
UNIVERSITÀ DEGLI STUDI DI TRENTO
Facoltà di Scienze Matematiche, Fisiche e Naturali

Master of Science in Computer Science

Final thesis

Decentralized clustering with estimation of
the number of clusters

Advisor: Student:
Prof. Alberto Montresor Alessio Guerrieri

Accademic year 2009 - 2010

Graduation session: 15 December 2010

C O N T E N T S

1 Introduction 7

1.1 Clustering in brief 7

1.2 Motivations for a decentralized clustering algorithm 7

1.3 Main contributions 8

2 Related Work 11

2.1 Clustering 11

2.2 K-Means Clustering 13

2.3 X-Means 16

2.4 Statistical Measures to evaluate clustering 19

2.4.1 Unlabelled data 21

2.4.2 Labelled data 22

2.5 Decentralized clustering 24

2.5.1 SODAS: Dynamic decentralized any-time hierarchical cluster-
ing 24

2.5.2 Group formation among decentralized autonomous agents 25

2.5.3 K-Means in MapReduce 26

2.5.4 Comparison between these algorithms and our approach 27

3 A Decentralized Clustering Algorithm 29

3.1 Introduction 29

3.2 Distributed K-Means 30

3.3 Our Decentralized Clustering Algorithm 32

3.3.1 Choosing chunks 33

3.3.2 Distributed K-Means 33

3.3.3 X-Means 35

3.3.4 Pairwise averaging 35

3.3.5 Local K-Means 36

3.3.6 Remarks 36

3.4 Online version 37

4 Experimental results 39

4.1 Generator 39

4.2 Evaluator 40

4.3 Distributed K-Means 41

4.4 Our decentralized clustering algorithm 45

4.4.1 F-Score 45

4.4.2 Scalability 48

4.4.3 Robustness 50

4.4.4 Conclusions 52

5 Conclusions 53

3

L I S T O F F I G U R E S

Figure 1 Flat vs hierarchical clustering 13

Figure 2 Successful run of K-Means 15

Figure 3 Unsuccessful run of K-Means 17

Figure 4 X-Means 20

Figure 5 SODAS algorithm 25

Figure 6 Overview of the framework 34

Figure 7 Data example 40

Figure 8 F-Score of distributed K-Means 41

Figure 9 F-Score of distributed K-Means with wrong K 42

Figure 10 Completion time of distributed K-Means 43

Figure 11 Completion time of distributed K-Means with wrong K 43

Figure 12 Completion rate of distributed K-Means 44

Figure 13 Scalability of distributed K-Means:F-Score 44

Figure 14 Scalability of distributed K-Means:time 45

Figure 15 F-Score of our clustering algorithm 46

Figure 16 Amount of computation of our algorithm 47

Figure 17 Completion time of our algorithm 47

Figure 18 Average number of clusters 48

Figure 19 Scalability of algorithm:F-Score 49

Figure 20 Scalability of algorithm:completion time 49

Figure 21 Robustness example 51

Figure 22 Robustness of our algorithm:F-Score 51

Figure 23 Robustness of our algorithm:communication time 52

5

1
C H A P T E R 1 : I N T R O D U C T I O N

1.1 clustering in brief

One natural question we may ask when given a set of items, is how are these items
related. Can we divide them into homogenous groups? How can we even define
what does homogenous mean? This problem is tackled by the area of cluster analysis:
given a set of items we want to group them in clusters such that all items in the same Decentralized data

clusteringclusters are “similar”. The problem becomes more difficult when the items are not
located in the same machine but are distributed across a network. This thesis presents
a decentralized algorithm for clustering that works even when we do not know in
advance how many clusters we need to create.

Clustering has a huge amount of applications in many different fields. In bioinfor-
matics, for example, clustering can be used to group genes with similar expression
patterns. In market analysis we can group customers with similar needs and desires
to get a better understanding of the market. It can be used to find communities in
social networks or to automatically divide documents into fields. Some applications of

clusteringThe most commonly known clustering algorithm is the classical K-Means algorithm
based on work done by LLoyd [16]. K-Means follows this procedure: it starts from K

centroids (points representing the center of a cluster), repeatedly assigns each point
to the closest centroid and recomputes the position of the centroids according to the
points assigned to it. This algorithm is guaranteed to converge to a local minima of
the average distance between each point and the center of its cluster.

While this algorithm has many positive characteristics, it still needs as input the
value of K, the number of clusters we want to find. If we give K-Means the wrong K Limitations of the

K-Means algorithm(for example because we do not know which is the correct number of clusters in the
data) the algorithm fails to answer precisely. One algorithm that is able to compute
a good clustering even without knowing the number of clusters is X-Means [20].
This algorithm uses K-Means as a subroutine and continues to divide the data set in
smaller subsets using a statistical measure to decide where does the data need more
clusters. Our algorithm tries to obtain the same results as X-Means while working in
a decentralized and possibly online setting.

1.2 motivations for a decentralized clustering algorithm

In some application fields, new problems can arise when we try to cluster a set of
data. Consider for example the problem of BotNet detection, where we may want to
group subsets of the nodes in the network that share similar (malicious) behaviour
and communication patterns [11]. There are many issues that arise when we try to
use a centralized approach to clustering in such a setting: Motivations for

decentralized clustering

7

introduction

• The data is not available in a single machine and it may be impracticable to
keep it in only one. This happens in many fields when the amount of data is
extremely large.

• Sending all the data to one machine may be too costly or may take too much
time. If we want fast results then having to wait for the data to be collected in a
single machine is less than desirable.

• The data might be sensitive and sending it on a network might cause a loss of
privacy. If the data is collected by different organizations it is unlikely that they
will agree on collecting the data in a single machine owned by a third party.

• We are not working on static data but on streams of data. When new data is
constantly arriving it is impossible to follow the approach of waiting until all
data is collected in a single machine.

1.3 main contributions

The main contribution of this thesis is the combination of various known techniques to
obtain a decentralized algorithm able to cluster data distributed in a network, without
the need of previous knowledge about the number of clusters. Our algorithm first
partitions the data into chunks at each node, then uses a decentralized version of
K-Means on each of the chunks of data. Each of this instances of the distributed
K-Means algorithm returns K centroids (points equal to the average of a cluster)
and each node uses the list of all centroids generated by the instances as a compactOur algorithm in brief

representation of the data of the entire network. Each node will then run X-Means, a
clustering algorithm able to choose the number of clusters, on this representation. All
nodes then agree on the number of clusters using an aggregation algorithm and will
each run a centralized instance of K-Means with the right number of clusters to get
the final clustering.

This algorithm has two important properties. By using the fact that the algorithm
works independently on each chunk of data, we can adapt it to work in an online
setting (in which we want to look only at the last N chunks of data arrived) withoutOnline and privacy

properties the need of restarting the algorithm by scratch each time a new chunk of data arrives.
Also, the nodes do not directly exchange information about the single points they are
trying to cluster, thus achieving some kind of privacy if the data is sensitive.

Using some simulation we show how does this decentralized algorithm behave
using synthetically-generated data. The algorithm is able to reach high precision
even when it is not given the exact number of clusters for its first step and does itExperimental results

with a global amount of computation comparable with the centralized version. The
algorithm is robust in the case of failures and is able to reach the same precision
(although the computation time increases).

background : This thesis is part of the Autonomic Security project, a 2-year project
financed by the Italian Ministry of Education, University and Research (MIUR) under
the PRIN 2008 programme. This project aims at creating a decentralized distributed
system for security, focusing on these two tasks:

8

1.3 main contributions

1. Research on the “self-*” properties of distributed systems and how can we
use local interactions between nodes in a large scale to make these properties
emerge.

2. Applying the results of the first step on self-protection against botnets.

The development of a decentralized clustering algorithm is part of the first task in
this project. The next step will be to use our algorithm on real data obtained by the
other research groups involved in the project and use a decentralized version of the
BotMiner framework [11] to try to effectively detect botnets.

organization : Chapter 2 explains the background and some of the work already
done in this area. The clustering problem is introduced, together with two different
algorithms to solve clustering in the centralized setting and a few decentralized
clustering algorithms. Chapter 3 illustrates the decentralized version of K-Means and
our decentralized clustering algorithm. Chapter 4 shows all the experimental results
obtained by running our decentralized clustering algorithm on synthetic data. It will
also show how well does our algorithm react in case of failures of the nodes. Finally
Chapter 5 explains some possible future directions of this study.

9

2
C H A P T E R 2 : R E L AT E D W O R K

This chapter introduces some of the terminology used in the rest of this work and
provides an overview of the algorithms related to the problem we are trying to solve.
The first section describes the clustering problem in general and the different types of
clusters we may want to obtain. Section 2.2 describes the K-Means problem, explains
the standard algorithm to solve it and, in Section 2.3 how it can be used as a subroutine
to overcome some of its limitations. Section 2.4 shows the statistical criterions used to
measure the precision of a clustering algorithm while Section 2.5 describes some other
decentralized algorithms that use very different approaches to cluster data distributed
in a network.

2.1 clustering

The clustering problem involves grouping items together in a way that puts “similar
items” in the same groups. The definition 1 presents the problem in its most generic
form:

Definition 1 (Clustering problem):
Given a set of items, partitions them in subsets as to minimize a certain metric.

Important characteristic of the clustering problem is that, at least in its most recur-
rent variety, it is a form of unsupervised learning. While in supervised learning we have a
subset of the data that was already processed (by a learned entity like a human), in
unsupervised learning algorithms we do not have any additional information outside
of the data itself. Doing supervised learning on the clustering problem would mean Unsupervised vs

supervised learninghaving access to a subset of points already grouped in clusters. It is easy to see that
this type of information can help solve the problem on the entire data, at least if
we assume that the source of the data is homogeneous. Thus, when we talk about
clustering, we assume that we do not have any additional information about the data
outside of the actual points.

