and common notions except the fifth postulate together with all
theorems that can be proved without using the fifth postulate. Thus (1.1)-(1.28)
and (1.31) all belong to neutral geometry, while for example, (1.32) and (1.47) do
not belong to neutral geometry.

If we take neutral geometry and add back the fifth postulate, then we
recover ordinary Euclidean geometry, and we can prove (P) as a theorem as we
did above.

But now suppose we take neutral geometry and add (P) as an extra axiom.
We will show that in this geometry we can prove Euclid’s fifth postulate as a
theorem.

Indeed, suppose we are given two
lines I, m and a transversal n such that "
the two interior angles 1, 2 on the same
side are less than two right angles. Let
P be the intersection of the lines m and
n, and draw a line I’ through P, making
the alternate angle 3 equal to 1. This
is possible by (1.23), which belongs to
neutral geometry. Then by (1.27), which
also belongs to neutral geometry, ' is
parallel to [.

Now, since 1+ 2 is less than two
right angles, it follows that 2 + 3 is less
than two right angles, and hence the
line I’ is different from m (1.13). Now we
can apply (P). Since !’ passes through P
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and is parallel to I, it must be the only line through P that is parallel to . In par-
ticular, the line m, which is different from I, cannot be parallel to I, and so by
definition it must meet I. This proves the fifth postulate.

Thus in the presence of all the results of neutral geometry, we can use
Euclid's fifth postulate to prove Playfair's axiom, or we can use Playfair's axiom
to prove Euclid's fifth postulate. In this sense we can say that in neutral geome-
try, Euclid's fifth postulate is equivalent to Playfair’s axiom. This means that
adding either one of them as an additional assumption to neutral geometry will
give the same body of theorems as consequences.

The Theory of Area

In (1.35), Euclid says that two parallelo-
grams on the same base and in the same

parallels (this means their top sides lie A D € F
on the same line parallel to the base) .
are equal to each other. In the figure, - N\

the parallelogram ABCD is equal to the — \& \\1
parallelogram BCEF. Clearly, the paral- —_ \\

lelograms are not congruent.

Looking at the proof, which is ac-
complished by adding and subtract-
ing congruent figures, we conclude that B C
Euclid must be referring to the area of
the parallelograms when he says they
are equal. But he has not said what the
area of a figure is, so we must reflect a bit to see what he means.

Our intuitive understanding of area comes from high-school geometry,
where we learn that the area of a rectangle is the product of the lengths of two
perpendicular sides, the area of a triangle is one half the product of the lengths
of the base and the altitude, etc. The “area” of high-school geometry is a func-
tion that attaches to each plane figure a real number; the area of a nonover-
lapping union of figures is the sum of the areas, and so forth. Most likely no one
ever told you the definition of area, nor did they prove that such an area function
exists. Using calculus, you can define the area of a figure in the real Cartesian
plane using definite integrals, and in that way it is possible to prove that a suit-
able area function exists. But in Euclid’'s geometry there are no real numbers,
and we certainly do not want to use calculus to define the concept of area in
elementary geometry.

So what did Euclid have in mind? Since he does not define it, we will con-
sider this new equality as an undefined notion, just as the notions of congruence
for line segments and angles were undefined. We will call this new notion equal
content, to avoid confusion with other notions of equality or congruence. We do
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not want to use the word area, because this notion is quite different from our
common understanding of area as a function associating a real number to each
figure.

From the way Euclid treats this notion, it is clear that he regards it as an
equivalence relation, satisfying the common notions. In particular:

(a) Congruent figures have equal content.

(b) If two figures each have equal content with a third, they have equal content.

(c) If pairs of figures with equal content are added in the sense of being joined
without overlap to make bigger figures, then these added figures have equal
content.

(d) Ditto for subtraction, noting that equality of content of the difference does
not depend on where the equal pieces were removed.

(e) Halves of figures of equal content have equal content (used in the proof
of (1.37)). (Also, doubles of equals are equal, as a consequence of (c)
above.)

(f) The whole is greater than the part, which in this case means that if one
figure is properly contained in another, then the two figures cannot have
equal content (used in the proof of (1.39)).

In terms of the axiomatic development of the subject, at this point Euclid is
introducing a new undefined relation, and taking all the properties just listed as
new axioms governing this new relation. Later in this book (Section 22), we will
discuss Hilbert's reinterpretation of the theory of area where the relationship of
having equal content is defined, and all its properties proved, so that it does not
require the introduction of new axioms.

Now let us see what Euclid does with this purely geometric notion of equal
content of plane figures. In (1.35) he proves that the two parallelograms have
equal content (see diagram above) by first showing that the triangle ABE is
congruent to the triangle DCF, so they have equal content. Then by sub-
tracting the triangle DGE from each (in different positions!) and adding the tri-
angle BGC to each, he obtains the two parallelograms, which therefore have
equal content.

In (1.37) he shows that two triangles
ABC and DBC on the same base and in
the same parallels have equal content.
The method is to double ABC to get a
parallelogram EABC, and to double DBC \‘
to get a parallelogram DFBC. \

By (1.35) the two parallelograms
have equal content, and then he applies B c
the axiom that halves of equals are
equal to conclude the triangles have
equal content.
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This is all that is needed to explain
Euclid’s beautiful proof of (1.47), the H
theorem of Pythagoras. The statement
of the theorem is that if ABC is a right
triangle, then the squares on the two K
legs together have equal content to the G
square on the hypotenuse. The proof A
goes like this. The triangle ABF is one
half of the square ABFG. This triangle F
ABF has equal content with the triangle
BFC by (1.37). The triangle BFC is con- B M <
gruent to the triangle BAD. And BAD
has equal content to the triangle BMD
by (1.37). This latter triangle is equal to
one-half of the rectangle BDLM. Hence
the square ABFG has equal content to
the rectangle BDLM. Doing the same c
construction on the other side and add- b L
ing, one has the result.

Euclid’s statement of (1.47) in terms of equal content of the squares con-
structed on the sides of the triangle may come as a surprise to the modern
student who remembers the formula a? + b? = ¢* (which I suppose in the minds
of the general public is rivaled in fame only by Einstein's famous formula
E = mc?). We are used to thinking of a, b, ¢ as the lengths of the sides of the tri-
angle, in which case the theorem becomes an equation among real numbers.
How can we reconcile these two points of view?

The modern answer to this question, which we will discuss in more detail
later (Section 23), is that after introducing coordinates in our geometry we can
prove the existence of an area function. The area of a square of side a will be a®.
Furthermore, we will show that having equal content in the sense of Euclid is
equivalent to having equal area in the sense of the area function. Then the two
formulations of the theorem of Pythagoras become equivalent.

This answer makes sense only when we are able to assign numerical lengths
to arbitrary line segments, which the Greeks could not do. Yet there is ample
evidence that the Greeks did know special cases of this formula when a, b, ¢ are
integers. The equation 3 + 4 = 5? was known to the Egyptians, and Proclus in
his note on (1.47) mentions two general formulas for generating such “Pythagor-
ean triples” of integers, which he ascribes to Plato and to Pythagoras. So we can
presume that the Greeks knew some particular right triangles with integer sides,
in which case (1.47) can be represented by the equation among integers
a’ +b* = ¢*. But the geometrical proof given by Euclid is then more general,
because it applies to all triangles, and not just those for which one can find
integers to fit the sides.




