Geography on 3-folds of General Type

Meng Chen
Fudan University, Shanghai

September 9, 2010

- Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_{V}=\mathcal{O}_{V}\left(K_{V}\right)$. One task of birational geometry is to study the geometry induced from linear system $\left|m K_{V}\right|$ or $\left|-m K_{V}\right|, \forall m \in \mathbb{Z}^{+}$.
- Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_{V}=\mathcal{O}_{V}\left(K_{V}\right)$. One task of birational geometry is to study the geometry induced from linear system $\left|m K_{V}\right|$ or $\left|-m K_{V}\right|, \forall m \in \mathbb{Z}^{+}$.
- Assume that V is of general type, i.e. $\kappa(V)=\operatorname{dim}(V)$. Set
$\mathfrak{V}_{n}:=\{n$-dimensional variety of general type $\}$.

A Classical Problem

- Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_{V}=\mathcal{O}_{V}\left(K_{V}\right)$. One task of birational geometry is to study the geometry induced from linear system $\left|m K_{V}\right|$ or $\left|-m K_{V}\right|, \forall m \in \mathbb{Z}^{+}$.
- Assume that V is of general type, i.e. $\kappa(V)=\operatorname{dim}(V)$. Set
$\mathfrak{V}_{n}:=\{n$-dimensional variety of general type $\}$.
- Post-MMP Problem: how to classify \mathfrak{V}_{n} ?

Pluricanonical boundedness

- In 2006, Hacon-Mckernan, Takayama $\Rightarrow \exists r_{n}$ such that φ_{m} is birational $\forall m \geq r_{n}$ and \forall $V \in \mathfrak{V}_{n}$.
- In 2006, Hacon-Mckernan, Takayama $\Rightarrow \exists r_{n}$ such that φ_{m} is birational $\forall m \geq r_{n}$ and \forall $V \in \mathfrak{V}_{n}$.
- Chen-Chen \Rightarrow

$$
\begin{aligned}
& \text { (1) } r_{3} \leq 73 \text {; } \\
& \text { (2) } \operatorname{Vol}(V) \geq 1 / 2660 \forall V \in \mathfrak{V}_{3} .
\end{aligned}
$$

- In 2006, Hacon-Mckernan, Takayama $\Rightarrow \exists r_{n}$ such that φ_{m} is birational $\forall m \geq r_{n}$ and \forall $V \in \mathfrak{V}_{n}$.
- Chen-Chen \Rightarrow

$$
\begin{aligned}
& \text { (1) } r_{3} \leq 73 \text {; } \\
& \text { (2) } \operatorname{Vol}(V) \geq 1 / 2660 \forall V \in \mathfrak{V}_{3} .
\end{aligned}
$$

- The aim of this talk—geography \Rightarrow to improve the above results.

Geography

- Let X be a (QFT) minimal projective 3-fold of general type. Reid $\Rightarrow \exists$! weighted basket $\mathbb{B}_{X}:=\left\{B_{X}, P_{2}, \mathcal{O}_{X}\right\}$ such that all the birational invariants of X are uniquely determined by \mathbb{B}_{X}, where $B_{X}=\left\{\left.\frac{1}{r_{i}}\left(1,-1, b_{i}\right) \right\rvert\, i=1, \ldots, t\right\}$.

Geography

- Let X be a ($\mathbb{Q F T}$) minimal projective 3-fold of general type. Reid $\Rightarrow \exists$! weighted basket $\mathbb{B}_{X}:=\left\{B_{X}, P_{2}, \mathcal{O}_{X}\right\}$ such that all the birational invariants of X are uniquely determined by \mathbb{B}_{X}, where $B_{X}=\left\{\left.\frac{1}{r_{i}}\left(1,-1, b_{i}\right) \right\rvert\, i=1, \ldots, t\right\}$.
- Open problem: to find exact relations between the sets
$\mathfrak{V}_{3} \leadsto \leadsto\{$ weighted baskets $\}$

Two geographical inequalities

- Miyaoka-Reid inequality:

$$
K_{X}^{3} \leq 72 \chi\left(\omega_{X}\right)+3 \sum_{i}\left(r_{i}-\frac{1}{r_{i}}\right)
$$

- Miyaoka-Reid inequality:

$$
K_{X}^{3} \leq 72 \chi\left(\omega_{X}\right)+3 \sum_{i}\left(r_{i}-\frac{1}{r_{i}}\right)
$$

- Inequalities of Noether type (Chen-Chen):

$$
K_{X}^{3} \geq a_{m} P_{m}(X)-b_{m}
$$

where $a_{m}, b_{m} \in \mathbb{Q}^{+}, m \geq 1$.