The items that we want to cluster have to be represented in a way that is easy to
process. The standard way to represent an item is to select a collection of numerical
features that are capable to describe an item and allow to decide whether it belongs
to a set or not. Feature selection is a very complex field, which is outside the scope of
this thesis. We just assume here that features are selected by an human researcher,
according to the application field from which comes the data. For example, if we want
to use clustering to find nodes that communicate in a similar way, the characteristics Mapping items to Rn

that we are interested in may be the number of packets sent per second, the average
size of packets or similar metrics. Each feature is mapped to a dimension and for each
item in the set we obtain a point in Rn with n equal to the number of “interesting”
features we have chosen. To decide how many features we want to use, we have to
strike a balance between too few features (not having enough information to solve the

11

related work

clustering problem) and too many features (incurring in efficiency issues and risk of
overfitting the data).

Once we have defined how to map the items in the vectorial space Rn we need to
define the notion of “similarity”. How to do this is entirely dependent on the type of
data. For example, if the features are discrete we might want to count the number
of features in common and use it as the measure of similarity. Even if we want to
directly use the coordinate of the points we have to choose between many measures
of distance:Options for the

similarity/distance
function • Euclidean distance: this is the standard distance between points in a vectorial

space, it’s equal to the square root of the sum over all dimensions of the square
of the differences.

• Manhattan distance: named after the streets of the borough of Manhattan, it is
computed by summing the difference over each dimension.

• Chebyshev distance: it is equal to the biggest between the differences over any
dimension.

• Mahalanobis distance: more complex than the euclidian distance, takes into
account correlation and scale of the different dimensions [18].

The Euclidean distance is the most commonly used between the ones on the list but
it first needs a normalization on the dimensions: if one of the features is qualitately
different and is mapped incorrectly it might become too much important and might
eclipse the other features.

Another decision we have to make when we choose which clustering algorithm we
want to use is the following: how strict do we want to make the groups? Are the items
allowed to exists in different clusters? If we make the clusters strict, meaning that
each item can be mapped to one and only one cluster, then we are talking about hard
clustering. If we allow the items to be simultaneously mapped to different clusters
then we are talking about soft clustering. This thesis is about hard clustering; we will
just provide a brief introduction to soft clustering. Each item is not mapped to a
single cluster but gives to each cluster a weight between 0 and 1, with the sum over all
clusters being equal to 1. The weights represent how close is the item to each cluster
and help in capturing cases in which clusters might overlap in the data. There are
many algorithms on this version of the clustering problem, the most famous being
Fuzzy C-Means [7], an algorithm similar to the K-Means algorithm presented in the
next section.

The last aspect we describe is the difference between flat clustering and hierarchical
clustering. As the name suggest, in flat clustering all clusters are considered at the
same level. In hierarchical clustering the items are clustered in an hierarchy, so items
that are together in one of the smallest clusters are more similar than items that are
together in the biggest clusters. Figure 1a and 1b show the main differences betweenflat vs hierarchical

clustering the two approaches. The algorithms for hierarchical clustering are themselves divided
between top-down algorithms, in which items start all in the same cluster and are
then divided, and bottom-up algorithms, in which at the beginning each item is a
single cluster and they are then joined until we get one cluster containing all items.

12

2.2 k-means clustering

(a) (b)

Figure 1: Flat clustering and hierarchical clustering

2.2 k-means clustering

The classical example of flat clustering is K-Means clustering. The K in the name refers
to the number of clusters we want to obtain while the suffix “Means” refers to the fact
that each cluster is represented by a centroid equal to the mean of all points in that
cluster. The K-Means clustering problem is part of the hard clustering family, so each
item can be mapped to only a single cluster. The problem is properly defined in the
following: Definition of K-Means

Definition 2 (K-Means Problem):
Given a set S of points in Rn and a number K, create K subsets C1...CK such that:

1.
⋃
iCi = S

2. ∀i,j,Ci
⋂
Cj = ∅

3. minimizes
∑
i

∑
x∈Ci ||x− µi||

2

Looking at the definition: we can see that the first two requirements force each
point to be in exactly one cluster, thus ensuring that the resulting clustering is an hard
clustering. The third requirement defines which is the correct clustering: the one that
minimizes the square distance between the points and the centroid of its cluster. Note
that by defining µi as the weighted mean of the points in Ci and normalizing the
distance measure by the weight we can easily adapt this problem to a soft clustering
setting.

The natural question we can ask is what is the complexity of this problem. The
results are somewhat off-putting. If both k (the number of clusters) and d (the
number of dimensions of the points) are fixed, then the problem is solvable in
O(ndk+1 logn) [13]; if any one of these parameter is generic and unbounded then the Time complexity of the

K-Means problemproblem becomes NP-Complete [2, 17]. Since no exact polynomial time algorithms are
known to solve this problem we use heuristic algorithms.

13

related work

The classical algorithm proposed to solve the K-Means clustering problem is usually
called K-Means itself, or LLoyd’s Algorithm [16] from the name of the proposer. The idea
of the algorithm is quite simple. We take K random points as the starting centroids. We
then assign each point in the dataset to the closest centroid, thus creating a clustering.Description of the

K-Means Algorithm We recompute the position of each centroid to be equal to the average of the points
assigned to it. We then repeat the process, assigning each point to the closest centroid
and recomputing the new position of each centroid until we reach an equilibrium (a
local optima of the data). We show the pseudocode in algorithm 1, while in figure 2

we show a successful run of the algorithm.

Algorithm 1 K-Means (LLoyd) Algorithm

Require: K > 1
for all i ∈ [1..K] do
ci ⇐ GetRandomPoint()

end for
repeat

Set all Ci equal to ∅
for all item ∈ S do
j⇐ argmini(||ci − item||)

Cj = Cj
⋃

{item}

end for
for all i ∈ [1..K] do
oldci = ci

ci =
1

|Ci|
·
∑
j∈Ci

j

end for
until ∀i,oldci = ci
return all Ci

Studying the time complexity of this algorithm is not an easy task. It is easy to see
that the time complexity is O(n ·k ·d · #iter), with d equal to the number of dimensions
of the data, but bounding the number of iterations is a much more difficult problem.
While in practice it has been observed that the number of iterations is usually much
smaller than n [10], it has been proven that, in the worst case, the number of iterations
can be superpolynomial. More precisely, it has been proven that exists a lower bound
for the worst case running time equal to 2Ω(

√
n) [4]. There have been some studiesTime complexity of the

K-Means Algorithm on this discrepancy between the actual speed and the theoretical bounds and, in the
last few years, it has been proven that the smoothed time complexity of the K-Means
algorithm is polynomial [3]. This means that, even for the worst case input, if we are
allowed to randomly perturb the data set the algorithm runs in expected polynomial
time. Since real world data sets are naturally perturbed we have some guarantees on
the speed of this algorithm.

Aside from the running time of the algorithm, that as we have seen can be quite fast
on real data, we have a bigger concern. This algorithm is, as we have said, an heuristic
algorithm. When does it fail? Figure 3 shows an example run in which K-Means fails
to cluster correctly all points. What can happen is that a centroid takes control of

14

2.2 k-means clustering

Figure 2: Successful run of K-Means with K=3

(a) The three centroids are chosen at ran-
dom

(b) Each point is assigned to the closest cen-
troid

(c) The position of each centroid is recom-
puted

(d) Each point is reassigned to the closest
centroid

(e) The algorithm has converged to the op-
timal solution

15

related work

points from different clusters and there is no other centroid close enough to get those
points back and start the process of dividing the points in different centroids. In the
example showed in figure 3 the red centroid captures all points of both the top-left
and the top-right clusters and the other two centroids are too far to have any effect on
it.

In general the K-Means Algorithm is strongly affected by its starting position and a
bad choice of the initial centroids can influence not only the running time but also the
precision of the clustering. It has been shown that adding a new pass before K-Means
itself to choose the starting centroids in a more smart way can increase both precision
and efficiency. The K-Means++ algorithm [5] first chooses one centroid at random
and then chooses iteratively one data point as the next centroid with probabilityChoosing the starting

centroids proportional to the squared distance from the closest centroid, until we have reached
the desired number of them. The idea of this algorithm is having starting centroids
that are as far from each other as possible to cover most of the points. The authors
claim that this additional step creates a dramatical increase in precision without any
costs in term of running time.

There are also many ways
to speed up the K-Means
algorithm itself, avoiding
unnecessary computations
and using smart data struc-
tures. One crucial observa-
tion is that if we can find the
closest centroid for a whole
subset of data points thenUsing geometric

properties to speed up
the algorithm

we do not need to access
each data point as long as
we have the sum of the sub-
set. Also, by geometric rea-
soning, given two centroids
we can separate the space
in two half spaces, and ex-
clude that data points in one
half space can choose the centroid in the other half space as their closest centroid.

All these informations can be captured by a data structure called kd-tree. This tree
is built by recursively dividing the dataset in two, creating an hyperplane parallel to
one of the axis. Using this data structure it is possible to determine which centroid
is the closest to an entire subset of data points and to exclude some centroids from
consideration altogether. The hierarchical structure makes it easy to compute the
necessary information for each subset.

2.3 x-means

In the previous section we talked about the K-Means problem as the most common
way to look at clustering. In this algorithm we make one crucial assumption on the

16

2.3 x-means

Figure 3: Unsuccessful run of K-Means with K=3

(a) The three centroids are chosen at ran-
dom

(b) Each point is assigned to the closest cen-
troid. Note that the red centroid is the
closest to the points in the two top clus-
ters

(c) The position of each centroid is recom-
puted

(d) Few points change clusters

(e) The algorithm was not able to overcome
a bad starting position

17

related work

information that we may have before running the algorithm: the fact that we already
know the number of clusters in the real data. In many settings this is not a validLimitation of K-Means:

the number of clusters assumption and maybe the number of clusters itself is the variable that we want to
obtain from the entire analysis. The only way to complete this type of analysis with
K-Means is to repeatedly run the algorithm with different K and then choose the one
that better represents the data.

Another question we might ask is how do we decide which clustering is better
when the number of clusters is different. If we simply look at variables like variance or
the maximum distance between any point and its centroid then we would obtain thatHow do we compare

different clusterings? the best clustering is the one that assigns each data point to its own singleton cluster.
This clearly is not a very good answer, so we need to use some more sophisticated
measures to compare clustering with a different number of clusters. In section 2.4 we
show a number of measures that are commonly used.

