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Abstract. This paper proposes DS-means, a novel algorithm for clus-
tering distributed data streams. Given a network of computing nodes,
each of them receiving its share of a distributed data stream, our goal
is to obtain a common clustering under the following restrictions (i) the
number of clusters is not known in advance and (ii) nodes are not al-
lowed to share single points of their datasets, but only aggregate informa-
tion. A motivating example for DS-means is the decentralized detection
of botnets, where a collection of independent ISPs may want to detect
common threats, but are unwilling to share their precious users’ data.
In DS-means, nodes execute a distributed version of K-means on each
chunk of data they receive to provide a compact representation of the
data of the entire network. Later, X-means is executed on this repre-
sentation to obtain an estimate of the number of clusters. A number
of experiments on both synthetic and real-life datasets show that our
algorithm is precise, efficient and robust.

1 Introduction

Broadly speaking, clustering is the problem of partitioning a set of items into a
collection of clusters, so that, given a definition of similarity, items in the same
cluster are more similar to each other than they are to items in other clusters.

Most clustering algorithms assume that the items to be analyzed are available
here and now, meaning that the entire data set could be easily accessed from
a single machine. Sometimes both these assumptions must be relaxed, meaning
that items are inherently distributed and not immediately available, for example
because they are continuously generated and volatile in nature.

As a potential application area, consider the problem of detecting malicious
threats like botnets, DDoS attacks, viruses, etc. [3]. In this setting, a large num-
ber of detectors, potentially belonging to different organizations (ISPs, compa-
nies, universities) collect large quantity of information about the behavior of a
system (for example, by inspecting the networking traffic at routers). In order to
associate detection with a (potentially immediate) reaction, data should be ana-
lyzed and clustered as it flows through the detectors. In such setting, centralized
algorithms cannot be applied. There are several reason for this:

– The data to be analyzed is constituted by a continuous stream of items, and
waiting for all of them to be collected in a single machine is infeasible;
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– Forwarding all data to one machine may be too expensive, inducing a large
amount of unnecessary traffic;

– If the data is collected by different organizations, privacy issues may prohibit
the gathering of the entire data set by a centralized third party.

Based on these considerations, the problem we are trying to solve is a dis-
tributed form of data stream clustering [1], where data arrives continuously at
multiple nodes, without having the possibility to transmit the entire dataset to
a single machine.

The main contribution of this paper is the DS-means algorithm (where DS
stands for Distributed Streams), a combination of various known techniques to
solve this problem, without the need of previous knowledge about the number
of clusters. DS-means first partitions – at each node – data into chunks; then
a distributed version of K-means is applied on these chunks. Each time the
distributed K-means algorithm is executed, it returns K centroids (points equal
to the average of a cluster) that are used, together with centroids obtained from
previous executions, as a compact representation of the entire set of streams.
Each node then locally runs X-means, a clustering algorithm able to choose the
number of clusters, on this representation. An aggregation protocol is executed
by all nodes to reach an agreement on the number G of clusters; finally, each node
runs a centralized instance of K-means with K = G to get the final clustering.

This approach has two important properties. Given that DS-means works
independently on each chunk of data, we can use it in an online setting (in which
we want to look only at the last chunks of data) without the need of restarting it
from scratch each time new data arrives. Also, the nodes do not directly exchange
information about the single points they are trying to cluster, thus achieving a
reasonable level of privacy in the presence of sensitive data.

The paper shows the good behavior of the protocol using synthetic datasets.
DS-means is able to reach high precision even when it starts without knowing
the exact number of clusters; the amount of computation is similar to the cen-
tralized version; and finally, DS-means is fault-tolerant and reaches the same
level of precision with or without failures (although the computation time may
increase in the presence of failures).

2 Problem Statement

We consider a distributed network of N computing nodes p1, . . . , pN , each of
them independently receiving a (possibly unbounded) stream of data items. Al-
though the amount of points each node receives may be different, data items
are homogeneous: each of them is a point in the same d-dimensional space Rd,
taken from a single distribution. Similarity of two points p, q is measured based
on their Euclidean distance d(p, q) in Rd: the smaller their distance, the more
similar two points are. We use P to denote the set of points received by all nodes.