In the clustering algorithm presented in this thesis we will make use of the X-Means
algorithm developed by Pelleg [20]. This algorithm uses 2-Means (K-Means with
K=2) as a subroutine and a statistical measure (usually the Bayesian Information
Criterion (BIC), see Section 2.4) to obtain a clustering with the number of clusters
chosen between 2 and a maximum number given as input. In algorithm 2 we show
the pseudocode of X-Means without going into all the details.

Algorithm 2 XMeans algorithm (simplified)

Require: Data set S, Maximum number of clusters MAX
Require: Function 2Means(S) returns two clusters
Clustering← 2Means(S)

BestScore← −∞
while |Clustering| < MAX do
NewClustering = {}

for all Cl ∈ Clustering do
Cl2← 2Means(Cl)

if Measure({Cl}) > Measure(Cl2) then
NewClustering← NewClustering

⋃
{Cl}

else
NewClustering← NewClustering

⋃
Cl2

end if
end for
Clustering← NewClustering

if Measure(Clustering) > BestScore then
BestScore←Measure(Clustering)

BestClustering← Clustering

end if
end while
return BestClustering

The X-Means algorithm works as follows: we first cluster the entire data using
2-Means thus obtaining two clusters. Now the following process is repeated until

18

2.4 statistical measures to evaluate clustering

the number of clusters has exceeded the maximum number given as input to the
algorithm: Description of the

X-Means algorithm
1. Run 2-Means on each cluster of the current clustering. The two starting centroids

for this run are chosen by starting from the centroid of the original cluster and
moving along a random vector by a distance proportional to the size of the
region covered by the cluster.

2. If any of the clusters of the current clustering is a worse representation of the
data (according to an appropriate metric) than the two clusters obtained by
dividing it in two, replace the cluster with its two “sons”.

3. If no clusters is worse than its sons then choose a constant fraction of the clusters
to be replaced by their sons using the usual metric.

When the number of clusters in the current clustering has exceeded the maximum
number given in input, we return the best clustering that we have found at the end of
any iteration. We show precisely which metrics can be use in the next section.

In Figure 4 we can see an example iteration of X-Means. We can see that in the
bottom clusters the splitting decreased the BIC score, since the measure penalized
the additional number of clusters. Only in the top cluster the splitting results in an
improvement over the single cluster.

The authors explain the reasoning behind this algorithm: instead of increasing the
number of clusters by one at each iteration X-Means concentrates on the areas of space
that are not well represented by the current clustering without having to account for
interferences from the other clusters.

The advantages of this algorithm are many:

• It is known that 2-Means is less likely to incur into a local minima with respect
to K-Means ran with a bigger number of clusters.

• While the algorithm goes on there is an increase of the number of clusters and
the number of instances of 2-Means that we need to execute, but each 2-Means
has to work on a smaller number of data points. Advantages of the

X-Means algorithm
• The fact that the computations are mostly local creates many opportunities to

cache values computed in previous iterations of the X-Means algorithm to speed
up the running time.

• The resulting clustering can also be seen as a tree of clusters, thus creating an
hierarchical structure on top of the clusters.

2.4 statistical measures to evaluate clustering

As we have seen in the previous section, X-Means needs some kind of statistical
criterion to decide which between two different clustering better represents the
underlying distribution of the data. We also need a criterion to compare the quality
of the clustering obtained by our decentralized framework against a centralized
clustering algorithm. This does not need to be the same criterion since the two

19

related work

Figure 4: Example iteration of X-Means (from the original paper by Pelleg and
Moore [20])

(a) We have 3 clusters (b) For each clusters we choose the two starting
points for 2-Means

(c) The results of 2-Means (with the BIC measure) (d) The surviving clusters after this iteration

20

2.4 statistical measures to evaluate clustering

settings are very different. While the X-Means algorithm itself does not have access to
labelled data (it cannot already know which points should be in the same cluster or
otherwise the whole algorithm would be pointless) when we compare the centralized
and decentralized algorithm we do have precise information on where do the single
points come from. Since we have generated the data on which we run our algorithm
we are able to label it and use a different measure to compare the clustering with the
optimal theoretical clustering.

2.4.1 Unlabelled data

In the general case we cannot assume the presence of labelled data so we need to
directly use the resulting clustering to get a measure of how good it is. The most
basic way to measure how close are the points inside a cluster is to simply look at
the statistic that the K-Means algorithm is trying to optimize. Given a set of points
S given as a list of k clusters C1 . . . Ck, each with average µi we can compute the
following value: A simple metric:

inner-cluster sum of
squares

sum of squares =
1

|S|

∑
i∈[1..k]

∑
x∈Ci

||x− µi||
2

This is a very good metric to evaluate how close is each point to the centroids of
its own cluster but it has one big shortcoming: we cannot compare clusterings with
a different number of clusters. If we think about the idea behind this measure it is
easy to see that the greater the number of clusters the better the clustering will be.
Given any data, the optimal clustering will be the one in which each item is in its own
singleton cluster since the measure will be equal to zero. If we do not know the exact
number of clusters and we want to see which between two clustering of different
size is the best then we need to add something that penalizes the bigger number of
clusters.

If we look more closely to this problem, we can realize that the main issue with
the naive approach of using directly the sum of squares metric is that we are actually
overfitting the model to the data. What we want is to avoid using models that are
too complex when simple models are able to capture the data to a similar degree. As
Occam wrote during the middle ages:

Numquam ponenda est pluralitas sine necessitate (Plurality must never be
posited without necessity)

What we want to do is penalize complex model to advantage of simpler models.
One way to use the variance or similar mea-

sures to choose the number of clusters is
using the Elbow criterion. On the right we
can see a figure that shows how the quality The elbow criterion

of clustering (measured using the variance)
grows with the number of clusters. At one
point, marked by the circle, the rate of growth
of the quality starts to decrease and creates

21

related work

an “elbow” in the figure. This approach does
not help us in comparing two different clus-
ters but it has other applications. For exam-
ple running K-Means with different Ks and
then choosing the clustering using the elbow
criterion is sometimes a simple but viable
approach.

If we want to compare two clusterings of different dimension then one valid metric,
used also by X-Means, is the Bayesian Information Criterion [21]. This measure uses the
log-likelihood of the dataset according to the model and its number of parameters
(in our case the number of centroids multiplied by the number of dimensions) to
compute the following metric (from the original Schwarz paper [21]):The Bayesian

Information Criterion

BIC(j) = logMj(S) −
1

2
kj logn

In this formula j is a model, Mj(S) is the maximal likelihood of dataset S using
model j, kj is the number of parameters of the model and n = |S|. This is closely
related to the Akaike Information Criterion [1] in which the negative component of the
formula (the one that penalizes the complexity of the model) is simply kj, without
taking into account the number of points in the dataset. This does tell us that the BIC
metric penalizes more the complexity of models then the AIC metric.

In the X-Means paper the authors apply the Bayesian Information Criterion to the
clustering setting using the identical spherical gaussian assumption. To compute
the log-likelihood of the data they simply sum the log-likelihood of the data of each
cluster before subtracting the penalty for the complexity of the model.BIC under the identical

spherical gaussian
assumption

Being Mj model (clustering) j, S the entire dataset, Ci the set of points in cluster i,
K the number of clusters, D the number of dimensions we can compute the BIC score
of a clustering as follows:

l̂(Cn) = −
|Cn|

2
log 2π−

|Cn| ·D
2

log σ̂2 −
|Cn|−K

2
+ |Cn| · log |Cn|− |Cn| · log |S|

l̂(S) =
∑

i∈[1..K[

l̂(Ci)

pj = (K+ 1) ·D

BIC(Mj) = l̂j(S) −
pj

2
· log |S|

This formula is computed and used at each step of the X-Means algorithm to make
all local decisions on how many clusters we need to use and, globally, to decide which
clustering we return.

2.4.2 Labelled data

If we have generated the data or if the data has already been labelled by another
entity or algorithm then we have additional informations that we might use to get a

22

2.4 statistical measures to evaluate clustering

measurement of how good the clustering is, not againts other clustering but against
the underlying distribution. The metric that we use in the rest of this thesis and that
is computed on the resulting clustering of the algorithms is the F-Score (known also
as F-measure). This is a global measure that has maximum value equal to 1 (perfect
clustering) and is computed starting from two different metrics.

We want to see how good cluster Ci is when representing a given distribution. Call
Dj the set of points generated by that distribution. Clearly, the optimal case happens
when the two sets are exactly equal. In the worst case scenario the two sets have no
point in common and they are completely unrelated to each other. What we want is to
get a value between 0 (no points in common) and 1 (exactly the same) that measures
how related are two sets of points. Traditionally we have two values: precision and
recall.

The precision measure captures how many of the points in Ci come from the correct
distribution over the number of points in Ci. If all points in Ci are also in Dj then we
have perfect precision, while if no point in Ci is in Dj then the precision is equal to
0. The recall measure instead captures how many of the points that are in Dj (and
that should be included in Ci) are actually included in Ci. If all points that have been
generated by the distribution are included in Ci then we have perfect recall, while, as
usual, if no points are in both sets we obtain recall zero. The formulas are very simple: Precision and recall

Precision(Dj,Ci) =
|Ci

⋃
Dj|

|Ci|

Recall(Dj,Ci) =
|Ci

⋃
Dj|

|Dj|

Note that each of the two metric taken by itself is not always a good indication of how
related are two sets. For example, if Ci contains not only all points in Dj but also all
the points of the dataset the recall is still equal to 1 (with very low precision), while if
Ci is a singleton set containing a single point from Dj the precision is 1 (with recall
very small). If we want a single metric that measures the relations between these two
sets we need some kind of average of precision and recall.

The most common way to aggregate precision and recall in a single value is the
F-Score. This value is equal to the harmonic mean of the two values, giving them
exactly the same weight. The generalized version of this measure is known as Fβ,
with β being equal to 1 if we want to give the same weight to precision and recall. If
β = 2 then we give recall twice the importance of precision and if β = 0.5 we give
precision twice the importance than recall. The two formulas are listed below. F-Score

Fβ = (1+β2) · precision · recall
β2 · precision + recall

F =
precision · recall
precision + recall

In the rest of the thesis we use the simple F-Score, giving the same weight to both
precision and recall.

To compute the F-Score of a clustering C with respect to the correct clustering D
(created by simply grouping all points that come from the same distribution) we

23

related work

follow this approach: for each cluster in D we compute the F-Score with all cluster
in C and take the maximum. During the last step we simply average all this values
(with weights proportional to the size of the clusters).F-Score for clustering

F(Di,C) = maxc∈CF(Di, c)

F(D,C) =
∑
d∈D

F(d,C) · |d|∑
d∈D |d|

This measure works correctly also when the number of clusters of the two clustering
is different. If C has too many clusters then the recall is lower while if C has too few
clusters then the precision is lower. By combining the two in a single value we are
able to capture both cases.

2.5 decentralized clustering

In this section we briefly describe various different decentralized clustering algorithms.
All these algorithms make different assumptions on the distribution of the data in
the decentralized setting and may have different aims than the one presented in this
thesis.

2.5.1 SODAS: Dynamic decentralized any-time hierarchical clustering

Van Dyke Parunak et al. [22] present a decentralized algorithm for hierarchical
clustering called SODAS (Self-Organizing Data and Search) paradigm. This algorithm
uses ideas borrowed from the biological behaviour of ants. These creatures are able to
effectively cluster the items they keep into their nest (being those items food, eggs,
larvae, etc...) so that each item is close to items of the same type. This clustering is
mantained even when new items arrive (new food is collected), items disappear (food
is eaten) or items change properties (an egg hatches and a larva is born). If we have aSODAS: using ants for

clustering group of ants moving randomly in the nest we can obtain this type of results using
few simple rules. Each ant does the following:

• continues to move randomly

• keeps track of the type of the last few items it has met

• if it is not carrying anything, it picks up the object with probability that decreases
if it has recently seen objects of the same type

• if it is carrying an object it drops it with probability that increases if it has
recently seen objects of the same type

The paper uses these ideas to create an algorithm that is able to create an hierarchical
clustering by making small, local decisions.

The algorithm first creates a tree, with each leaf corrisponding to one item that we
want to cluster. Then, by using different metrics to see how close are the items in a
subtree, we can apply one of these two operations: promotion and merge (see Figure 5).

24

2.5 decentralized clustering

(a) Promote operation: a subtree is moved up in
the tree

(b) Merge operation: two subtrees are joined

Figure 5: The two operations of the SODAS algorithm

When we a node decides to apply the promotion operation on one of its sons the node
removes the son from the list of its childrens and makes it the son of its father. A The algorithm itself

node decides to promote a son only if this operation increases the homogeneity of its
children (and thus this son was very different from its siblings). The merge operation
is applied when a node finds that two of its childrens are very similar. The two sons
are then merged into one node having as childrens the childrens of both nodes.

The combination of these two operations is able to support the characteristics needed
by this algorithm: when new data arrives, it is positioned in a random position in
the tree. The promote operation is invoked repeatedly and the subtree containing the
new data moves up in the tree. When it reaches another subtree containing similar
data the merge operation is invoked as needed and the subtree finds its place in
the tree. This setting is easy to adapt in a distributed setting since each computing
node can work with a single subtree, make all the decision locally and exchange data
with the neighbours when needed. When the algorithm reaches an equilibrium each
computing node contains a subset of the items.

2.5.2 Group formation among decentralized autonomous agents

This work [19] uses a different approach than the algorithm we have just seen. Each
node in the network is given a single item and a small number of neighbours in the
network. The main idea is to rearrange these links so that nodes that contain similar Each item is a node

items are also close in a network sense. At the end of the process each connected
component in the network will represent a cluster in the data.

Each node is given an item (for example a point in Rn) and a set of objectives. These
objectives are points, not necessary from the same feature space of the item, that are
chosen from a function of the item itself. The node tries to create edges with nodes The objectives of a node

that have similar objectives, thus creating clusters of similar nodes. For example, if
the items are points in R2 then the objectives might be close points that surround the
item.

The reason for the use of these objectives instead of directly comparing the data is
twofold: the objectives may have much smaller dimensionality than the items and, as

25

related work

we will see, we can enable the mixing of the objectives between nodes of the same
clusters. This last property will greatly speed up the algorithm in later stages.

The algorithm runs iteratively, each node keeps a list of unmatched edges (objectives
that are not met), matched edges (objectives that are matched) and connected links
(edges that will create the proper clusters). At the initial stage there are no connected
links and so each node is a single cluster. Each turn is composed by the followingOverview of the

algorithm four steps.

• Connecting: each cluster chooses some of its outgoing links to be connected
according to a probabilistic rule.

• Mixing: each cluster takes all unmatched links and uses a random permutation
on the unmet objectives of its nodes.

• Matching: each node tests its objectives and, when met, creates a new matched
edge

• Breaking: each cluster chooses a number of its own matched edges and break
them

By applying these four rules and using an appropriate decision algorithm to decide
when to create and remove edges, the algorithm is able to create clusters of nodes
with similar items.

2.5.3 K-Means in MapReduce

MapReduce [9] is a framework created by Google to give an easy to understand
abstraction for the creation of distributed algorithms. The programmer has only to
define two functions, Map and Reduce, and then the data and the workload is spread
between the nodes of the systems. The MapReduce framework has been implementedThe MapReduce

framework in the open source Apache Hadoop project [8] and now it is possible to write programs
in the MapReduce framework also outside of the Google headquarters.

As the name says MapReduce is defined by two functions. The Map function takes
a pair (key, value) and returns a set of pairs (intkey, val). The Reduce function
receives a key and a set of values and returns a set of values. Given a set of data, seen
as pairs (key, value), the framework can execute the Map function on each of theseThe Map function and

the Reduce function pair independently. The results of the calls to the Map function are then grouped
according to the key, creating pairs (key, listofvalues) that are given to the Reduce
function.

The most common example to show how does the MapReduce framework works is
the wordcount problem: given a set of documents we need to count the frequency
of each word in the documents. The Map function receives a pair (key, value) with
key being the name of the document and value the contents of the document. For
each word in the document the Map function emits a pair (word, 1). The reducer
receives the list of values corresponding to each word and simply has to sum all valuesCounting the

frequencies of each
word in a set of

documents

to get the frequency for a specific word. Note that in this example is not only the
Map function that can be parallelized, but also the Reduce function can be executed
separately in each node and then combined with another Reduce call.

26

2.5 decentralized clustering

The classical K-Means algorithm has been implemented in Mahout, a machine
learning library built on top of Hadoop. The idea is quite simple: the act of finding
the closest centroid for each point is done independently for each point. Finding
the average of the point assigned to a certain cluster is an operation that can be
easily implemented by a Reducer. This algorithm works as follows: the Map function K-Means in

MapReducereceives a pair (listcentroids,point) and outputs a new pair (centroid,point) with
centroid being equal to the current centroid that is closest to the point. The Reduce
function thus receives the list of points that have been mapped to a certain centroid
and computes the average to get the new position of the centroids. This process is
repeated as many times as needed accordingly to the K-Means algorithm.

2.5.4 Comparison between these algorithms and our approach

Our clustering algorithm uses different assumptions than the algorithms we presented
in this section. What we want is an algorithm with the following characteristics:

1. Works in a fully decentralized mode.

2. Can work in an online setting.

3. Does not exchange or communicate the input data between different nodes.

4. Does not need the number of clusters as input.

As we have seen the SODAS algorithm moves subtrees of data between nodes of the
different network and does not satisfy the third of the requirements we just listed. The
Group formation algorithm instead sees each input point as a node in the network
and sends only the objectives in the network. While this algorithm also does not need
the number of clusters to work the fact that each point is a single node makes its
implementation difficult when the number of points is much bigger than the number
of nodes.

The implementation of the K-Means algorithm in the Map-Reduce framework is
quite similar to the distributed K-Means algorithm that we will use as a subroutine
in our decentralized clustering algorithm. The main differences are that the Reduce
function (finding out the new position of each centroid by computing the average of
all points mapped to it) is not executed on the entire network but each node computes
the new centroids using only the data in its neighbourhood. Using this approach we
obtain an algorithm that is more decentralized and does not need any hierarchy on
the nodes of the network.

27

3
C H A P T E R 3 : A D E C E N T R A L I Z E D C L U S T E R I N G A L G O R I T H M

In this chapter we describe our decentralized clustering algorithm. We define how
the data arrives into the network and which assumptions can we make on the level of
cooperation of the nodes. We show a distributed version of K-Means, how do we use
it as a step for our algorithm and how this algorithm can be easily adapted to work in
an online setting.

3.1 introduction

Our aim was to create a decentralized clustering algorithm that did not need the
number of clusters as a parameter and in which nodes do not have to exchange
possibly private data to each other. Our initial approach was to take the X-Means
algorithm and try to develop a decentralized algorithm based on the same idea of
repeatedly splitting the clusters. This algorithm was very challenging to obtain, since First approach: a

decentralized X-Meansthe X-Means algorithm needs an huge amount of syncronization and exchange of data:
if the data is distributed in the network then, as the clusters get smaller, we will need
more communication to find which nodes contain data from the different clusters.
We would also need a decentralized algorithm to compute the Bayesian Information
Criterion and execute it at each step of the algorithm.

To avoid having to adapt X-Means in a decentralized setting we decided to use a
different approach. We divide the data in N chunks as it arrives to each node and we
run a different instance of a distributed K-Means algorithm (chosen from the literature)
on each of these chunks. Each of these instances will return K centroids, with each
node obtaining roughly the same results. Each node will put all the N ·K centroids in
a single list and will use it as a compact representation of the data. Each node will The main idea of our

algorithmrun X-Means locally on the N ·K centroids and, after some rounds of communication
to agree on the number of clusters, will be finally able to generate the final clustering.

The assumptions we make on the setting are the following:

• Each node in the network receives a stream of points

• The amount of points each node receives might be different Assumptions on the
data and the network

• The data is homogenous, meaning that each node receives data from the same
set of distributions

• The nodes do not want to share the points they received but only aggregate
values

• We do not know the number of clusters that better represent the data

We will first describe the decentralized K-Means algorithm we chose to use. Once
the behaviour of this algorithm will be clear it will also be easier to understand how
does it fits inside our decentralized clustering algorithm.