Nodes may fail by crashing, meaning that they stop executing the protocol;
we do not consider malicious failures, where nodes behave arbitrarily (for ex-
ample spoofing other nodes with incorrect information about the points they



receive). In other words, nodes participating in the computation are trusted.
Nodes are partially synchronized, e.g. through NTP.

Each node may reliably communicate with any other node; to claim a limited
degree of privacy, we require that only aggregate information can be shared
among nodes, without communicating individual points.

The output of our problem is a collection of G centroids c1, . . . , cG, again
taken from Rd, such that (i) each centroid ci represents a cluster Ci ⊆ P; (ii)
each point p ∈ P is assigned to the cluster represented by the closest centroid,
denoted c(p); (iii) the average distance

1

|P|
∑
p∈P

d(p, c(p))

between each point and the center of its cluster is minimized.
The value of G is not known in advance; instead, the correct value must

be identified based on the Bayesian information criterion [10]. This measure
uses the log-likelihood of the dataset according to the model and its number of
parameters (in our case the number of centroids multiplied by the number of
dimensions) to compute the following metric:

BIC(j) = logMj(S)− 1

2
kj log n

In this formula j is a model, Mj(S) is the maximal likelihood of dataset S
using model j, kj is the number of parameters of the model and n = |S|. To
compute the maximal likelihood of the dataset we used the identical spherical
Gaussian assumption (see [9] for the exact formulas).

3 Background

Clustering a data set is one of the classical problems in the area of machine
learning. This section provides a brief review of the clustering algorithms that
are used as building blocks for our own solution.

3.1 K-Means

The most commonly known clustering algorithm is K-means, based on a paper
by LLoyd [6]. K-means works as follows: it starts from K centroids (points
representing the center of a cluster), repeatedly assigns each point to the closest
centroid and recomputes the position of the centroids according to the points
assigned to it. This algorithm is guaranteed to converge to a local minima of the
within-cluster sum of squares (i.e. the average squared distance between each
point and the center of its cluster), but the quality is highly dependent on the
choice of the starting centroids.

Another drawback is that K needs to be initialized to the correct value of
G, the actual number of clusters present in the system. If K-means is given the
wrong K (because such value is not known in advance), the algorithm fails to
answer precisely.



3.2 X-Means

One algorithm that is able to compute a good clustering even without knowing
the number of clusters is X-means [9]. This algorithm uses 2-Means (K-means
with K = 2) as a subroutine and continues to divide the data set in smaller
subsets using the Bayesian information criterion to decide if (and where) does
the data need more clusters.

The algorithm will then return the clustering which scores the highest value
based on the Bayesian information criterion. We use this algorithm mostly as a
subroutine to compute the number of clusters to be created.

3.3 Distributed K-Means

The main building block of our algorithm is the distributed K-means algo-
rithm presented by Bandyopadhyay et al. [1], created to cluster datasets in P2P
environments. The algorithm works as follows: each iteration of the K-means
algorithm is executed at the same time by all nodes in the network. Each node
starts with the same centroids, updates them using its own data and computes
an average between its own centroids and the centroids computed by some of its
neighbors. This process is repeated until a steady state is reached.

Looking more closely to the algorithm, it appears clearly that it is based on
a simple relaxation of the averaging step of K-means. All nodes start from the
same centroids and are able to map each of its point to the closest of them.
In the centralized version of K-means, we select all the points that have been
mapped to a single centroid and compute their mean to get the new position
of that centroid. In this distributed algorithm, each node computes the position
of each centroid as the mean of the points in the neighborhood that have been
mapped to it.

An interesting property to be emphasized is the fact that each node only com-
municates with the others using aggregate data. In the communication rounds
the nodes only send their centroids to some of their neighbors. The actual points
are not shared in the network and each node can avoid sharing information with
the other nodes. This is highly desirable when the data is distributed between
nodes representing different companies and they want to collaborate to get a
good clustering without having to directly share their points with the competi-
tion.