29

a decentralized clustering algorithm

3.2 distributed k-means

As a building block for our algorithm we used the distributed K-Means algorithm
developed by Bandyopadhyay et al. [6]. This algorithm was created to be able to
cluster streams of data in peer-to-peer environments, is quite simple and easy to
implement and shows many interesting properties.Distributed K-Means

algorithm idea
The idea is quite simple: each iteration of the K-Means Algorithm is executed at

the same time by all nodes in the network. Each node starts with the same centroid,
updates them using its own data and computes an average between its own centroids
and the centroids computed by some of its neighbours. This process is repeated until
we reach a steady state.

If we look more closely to the algorithm we can see that what it does is a simple
relaxation of the averaging step of K-Means. All nodes start from the same centroid
and are able to map each of its point to the closest of them. In the centralized version
of K-Means we would take all the points that have been mapped to a single centroid
and compute their mean to get the new position of that centroid. Trying to follow
exactly this approach in the distributed version of K-Means would require each node
to send to all other nodes its list of new centroids. This approach would be similar
to the MapReduce algorithm we have seen in the previous chapter. The distributed
K-Means algorithm instead uses an approximation by asking the centroids only toComparison with the

centralized K-Means
algorithm

a certain number of neighbours. This choice makes the algorithm more robust and,
since we do not actually need to wait for all other nodes to finish their computation
step, it also allows more flexibility in term of syncronization between each iteration
of K-Means. In our case we assume that there actually is syncronization between the
nodes in the network but we still want to see what happens when some of the nodes
go down and stop answering queries. This algorithm is able to adapt and survive
even with high failure rate, as it is showed in the next chapter.

Going more deeply in our implementation of this algorithm we need to explain
some details. The first question is how do we get the starting centroids. In the
traditional centralized K-Means the starting centroids are tipically chosen between
the points we are trying to cluster while in a decentralized setting it is not possible
to choose points that are present in the data of all nodes. We still do not want to
choose completely random points since they may end in parts of the Rn space that
are completely empty, thus decreasing both the efficiency and the accuracy of the
clustering algorithm. In our implementation we assume that the nodes have already
decided which are the starting centroids by some mechanism and we give to all ofChoosing the starting

centroids them the same set of starting centroids. This set is generated using the same routine
executed to generate all of the data points. If we wanted to implement this mechanism
in a fully distributed way we could have used the following strategy: each node
chooses K points from its data, computes a random value between 0 and 1 and sends
the centroids paired with the value to all neighbours. Each node keeps the centroids
with associated the biggest value and sends them to its neighbours. In a logarithmic
number of communication steps we should reach the situation in which all nodes
have the same set of centroids chosen from the data set of a random node. This has
not been implemented in our simulations to avoid complicating the system.

30

3.2 distributed k-means

Another important part of this algorithm that we need to define is the distributed
termination condition. In the centralized K-Means the algorithm terminates when
there are no more updates to the centroids and we have reached a steady state. This
approach is not viable in a decentralized setting so we need a condition based on
the local view of each node without taking into account the entire network. Each
node keeps track of the last set of centroids it has generated and, at each iteration,
checks if they have been changed by measuring the distance between the centroids
and checking if the average change is more than a given threshold. If (w1, . . . ,wK) termination condition

are the old centroids and (w ′
1, . . . ,w ′

K) are the new ones, the formula used is the
following:

Change =
1

K
·

∑
i∈[1..K]

||w ′
i −wi||

Using this procedure, a node can check if its own centroids have changed in the last
iteration. As a termination condition, a node termines the execution and outputs its
centroids when both the local centroids and the ones of the contacted neighbors have
not changed in the last COUNT iterations, with COUNT being a parameter of to the
algorithm. When a node has terminated the algorithm continues to answer queries
from other nodes but it does not update its centroids anymore.

Another note we need to make regards how do nodes average their centroids with
their neighbours’ centroids. This is not a difficult task but it must be made with
caution. Since different nodes in the network may receive more data than others we
want to give more importance to the centroids of nodes with a big amount of data.
The idea is quite simple: the nodes not only send their centroids but also the number
of points associated to them. Each node, once it has received the centroids, simply
computes a weighted average. If a node has received centroids (wj1, . . . ,wjK) from Averaging the centroids

neighbour j, each of them with the number of points assigned (nj1, . . . ,njK), it adds its
own centroids to the list and then computes the new position as following:

w ′
i =

1∑
j n
j
i

n
j
i ·w

j
i

This approach ensures good behaviour when nodes receive a different number of
data points: the nodes that receive a lot of points will be more important in the
computation and they will naturally help the nodes with less points.

Another interesting property we want to emphasize is the fact that each node only
communicates with the other using aggregate data. In the communication rounds
the nodes only send their centroids to some of their neighbours. The actual points
are not shared in the network and each node can avoid sharing information with the Privacy of the data

other nodes. This is highly desirable when the data is distributed between nodes
representing different companies and they want to collaborate to get a good clustering
without having to directly share their points with the competition.

The algorithm receives a number of parameters to precisely define its behaviour. The parameters of the
distributed K-Means
algorithm• K: the number of clusters we are trying to find. As in the centralized version of

K-Means this algorithm needs the number of clusters and reacts poorly when
the value given to it is different from the number of clusters in the underlying
distribution

31

a decentralized clustering algorithm

• QU: the number of queries the algorithm performs in each iteration. Each node
asks their centroids to QU of its neighbours, choosing them at random during
each iteration. In our simulations we assume that each node has a fixed number
of links chosen at random at startup.

• DELTA: used for the termination condition. Since each iteration the node
communicates to a possibly different set of neighbours we need to allow for
very small movements of the centroids. While the centroids have changed less
then DELTA we consider them as they did not change at all.

• COUNT : for how many consecutive iterations must a node not see any changes
in his centroids and in the centroids of its neighbours before considering the
algorithm terminated. The addition of this parameter causes the nodes to wait
more and makes sure that they check that different neighbours have reached a
steady state.

Algorithm 3 Simple pseudocode for the distributed K-Means algorithm
Each node:
Get/choose starting centroids w1 · · ·wK
c← 0

repeat
Map each point to the closest centroid
Compute position of new centroids w ′

1 · · ·w ′
K

Check if new centroids are different than centroids computed during the last
iteration at this step
Ask QU random neighbours for their centroids
Answer any request with w ′

1 · · ·w ′
K

Compute new w1 · · ·wK using weighted average between own centroids and
centroids received
if not changed and neighbours not changed then
c← c+ 1

else
c← 0

end if
until c > COUNT

3.3 our decentralized clustering algorithm

The distributed K-Means algorithm we have just described has the same problem as
the standard K-Means algorithm in that it strongly depends on the parameter K. If
we do not know in advance which is the correct value of K and we guess incorrectlyLimitations of the

distributed K-Means
algorithm

then the algorithm fails to produce a good clustering. Our choice was to still use
the decentralized K-Means algorithm, but only as a subroutine for our clustering
algorithm. Figure 6 gives an overview of the entire algorithm.

Our clustering algorithm can be summarised in the following steps:Description of our
algorithm

32

3.3 our decentralized clustering algorithm

• Each node receives a stream of data points and divides them into chunks using
the same criterion as the other nodes. For example, a node can group the points
arrived in each hour as a single chunk. It is not important that each chunk be of
the same size but each node must have the same number of them and must be
able to start at the same time the computation on each chunk.

• The network executes the distributed K-Means algorithm on each chunk, using
a K chosen arbitrarily. We show that even choosing K different from the right
number of cluster does not decrease the precision of the whole algorithm in the
same way it affects the distributed K-Means algorithm.

• When the computation has finished each node has computed a list of centroids,
K for each chunk. This list should be similar (even if not exactly the same) in
each node.

• Each node executes the X-Means algorithm on its list of centroids using the list
as a compact representation of the data given to the entire network.

• To avoid computing clusterings with different number of clusters, we run a
pairwise averaging algorithm on the values computed at each node. This
algorithm is run until we obtain the same number in all nodes.

• Finally, each node runs K-Means on the list of centroids, using K equal to
the number of clusters resulting from the previous step and reusing some
computation done by the X-Means algorithm.

We now go into more detail in the implementation and specification of each step of
the algorithm.

3.3.1 Choosing chunks

The idea of dividing data in chunks and working separately on each of them comes
from a paper (“Clustering data streams” [12]) on how to execute clustering on a stream Ideas from streaming

algorithmsof data. Our algorithm is not a streaming algorithm but the usage of techniques from
data stream analysis helps us add some online capabilites to the algorithm.

In our simulations, the nodes receive the data already in chunks and do not have to
divide it. In a real application we would need a way to make sure that each node has
the same number of chunks and that is able to start at the same time. The easiest way How do we divide the

data in chunksto obtain this result would be dividing the data according to the timestamp (creating
a chunk for each interval of time). Even if the nodes receive data at different rates and
therefore create chunks of different size the distributed K-Means algorithm makes
sure that each node has similar results.

3.3.2 Distributed K-Means

The nodes in the network need to execute the distributed K-Means algorithm on each
chunk of data. The implementation of this algorithm is the one we explained before
with the simple addition of an id to each message. This id is used to make sure that

33

a decentralized clustering algorithm

Data chunk 1 Data chunk 2 Data chunk 3

Local X-means

Aggregation

 Local

K-Means

Distributed

K-Means

Distributed

K-Means

Distributed

K-Means

Centroid List

Figure 6: An overview of our clustering algorithm. This procedure is executed on
each node in the network

34

3.3 our decentralized clustering algorithm

the node knows which instance of the distributed K-Means algorithm has to receive
the message.

We start an instance of the distributed K-Means algorithm any time a chunk of
data items has arrived. Each instance is completely independent and it chooses its
own starting centroids using the same procedure we explained in section 3.2. The
termination condition is kept the same and once all instances have finished (we explain
in section 3.4 what can we do in the cases in which the streams of data are unbounded) The distributed

K-Means instanceswe have obtained a set of centroids, K for each chunk. Since the distributed K-Means
algorithm converges to roughly the same set of centroids in all nodes we can say that
the list of centroids resulting from this step is similar in all nodes, regardless of the
amount of data points each node received. We use this list to represent all the data in
the network.