4 The Algorithm

The original distributed K-means algorithm works on static datasets and needs
to know the number of clusters that better represent the data distribution in
advance, or it will fail to produce a good clustering [1]. We use this algorithm as
a subroutine and we create a novel distributed framework to discover the correct
number of clusters in data streams.
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Fig. 1. Overview of DS-means

We provide here an overall view of the algorithm, while implementation de-
tails are provided in the following subsections. The algorithm is divided in the
following five steps, numbered (1)–(5), illustrated in Figure 1 and whose pseudo-
code is outlined in Figure 2:

1. Each node pi receives a stream of data points p, which are collected in
variable C. The execution is divided into approximately synchronized epochs
of duration ∆; at the beginning of each epoch t, a chunk of data denoted
containing the points collected in the last ∆ time units is stored in variable
chunk i(t) and variable C is emptied.

2. The set of chunks, one for each node, that have been created at epoch t is
called global chunk and is denoted chunk(t):

chunk(t) = {chunk1(t), chunk2(t), . . . , chunkN (t)}

The nodes execute an independent instance of the distributed K-means
algorithm on each global chunk chunk(t), using an arbitrary value of K.
Each node pi generates a collection of centroids centroidsi(t) of size K. The
new centroids are added to the set centroidsi, which contains all centroids
generated so far by node i. The original data points are discarded.

3. Each node pi execute the centralized version of X-means on centroidsi to
obtain the number Gi of centroids that better represent centroidsi.

4. The resulting number of centroids could be different at different nodes, so a
pairwise averaging algorithm [5] is run on such values. All nodes will obtain

the same average number G = 1/N
∑N

i=1Gi.
5. Finally, each node runs a local version of K-means on centroidsi, using K

equal to the number of clusters resulting from the previous step (K = G).
The resulting set centroidsiG is the output of the algorithm.



on receive p
(1) C ← C ∪ {p}

repeat every ∆ time units
t← t+ 1

(1) chunk i(t)← C
C ← ∅

(2) centroidsi(t)← DistKMeans(chunk i(t),K)
centroidsi ← centroidsi ∪ centroidsi(t)

(3) Gi ← XMeans(centroidsi)
(4) K ← distributedAverage(Gi)
(5) centroidsiG ← KMeans(centroidsi,K)

Fig. 2. Algorithm executed by node pi

DS-means can be transformed into a dynamic algorithm that quickly adapts
to new data arriving in the system. Assuming that the last estimate of the
number of clusters is Kold , the framework will react as follows:

– All nodes in the network will start an instance of the distributed K-means
algorithm only on the new global chunk, using K = Kold .

– When the distributed K-means algorithm has terminated, all nodes update
their list of centroids by adding the new ones. In a “sliding window” model,
they also discard the centroids generated w epochs ago, where w is the size
of the sliding window (in number of epochs):

centroidsi ← centroidsi ∪ centroidsi(t)− centroidsi(t− w)

– Each node will run the local X-means algorithm giving it an upper bound
on the number of clusters based on Kold .

– The pairwise aggregation step and the local K-means step is repeated as
usual, thus obtaining a new estimate of the number of clusters and a new
clustering.

The choice to partition data into (global) chunks helps us in avoiding repeat-
ing unnecessary computations in the distributed K-means step. Reusing the old
number of clusters as K helps in making even less important the value of K
given to DS-means at startup.

Note that the nodes communicate only during two steps: for distributed K-
means and for pairwise averaging. During the former, only centroids are sent
over the network, while in the latter the only shared value is the number of
centroids. Actual points are never shared across the network, giving us a sufficient
(although limited) degree of privacy.

4.1 Dividing data into chunks

We derive the idea of dividing data into chunks and working on each of them
separately by the work of Guha et al. [4]. The easiest way to divide the data is



based on the timestamp (creating a new chunk for each interval of time). Even if
the nodes receive data at different rates and therefore create chunks of different
size, the distributed K-means algorithm makes sure that each node has similar
results. We force each node to generate the same number of chunks, so that each
global chunk will contain exactly one chunk from each node.

4.2 Distributed K-Means

The nodes in the network need to execute the distributed K-means algorithm on
each global chunk. We start an execution of the distributed K-means algorithm
any time a new global chunk arrives, meaning that each node has a new chunk to
work on. Each execution is completely independent and chooses its own starting
centroids. At the end of each execution, K new centroids are created (roughly
the same in all nodes), which are added to the list of centroids computed so far.
This list acts as a compact representation of all data in the network.