3.3.3 X-Means

In this step each node in the network executes their own instance of X-Means on the
list of centroids. It may seem like a waste of computation making each node execute
X-Means, since the list of centroids of each node should be similar, but it is not exactly
the case. The X-Means algorithm still depends from the results of all the different runs
of 2-Means and this algorithm, being a special case of K-Means, depends from the Each node executes

X-Meansstarting centroids, chosen completely at random. Different runs of X-Means result in
different clustering and, in unlucky cases, in a number of clusters far from the correct
answer. By running X-Means separately on each node in the network we use the
power of the system to make sure that unlucky instances of the X-Means algorithm
are ignored.

One problem we found with this approach is that the X-Means algorithm was
created to work on points, while we now give them as input a set of centroids. Each
centroid is seen as a weighted point, with the weight being equal to the number of
points that have been mapped to it in the distributed K-Means algorithm. We had
a problem with our initial implementation of the Bayesian Information Criterion: a
cluster containing a single centroid from the list is seen as a cluster with big size (all Using the variance of

each centroidthe points mapped to the centroid in the distributed K-Means algorithm) and variance
equal to zero. Using each cluster as a single point (getting rid of the weights) did
not give the X-Means algorithm enough data to correctly determine the number of
clusters. Our solution was to make each node compute the variance of each centroid
in the list using their own data and using this value as a “lower bound” on the cost of
making a cluster containing that centroid.

3.3.4 Pairwise averaging

We could directly use the clustering obtained by X-Means as the final results of our
algorithm but we decided to add two additional steps. The result of the X-Means
algorithm and the number of clusters obtained can vary significantly in different
instances and we would like each node to create a clustering as similar as possible

35

a decentralized clustering algorithm

and with the same number of clusters. To obtain this we used the simple pairwise
averaging algorithm from the aggregation paradigm [14].

Each node chooses a neighbour and sends to it the number of clusters it has found.
The neighbour answer the request with its own number of clusters and then both
nodes compute the average between the two values. In the next iteration they willPairwise averaging

aggregation protocol both use the average as their estimation of the number of clusters. If node i and j
execute a round of this algorithm, with ni being the current estimate of the number
of clusters of node i the new estimate is computed as follows:

n ′
i = n

′
j =

ni +nj
2

This protocol is guaranteed to converge quite quickly since after each communica-
tion round the variance decreases of a constant factor. To allow each node to take part
in this protocol the nodes do not terminate until all nodes have joined this protocol,
using a simple bit-vector exchanged between the active nodes. The nodes terminateTermination condition

this protocol and stop updating their value when the bit-vector is full, meaning that
all nodes have been able to contribute, and their own value did not change more than
a given amount in the last step.

3.3.5 Local K-Means

When the pairwise averaging step is over, all nodes have the same estimate of the
number of clusters in the underlying data. Now each node can run the centralized
K-Means algorithm on the list of centroids using the value K that we have computed
in the previous steps. Here we can consider each centroid in the data as a weighted
point without having to worry about the inner variance.

In our first implementation of this step all instances of K-Means were started using
random points in the data set, but it seemed than on average we would get clustering
with worse precision than the one computed by the local X-Means step. This behaviourReusing the centroids

of X-Means as the
starting centroids

was caused by the usual issue of K-Means: the convergence to a local minima. To solve
this problem we just decided to reuse the centroids found by the local X-Means as the
starting centroids for the local K-Means. Since both algorithms are run on exactly the
same data, starting from the results of X-Means helps the K-Means algorithm to reach
the same precision of X-Means while having exactly the desired number of clusters.

A more efficient implementation of this algorithm could share additional informa-
tion between the two algorithms. If we wanted to compute some of the data structures
commonly used to speed up clustering algorithms (like the kd-trees), we could reuse
them in both algorithm, thus avoiding unnecessary computations.

3.3.6 Remarks

A few remarks on the algorithm as a whole:

• The nodes in the network communicate only during two steps: the distributed
K-Means step and the pairwise averaging step. In the first one they send only
their centroids and only aggregate data is sent on the network. In the secondData exchanged during

the algorithm

36

3.4 online version

step the only value that is shared is the number of centroids. The actual points
given to the nodes are not shared across the network.

• At the end of the algorithm the nodes in the network still obtain different
clusterings since we use the centroids computed by each local X-Means instance
as the starting centroids for the local K-Means. If we wanted to obtain a much Getting the same

clustering in each nodemore similar clustering we might want to make all nodes start from the same
centroids. We could choose these centroids from the results of the local X-Means
of a random node by using a procedure similar to the one described for choosing
the starting centroid of the distributed K-Means.

3.4 online version

While the simulations shown in the next chapter are set in a static setting the algorithm
itself was created to be easily adapted in an online setting. It works using the following
assumptions:

• Each node receives data from an unbounded, possibly neverending data stream.
Assumptions in the
online setting

• The data can be divided into chunks as usual.

• We are interested in clusters resulting from the last N chunks of data.

This model is often called the “sliding window” model, meaning that while new
data arrives old data becomes useless and must be ignored in the execution of the
algorithm.

To show how our algorithm can work in this setting we explain what happens when
a new chunk of data arrives in a network. All nodes have already reached the last
step of the decentralized clustering algorithm on the previous N chunks of data and
have obtained a clustering of K0 clusters Steps of the online

version of our
algorithm• All nodes in the network start an instance of the distributed K-Means algorithm

on the new chunk, using K = K0.

• When the distributed K-Means algorithm has terminated the nodes update
their list of centroids by throwing away the ones resulting from the oldest, now
outdated chunk and adding the new centroids computed from the new chunk.

• We run the local X-Means algorithm giving it an upper bound on the number
of clusters based on K0. Since most of the data is the same the underlying data
cannot have changed by much.

• The pairwise aggregation step and the local K-Means step is repeated as usual
thus obtaining a new clustering and a new estimate of the number of clusters.

Note that the fact that the data is separated in chunks helps us in avoiding repeating
unnecessary computations in the distributed K-Means step. Reusing the old number
of clusters as K helps in making even less important the initial value of K. The The algorithm becomes

self-adjusting

37

a decentralized clustering algorithm

algorithm will self-adjust automatically and if there will be changes in the sources of
the data the estimate will change accordingly.

Another interesting point is that we do not need to wait for the last chunk to be
processed to start working on it. The distributed K-Means algorithm can be started the
moment the data is ready, using the last estimate of the number of clusters computed
as its own K.

38

4
C H A P T E R 4 : E X P E R I M E N TA L R E S U LT S

We decided to implement the whole algorithm using PeerSim [15], a P2P Simulator
written in Java. The whole system is comprised by three algorithms: a Generator
Algorithm that generates the data and sends it to the clustering algorithm; the
clustering Algorithm itself with its own implementation of the distributed K-Means
algorithm; an Evaluator algorithm that, given the correct assignment computed
by the generator algorithm, analizes the precision of the clustering computed the
decentralized clustering algorithm using the F-Score measure.

After explaining the implementation of both the generator and the evaluator algo-
rithm, we show some results on the precision and running time of both the distributed
K-Means algorithm and our decentralized clustering algorithm.

4.1 generator

The data has been generated using a simple algorithm: the generator class receives as
parameters: Parameters of the

generator algorithm
• The number of dimensions: unless stated otherwise our experiment are executed

with two dimensional data.

• The size of the world: we give the algorithm the size of the space in which it has
to generate the points.

• The number of clusters it has to generate: as we have said this information is
only given to the generator algorithm and the evaluator algorithm that checks
the precision of the clustering algorithm.

• The desired variance of the clusters of data: in our simulation all clusters have
the same variance.

• The number of chunks of data: as we described in the previous chapter the
generator automatically creates the chunks of data. In our simulation the
chunks are then sent to the clustering sequentially, one every constant number
of iterations.

• The number of points per chunk: this value can be constant in all nodes or can
be chosen randomly in a defined interval

The generator first chooses the means for each of the K distribution it must generate.
This is done independently so there is a possibility that two clusters overlap, thus
possibly creating errors when we apply our clustering algorithm on the data. Since
we compare our decentralized algorithm against two centralized algorithms we do
not worry about this issue since also the centralized algorithms would suffer in the
same way.

39

experimental results

Figure 7: Data generated by the generator algorithm using three clusters

For each point, we first choose a distribution at random with the same probability.
As the second step we get values from a standard gaussian distribution, one for each
dimension, and we add them to the mean of the chosen distribution to obtain the new
point. Note that, while each point has the same probability of being generated from
all clusters, we do not ensure that a chunk will contain data from all distributions. If
the number of points in a chunk is small then it is likely that some distributions will
not be represented in it. Figure 7 shows some data generated by the algorithm, with
three clusters.

4.2 evaluator

The evaluator algorithm is run once all nodes in the network have finished working.
This algorithm gets the labelled data of the entire network from the generator and
extract the clustering obtained by the decentralized clustering algorithm in each node.
To have something to compare our algorithm against we then run the centralizedComparing precision of

our algorithm against
centralized algorithms

K-Means (with the correct number of clusters) and the centralized X-Means on the
data of the entire network. On each of these clustering we measure the F-Score
according to the formulas explained in section 2.4.2.

To measure how good is our decentralized clustering we measure the F-Score of the
clustering computed by each node in the network and we calculate an average score.
The clustering computed by each node is tested against the data of the entire network.
Note that if the algorithm returns a centroid that is very far from any of the real dataPrecision of the

decentralized
algorithms

points, then we do not introduce any errors since this centroid will never be used and
no points will be mapped incorrectly.

The Evaluator also tries to compare how much computational work is done in
the decentralized setting against the centralized setting. Since the time spent in

40

4.3 distributed k-means

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

A
v
e

ra
g

e
 F

-S
c
o

re

K

Figure 8: Distributed K-Means algorithm on a network of 100 nodes and data coming
from K distributions. The algorithm is extremely good with K small but it
still gets high F-Score when K grows.

the decentralized algorithm is dominated by communication time it is not possible
to simply compare the number of seconds used by the simulation to execute the Estimating the amount

of work done by the
algorithms

decentralized algorithm to get a good measure of the efficiency. What we do is to
count the number of times the distance function is called across the entire execution.
The distance function is used very often in both the distributed and centralized
algorithm and it is a good estimate for the amount of computation made by the
algorithm.

4.3 distributed k-means

We first studied the behaviour of the distributed K-Means algorithm. Here we simulate
a run of the algorithm when giving a single chunk of data to each node.

Figure 8 shows the F-Score of the K-Means algorithm when it is given the exact
number of clusters used by the generator algorithm to create the data. The distributed
K-Means algorithm is always precise but it is especially good when the clusters are F-Score of the

distributed K-Means
Algorithm

few. This is consistent with the observation that 2-Means (K-Means with K=2) is very
precise and can avoid more easily a local minima [20].

When the distributed K-Means algorithm is not given the correct number of clusters
the precision decreases. In figure 9 we show what happens when we give different F-Score of the

distributed K-Means
Algorithm with wrong
K

values of K to the algorithm while keeping the number of clusters constant (20). When
the algorithm is given the right value the precision is high, but the further is the
parameter from the correct value the worse are the results. The distributed K-Means
algorithm is expecially bad when it is given a lower number of clusters.

41

experimental results

Another interesting property we may study is how long does the algorithm takes as
a function of K. Figure 10 shows that the completion time needed by the algorithmCompletion time

(when given the correct value of K), increases with the complexity of the data.

When the distributed K-Means algorithm is given data with a fixed complexity (the
number of clusters do not change) then the behaviour is different. In figure 11 we show
what happens when, as in figure 9, the data comes from 20 different distributionsCompletion time with

wrong K and the distributed K-Means algorithm gets different K. The algorithm is slower to
complete when it is given a smaller K than when it is given a bigger K. It seems that
greater the number of clusters it tries to create the quicker it reaches a local optima
and completes the execution.

In figure 12 we show how does the percentage of nodes that have completed the
algorithm grows with respect to the time. This simulation has been done by giving thePercentage of nodes

that have completed right parameters to the distributed K-Means algorithm with data generated from 20

distributions. We can see that the nodes do not terminate together but a few of them
might have to wait much longer than the fastest nodes. This causes some problems in
our decentralized clustering algorithm because we need all nodes to have terminated
the algorithm before we are able to start the last few steps. As we explained in
section 3.3.4 we will use a bit-vector to make sure that all nodes are ready to continue
before starting the last few steps of our algorithm.

The last property we want to study is the scalability of this algorithm. What
happens when the number of nodes grow? In figure 13 we show that the F-Score of
the distributed K-Means algorithm, when given the right amount of clusters, remainsScalability of the

algorithm mostly the same.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

A
v
e

ra
g

e
 F

-S
c
o

re

K

Figure 9: Distributed K-Means algorithm on a network of 100 nodes and data coming
from exactly 20 distributions. The results are worse when given the wrong
number of clusters

42

4.3 distributed k-means

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50

C
o

m
p

le
ti
o

n
 t

im
e

K

Figure 10: Completion time of the distributed K-Means algorithm on a network of 100

nodes and data coming from K distributions.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

C
o

m
p

le
ti
o

n
 t

im
e

K

Figure 11: Completion time of the distributed K-Means algorithm on a network of 100

nodes and data coming from 20 distributions.

43

experimental results

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
e

rc
e

n
ta

g
e

 o
f

c
o

m
p

le
te

d
 n

o
d

e
s

Time

Figure 12: Percentage of nodes that have completed the distributed K-Means algo-
rithm, 100 nodes, K=20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

A
v
e

ra
g

e
 F

-S
c
o

re

Size of the network

Figure 13: Scalability of the system: F-Score of the distributed K-Means algorithm
when the size of the network grows

44

4.4 our decentralized clustering algorithm

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

Size of the network

Figure 14: Scalability of the system: completion time of the distributed K-Means
algorithm when the size of the network grows

Looking at the completion time of the algorithm we can see in figure 14 that when
the size of the network increases the completion time grows quite slowly. When
the number of nodes increases from 100 to 500 we only see a 25% increase in the
completion time of the algorithm.

Summarizing the characteristics of this distributed version of K-Means we can say
that, when given the correct number of clusters, it is able to find a clustering with
very high F-Score, while when it is given the wrong number of clusters the algorithm
suffers greatly. When we use it in our more complex clustering algorithm we will
need to add a barrier to make sure that all nodes have terminated. We also saw that
we should not worry too much about the size of the network since the algorithm has
shown good scalability in our simulations.

4.4 our decentralized clustering algorithm

When we run simulations to test our decentralized clustering algorithm we generate
the data using the same parameters as before and we deliver it in ten chunks. As
before we compute the average F-Score of the clustering obtained in the network and
we compare it against the clustering obtained by the centralized K-Means and the
centralized X-Means.

4.4.1 F-Score

In figure 15 we compare the F-Score of our decentralized algorithm and the two
centralized clustering algorithm. The algorithm is run in a network of 100 nodes with
chunks of different sizes on data coming from 20 different distributions. We can see

45

experimental results

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 20 40 60 80 100 120 140 160

A
v
e
ra

g
e
 F

S
c
o
re

Size of chunks

Algorithm (K=10)
Algorithm (K=20)
Algorithm (K=50)

Algorithm (K=100)
Centralized KMeans
Centralized XMeans

Figure 15: F-Score of our decentralized clustering algorithm given different Ks against
two centralized algorithms, network size equal to 100, data from 20 distri-
butions

that the centralized K-Means algorithm obtains a clustering of lower quality, evenF-Score of our
algorithm when it is given the correct number of clusters. This is caused by the usual problem

of the presence of local minima. The centralized X-Means gives a much better F-Score
because of its ability to avoid local minima. Our distributed clustering algorithm
obtains a very good F-Score even when it is not given the correct number of clusters.
We can see that while our clustering algorithm gets better results when it is given the
exact number of clusters, when we give it different Ks we still obtain clustering of
quality comparable to the one computed by X-Means.

Another interesting property of our algorithm is the amount of computation (mea-
sured by the number of calls to the distance function) that is needed to complete the
execution. In figure 16 we can see that the quantity calls needed depends from theAmount of computation

K given to the algorithm. The bigger the K, the greater the number of calls to the
function. The global amount of computation needed by our clustering algorithm is
always comparable to the centralized algorithm.

In figure 17 we can see that, even if the amount of computation is bigger, the
completion time (in which we only take into account the communication costs) seems
lower when the algorithm is given a bigger K. To measure the actual running time ofCompletion time

the algorithm we would need a way to compare the computation time (as measured
by the number of distance function calls) against the communication time.

While we have seen that the precision of our algorithm is high even when given
the incorrect number of clusters we may want to see which is the actual number of
clusters computed by our algorithm. In figure 18 we show the number of clusters
found by our decentralized clustering algorithm when given different values of K,
while the data comes from 20 different distributions. The results are quite interesting:

46

4.4 our decentralized clustering algorithm

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 20 40 60 80 100 120 140 160

C
a
lls

 t
o
 t
h
e
 d

is
ta

n
c
e
 f
u
n
c
ti
o
n

Size of chunks

Algorithm (K=10)
Algorithm (K=20)
Algorithm (K=50)

Algorithm (K=100)
Centralized KMeans
Centralized XMeans

Figure 16: Number of global calls to the distance function by the decentralized clus-
tering algorithm against two centralized algorithms, 100 nodes, 20 distribu-
tions

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 40 60 80 100 120 140 160

A
v
e
ra

g
e
 c

o
m

p
le

ti
o
n
 t
im

e

Size of chunks

Algorithm (K=10)
Algorithm (K=20)
Algorithm (K=50)

Algorithm (K=100)

Figure 17: Completion time of the decentralized clustering algorithm with different K,
100 nodes, 20 distributions

47

experimental results

 10

 15

 20

 25

 30

 35

 40

 45

 50

 20 40 60 80 100 120 140 160

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f
c
lu

s
te

rs

Size of chunks

Algorithm (K=10)
Algorithm (K=20)
Algorithm (K=50)

Algorithm (K=100)
Centralized XMeans

Figure 18: Average number of clusters of the decentralized clustering algorithm with
different K, 100 nodes, 20 distributions

the algorithm is closer to the correct answer when it is given K bigger than necessaryNumber of clusters
found while when it is given the correct K the number of clusters it creates is bigger than

necessary. This behaviour is easily explained: giving a bigger K to the distributed
K-Means algorithm results in a bigger number of centroids generated and thus a
better representation of the data. When K is small then it is more likely that in the
distributed K-Means algorithm more than one cluster is mapped to a single centroid,
thus creating a new point in the list of centroids that does not corrispond to any of
the 20 original clusters. The reason the algorithm is still very precise is that these
centroids, being quite far from the real distributions, will not be used when mapping
the data of the entire network to the clusters.

4.4.2 Scalability

As the next step we want to see the behaviour of our distributed clustering algorithm
when the network grows in size. In figure 19 we see the F-Score of the algorithm
when ran on data from 20 distributions with K equal to 40. We can see that the F-Score
remains constant even when the number of nodes in the network grows.Scalability of the

algorithm
In figure 20 we see, for the same experiment, the completion time of our clustering

algorithm against the number of nodes in the network. We see that the differences are
very small and that we need a similar amount of communication rounds to complete
the algorithm. This fact was expected since the nodes in the network only look and
communicate to their local neighbours and the data is distributed homogeneously in
the network.

48

4.4 our decentralized clustering algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

A
v
e

ra
g

e
 F

-S
c
o

re

Number of nodes

Figure 19: Scalability: F-Score of our decentralized clustering algorithm given K=40

and data from 20 distribution

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

C
o

m
p

le
ti
o

n
 t

im
e

Number of nodes

Figure 20: Scalability of the system: completion time of our decentralized clustering
algorithm given K=40 and data from 20 distribution

49

experimental results

4.4.3 Robustness

As the last step we did some analysis on the robustness of our algorithm. In our model
the nodes may go down for a period of time before getting repaired and rejoining the
distributed algorithm. Nodes that are down do not communicate with the rest of the
network and do not work on their data. They are still able to receive a new chunk
and store it until the node goes up. This model has been chosen to make sure that
each node has the data on which it has to work.Definition of the model

to test robustness of our
algorithm

Our model for robustness uses two parameters: the probability of failure (PF) and
the probability of recovery (PR). All nodes start the computation in the up state and
then, every iteration of the simulation, we use the following procedure:

• All nodes in the up state go down with probability PF.