Each execution selects a set of starting centroids, common to all nodes, as
follows: each node chooses randomlyK centroids and a real number c in the range
[0, 1]. A round-based epidemic protocol is executed to reconcile the different sets
of centroids [2]. At each round, each node communicates with a random subset
of neighbors and inherits both the centroids and c from the neighbor having
the greatest value of c. Thanks to this epidemic protocol, O(log n) rounds are
sufficient to have all nodes knowing the same set of starting centroids.

Another important part of this algorithm is the distributed termination con-
dition. In the centralized K-means, the algorithm terminates when there are
no more updates to the centroids and a steady state has been reached. This
approach is not viable in a decentralized setting due to the lack of a global view
of the system, so we need to define a local condition to be checked by individ-
ual nodes. Each node keeps track of the last set of centroids it has generated
and, at each iteration, checks if they have been changed by measuring the dis-
tance between the centroids and checking if the average change is more than a
given threshold δ. A node terminates the execution and outputs its centroids
when both the local centroids and the ones of the contacted neighbors have not
changed in the last τ iterations.

4.3 X-Means

In this step, each node executes its own instance of X-means on the list of
centroids obtained from the previous step. Different runs of X-means will result
in different clustering and, in unlucky cases, in a number of clusters far from the
correct answer. By running X-means separately on each node in the network,
we use redundancy to discard unlucky instances of X-means.

Since we give as input to the X-means algorithm a set of points centroidsi,
each of them representing a subset of the original data points, we make each
node compute the variance of each centroid in the list using its own data and
we use this value as a “lower bound” on the cost of making a cluster containing
that centroid.



4.4 Pairwise averaging

The number of clusters identified by the local execution of X-means can vary
significantly between different nodes, while it would be desirable to obtain in
all nodes a clustering with the same number of clusters. To obtain this we use
a simple, epidemic-based pairwise averaging algorithm [5]. After O(logN) epi-
demic rounds all nodes know the average number of clusters computed by the
different instances of X-means.

4.5 Local K-Means

When the pairwise averaging step is over, all nodes have the same estimate
of the number of clusters in the underlying data. Now each node can run the
centralized K-means algorithm on the local list of centroids using the value K
computed in the previous steps. We can reuse some of the centroids found by
the local X-means as the starting centroids for the local K-means, since they
work on the same dataset centroidsi.

A more efficient implementation of this algorithm could share additional
information between the two algorithms. If we wanted to compute some of the
data structures commonly used to speed up clustering algorithms (like KD-
Trees [8]), we could reuse them in both algorithm, thus avoiding unnecessary
computations.

5 Evaluation

DS-means has been tested on PeerSim [7], a P2P simulator. In this section, first
the experimental framework used to evaluate DS-means is presented, then the
results are shown.

5.1 Experimental Framework

The input of the evaluation is a list of data points, each labeled with the correct
group to which they belong. The output is a similar list, with points labeled by
the clusters discovered through DS-means.

We compare DS-means against the centralized version of K-means (in-
structed with the correct value of K) and the centralized version of X-means.
Four figures of merit are considered: Clustering quality is measured through the
F-score, the harmonic mean of precision and recall, and through the within-
cluster sum of squares. Execution time is measured in number of communication
iterations in the simulation. Note that comparing execution time of centralized
and decentralized algorithms is hardly significant, because the latter strongly
depends on the underlying network. The fourth figure of merit is thus total com-
putational work, measured as the number of times that the distance function
(used to compare two data points) is called across the entire execution.

An artificial dataset is generated as follows. First of all, G different mean
points are randomly chosen from a d-dimensional space, one for each of the



groups in which data points are correctly subdivided. Then, each point in the
dataset is created in two steps: (i) one of the groups is selected uniformly at
random, and the point is labeled with it; (ii) the actual point coordinates are
generated following a standard Gaussian distribution (in each of the d dimen-
sions) centered in the corresponding mean point.

A couple of observations are in order:

– Given that mean points are independently generated, groups may overlap, in-
ducing errors when a clustering algorithm is applied. All potential clustering
algorithms are affected in the same way by this problem, so our comparison
against centralized algorithms is fair.