• All nodes in the down state go up with probability PR.

This simple model is able to capture many different behaviour, as shown in figure 21.
When this process has reached a stable state it will keep active a fraction p of the
nodes in the network according to following formula:

p · PF = (1− p) · PR

We obtain a steady state when the average number of up nodes that fail is equal to
the average number of down nodes that recover. Solving for p gives the following:

p =
PR

PF+ PR

In figure 21 we can see that if we set PR = PF = 0.1 or PR = PF = 0.2 we reach the
same steady state. The difference is that the greater are the two parameters the quicker
the system is to reach it from the initial state.

In figure 22 we show the F-Score of our algorithm with different values of the two
parameters. This simulation has been done using a network of 100 nodes with data
from 20 different distribution and K = 40. Even with very high failure percentage and
low recovery rate the algorithm is able to reach roughly the same F-Score. Note thatOur algorithm is

precise even with high
failure rate

in the case in which the probability of recovery is 0.1 and the probability of failure is
0.9 on average 90% of the nodes in the network is down at all times. The algorithm is
still able to reach a good clustering even in these extreme conditions.

These positive results come with a steep price in the number of communication
rounds needed to complete. As we can see in figure 23, when the recovery probability
is low the time needed to complete the execution of the algorithm grows very quickly
with the failure probability. Still, with the recovery probability equal to 0.5, meaningThe completion time

might suffer from high
failure rate

that nodes do not stay down for long, the computation time does not grow too
much. We can conclude that for the algorithm to really suffer we need that nodes go
down with high frequency and for prolonged periods of time. In the other cases the
completion time is not too strongly affected by the leaving and joining of nodes.

50

4.4 our decentralized clustering algorithm

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

N
u
m

b
e
r

o
f
a
c
ti
v
e
 n

o
d
e
s

Rounds

PR=PF=0.1

PR=PF=0.2

PR=0.1 PF=0.9

PR=0.9 PF=0.1

Figure 21: Robustness example: percentage of active nodes with different parameters

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e

ra
g

e
 F

-S
c
o

re

Probability of failure

Recovery probability=0.1
Recovery probability=0.2
Recovery probability=0.5

Figure 22: Robustness of our algorithm: F-Score of our decentralized clustering algo-
rithm given K=40 and data from 20 distribution in a network of 100 nodes.
We plot the results using three different values for the recovery probability
against the failure probability

51

experimental results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
 t

o
 c

o
m

p
le

te

Probability of failure

Recovery probability=0.1
Recovery probability=0.2
Recovery probability=0.5

Figure 23: Robustness of the algorithm: F-Score of our decentralized clustering algo-
rithm given K=40 and data from 20 distribution in a network of 100 nodes.
We plot the results using three different values for the recovery probability
against the failure probability

4.4.4 Conclusions

As we have seen in this chapter our decentralized clustering algorithm shows many
good properties. It is very precise, with a F-Score comparable to the F-Score of the
best centralized algorithm we implemented. The computation is well shared between
the nodes in the network and the total number of calls to the distance function in the
network is equivalent to the number of calls made by the centralized algorithm. Our
algorithm does overestimate the number of cluster when given K equal or smaller
than the correct value but the precision still remains high. The algorithm scales well
with the dimension of the network and keeps the convergence time mostly constant.
If we allow nodes to go down for a small period of time the algorithm still returns a
good clustering while not paying too much in terms of completion time.

52

5
C H A P T E R 5 : C O N C L U S I O N S

This thesis introduced a decentralized clustering algorithm able to work even without
a precise estimate for the number of clusters. The data is given independently to
each node in the network and they collaborate to obtain a common clustering without Summary

directly sharing the points and only sending aggregate data. The nodes execute a
distributed version of K-Means on each chunk of data they receive and use the results
of all instances of K-Means as a compact representation of the data of the entire
network. An algorithm called X-Means is then executed on this representation to
obtain an estimate of the number of clusters. Simulations on synthetic data show that
our algorithm is precise, scalable and robust.

There are many directions in which this study may continue. The online aspect of
the distributed clustering algorithm has still not being studied in detail. It would be
potentially interesting to implement the online algorithm in PeerSim and run some
simulations not only on data with a constant number of cluster but also on data Future work

with changing number of cluster. We could model a setting in which distribution are
born, change during time and finally disappear. It would be interesting to see if our
algorithm is able to react to the change in the underlying distribution and detect the
fact that the number of clusters may have changed.

We also need to test this algorithm on real data, not on data simply generated from
a gaussian distribution. We plan to apply our algorithm with the aim of detecting
botnets using the example of BotMiner [11] when we will be able to obtain usable
data. Before applying our algorithm on real data, we may need to make more tests on
data of higher dimensionality.

Finally, in our algorithm we use the X-Means algorithm on the list of centroids to
obtain an estimate on the number of clusters in the data. This is not the only known
algorithm to get these type of results and it would be interesting to see what happens
when we change the algorithm at this step.

53

T H A N K S

I can’t thank half of you half as well as I would like; and I have less than half the time
I need to thank you half as well as you deserve. So I will be very brief.

Thanks to my parents, my sister, my uncles and aunts, all my cousins, my grandpar-
ents, my parents’s cousins, my second cousins, my cousins’ cousins and all the people
I know that are related to me in some obscure way. Thanks to professor Montresor,
who read a badly written thesis while in a different continent. Also thanks to professor
James Naismith, who did not read this thesis but invented the game of basketball and
that’s enough for me. Thanks to all the professors who teached me something during
my studies in Trento, Atlanta and München. Finally, thanks to all my friends from far
and near, life would be very boring without all of you.

55

B I B L I O G R A P H Y

[1] H. Akaike. A new look at the statistical identification model. IEEE transactions on
Automatic Control, 19(6):716–723, 1974. (Cited on page 22.)

[2] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. Np-hardness of euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009. (Cited on
page 13.)

[3] D. Arthur, B. Manthey, and H. Roglin. k-means has polynomial smoothed
complexity. pages 405–414, 2009. (Cited on page 14.)

[4] D. Arthur and S. Vassilvitskii. How slow is the k-means method? pages 144–153,
2006. (Cited on page 14.)

[5] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding.
pages 1027–1035, 2007. (Cited on page 16.)

[6] Sanghamitra Bandyopadhyay, Chris Giannella, Ujjwal Maulik, Hillol Kargupta,
Kun Liu, and Souptik Datta. Clustering distributed data streams in peer-to-peer
environments. Information Sciences, 176(14):1952 – 1985, 2006. Streaming Data
Mining. (Cited on page 30.)

[7] J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms. 1981.
(Cited on page 12.)

[8] D. Borthakur. The hadoop distributed file system: Architecture and design.
retrieved fromlucene. apache. org/hadoop, 2007. (Cited on page 26.)

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. (Cited on page 26.)

[10] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification. 2, 2001. (Cited on
page 14.)

[11] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering analysis of
network traffic for protocol-and structure-independent botnet detection. pages
139–154, 2008. (Cited on pages 7, 9, and 53.)

[12] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
data streams: Theory and practice. IEEE Transactions on Knowledge and Data
Engineering, pages 515–528, 2003. (Cited on page 33.)

[13] M. Inaba, N. Katoh, and H. Imai. Applications of weighted voronoi diagrams
and randomization to variance-based k-clustering:(extended abstract). page 339,
1994. (Cited on page 13.)

57

Bibliography

[14] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large
dynamic networks. ACM Transactions on Computer Systems (TOCS), 23(3):219–252,
2005. (Cited on page 36.)

[15] M. Jelasity, A. Montresor, G.P. Jesi, and S. Voulgaris. Peersim: A peer-to-peer
simulator. (Cited on page 39.)

[16] S.P. Lloyd. Least squares quantization in pcm. IEEE Transactions On Information
Theory, 28(2), 1982. (Cited on pages 7 and 14.)

[17] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is
np-hard. Theoretical Computer Science, 2010. (Cited on page 13.)

[18] P.C. Mahalanobis. On the generalized distance in statistics. 12:49, 1936. (Cited
on page 12.)

[19] E. Ogston, M.V.A.N. STEEN, and F. Brazier. Group formation among decentral-
ized autonomous agents. Applied Artificial Intelligence, 18(9):953–970, 2004. (Cited
on page 25.)

[20] D. Pelleg and A. Moore. X-means: Extending k-means with e cient estimation of
the number of clusters. page 727, 2000. (Cited on pages 7, 18, 20, and 41.)

[21] G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461–
464, 1978. (Cited on page 22.)

[22] H. Van Dyke Parunak, R. Rohwer, T. Belding, and S. Brueckner. Dynamic
decentralized any-time hierarchical clustering. Engineering Self-Organising Systems,
pages 66–81, 2007. (Cited on page 24.)

58

	Introduction
	Clustering in brief
	Motivations for a decentralized clustering algorithm
	Main contributions

	Related Work
	Clustering
	K-Means Clustering
	X-Means
	Statistical Measures to evaluate clustering
	Unlabelled data
	Labelled data

	Decentralized clustering
	SODAS: Dynamic decentralized any-time hierarchical clustering
	Group formation among decentralized autonomous agents
	K-Means in MapReduce
	Comparison between these algorithms and our approach

	A Decentralized Clustering Algorithm
	Introduction
	Distributed K-Means
	Our Decentralized Clustering Algorithm
	Choosing chunks
	Distributed K-Means
	X-Means
	Pairwise averaging
	Local K-Means
	Remarks

	Online version

	Experimental results
	Generator
	Evaluator
	Distributed K-Means
	Our decentralized clustering algorithm
	F-Score
	Scalability
	Robustness
	Conclusions

	Conclusions