– Data points are equally divided among nodes, and then divided in chunks.
We do not ensure that a chunk will contain data from all of the original
groups; this most likely occurs when the number of points in a chunk is
small.

Parameter Symbol Value

Network size N 100

Groups G 20

Data dimensionality d 2

Threshold iterations τ 3

Threshold variance δ 0.5

Size of the space M 100

Table 1. Simulation parameters

Each experiment is repeated 20 times; variance is so small that it is not shown
in the figures. Unless explicitly stated otherwise, our results have been obtained
with the parameters listed in Table 1.

5.2 Experimental Results

Figure 3(a) compares the F-score of DS-means and the two centralized clus-
tering algorithms. We can see that the centralized K-means algorithm obtains
a clustering of lower quality, even when it is given the correct value of G. This
is caused by the usual problem of the presence of local minima, that are bet-
ter avoided by X-means. DS-means obtains very good F-scores not only when
the correct K is used to initialize to the algorithm, but it even obtains results
comparable with X-means with the wrong value of K.

Figure 3(b) shows the average within-cluster sum of squares distance of DS-
means. As before, the experiments show results equivalent to the centralized
X-means.

Another interesting property of DS-means is the amount of computation
(measured by the number of calls to the distance function) that is needed to
complete the execution. Figure 4(a) shows that our clustering algorithm is always
comparable to the centralized algorithm.
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Fig. 4. Computational work and execution time of DS-means using different values
for K.

Figure 4(b) shows that, even if the amount of computation is larger, the
execution time (in which we only take into account the communication costs)
seems to become lower when the algorithm is given a bigger K.

While we have seen that the precision of DS-means is high even when given
the incorrect number of clusters, it could be interesting to see what is the actual
number of clusters obtained from it. Figure 5(a) shows the number of clusters
found by DS-means when given different values of K, when G = 20 different
groups have been created. The results are quite interesting: the algorithm is
closer to the correct answer when it is given a value of K bigger than necessary,
while when it is given the correct K the number of clusters it creates is big-
ger than necessary. This behavior is easily explained: giving a bigger K to the
distributed K-means algorithm results in a bigger number of centroids gener-
ated and thus a better representation of the data. When K is small then it is
more likely that in the distributed K-means algorithm more than one cluster is
mapped to a single centroid, thus creating a new point in the list of centroids
that does not correspond to any of the 20 original groups. The reason the algo-
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rithm is still very precise is that these centroids, being quite far from the real
distributions, will not be used when mapping the data of the entire network to
the clusters.

As the next step we want to see the behavior of our distributed clustering
algorithm when the network grows in size. In Figure 5(b) we see the execution
time of our clustering algorithm against the number of nodes in the network. We
see that the differences are very small and that we need a similar amount of com-
munication iterations to complete the algorithm. This fact was expected since
the nodes in the network only look and communicate to their local neighbors
and the data is distributed homogeneously in the network.

Finally, an important aspect to be analyzed is the robustness of our approach.
In our model, nodes may go down for a period of time before getting repaired and
rejoining the distributed algorithm. Nodes that are down do not communicate
with the rest of the network and do not work on their data. They are still able
to receive a new chunk and store it until the node goes up. This model has been
chosen to make sure that each node has the data on which it has to work.

Our model for robustness uses two parameters: the probability of failure (Pf )
and the probability of recovery (Pr). All nodes start the computation in the up
state and then, at each iteration of the simulation, each node in the up state



goes down with probability Pf , while each node in the down state goes up with
probability Pr.

In Figure 6(a) the F-score of our algorithm with different values of these two
parameters is shown. In this simulation, while G = 20, the algorithm has been
initialized with K = 40. Even with very high failure percentage and low recovery
rate the algorithm is able to reach roughly the same F-score. Note that in the case
in which the probability of recovery is 0.1 and the probability of failure is 0.9, on
average 90% of the nodes in the network are down at all times. The algorithm is
still able to reach a good clustering even in these extreme conditions, at the price
of an increase in the number of communication iterations (see Figure 6(b)).

6 Conclusion

In this paper, we have presented DS-means, a novel algorithm for clustering dis-
tributed data streams. Preliminary results with synthetic datasets are promising;
we are now evaluating the system with realistic data for botnet detection.
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