Numerical genus

- The fact: general type 3 -folds with $p_{g} \leq 1$ form an infinite family.

Numerical genus

- The fact: general type 3-folds with $p_{g} \leq 1$ form an infinite family.
- When $p_{g}(X) \leq 1$, $n_{0}(X):=\min \left\{m \mid P_{m}(X) \geq 2\right\}$. Chen-Chen \Rightarrow $2 \leq n_{0}(X) \leq 18$.

Definition

The numerical genus of X is defined as:

$$
g(X):= \begin{cases}p_{g}(X) ; & p_{g}(X) \geq 2 \\ \frac{1}{n_{0}(X)} ; & \text { otherwise }\end{cases}
$$

The Noether function $\mathcal{N}(g)$

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function
$\mathcal{N}(g):=\inf \left\{K_{X}^{3} \mid g(X)=g\right\}$.
- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function
$\mathcal{N}(g):=\inf \left\{K_{X}^{3} \mid g(X)=g\right\}$.
- For all minimal 3-fold X of general type, Noether inequality

$$
K_{X}^{3} \geq \mathcal{N}(g(X))
$$

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function
$\mathcal{N}(g):=\inf \left\{K_{X}^{3} \mid g(X)=g\right\}$.
- For all minimal 3 -fold X of general type, Noether inequality

$$
K_{X}^{3} \geq \mathcal{N}(g(X)) .
$$

- What is the Noether function $\mathcal{N}(g)$?

Noether inequalities in narrow sense

- In 1992, Kobayashi constructed a family of canonically polarized 3 -folds satisfying: $K_{X}^{3}=\frac{4}{3} p_{g}(X)-\frac{10}{3}$.

Noether inequalities in narrow sense

- In 1992, Kobayashi constructed a family of canonically polarized 3 -folds satisfying: $K_{X}^{3}=\frac{4}{3} p_{g}(X)-\frac{10}{3}$.
- In 2004, Chen $\Rightarrow K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ for canonically polarized 3 -folds.
- In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying: $K_{X}^{3}=\frac{4}{3} p_{g}(X)-\frac{10}{3}$.
- In 2004, Chen $\Rightarrow K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ for canonically polarized 3-folds.
- In 2006, Catanese-Chen-Zhang \Rightarrow
$K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ for nonsingular minimal 3 -folds of general type.
- In 1992, Kobayashi constructed a family of canonically polarized 3 -folds satisfying:
$K_{X}^{3}=\frac{4}{3} p_{g}(X)-\frac{10}{3}$.
- In 2004, Chen $\Rightarrow K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ for canonically polarized 3-folds.
- In 2006, Catanese-Chen-Zhang \Rightarrow
$K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ for nonsingular minimal 3-folds of general type.
- Conjecture: $K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ holds for Gorenstein minimal 3-folds of general type.
- In 2007, Chen $\Rightarrow K_{X}^{3} \geq \frac{1}{3}$ when $g=p_{g}(X) \geq 2$.

Known value of $\mathcal{N}(g)$

- In 2007, Chen $\Rightarrow K_{X}^{3} \geq \frac{1}{3}$ when $g=p_{g}(X) \geq 2$.
- Chen \Rightarrow

$$
\begin{aligned}
& \mathcal{N}(2)=\frac{1}{3} ; \\
& \mathcal{N}(3)=1 \\
& \mathcal{N}(4)=2 \\
& \mathcal{N}(g) \geq g-2 \text { for } g \geq 5 .
\end{aligned}
$$

due to supporting examples of Fletcher-Reid.

The strategy to get the lower bound of K_{X}^{3}

- Fletcher-Reid's example: $X_{46} \subset \mathbb{P}(4,5,6,7,23), K^{3}=\frac{1}{420}$.

The strategy to get the lower bound of K_{X}^{3}

- Fletcher-Reid's example:
$X_{46} \subset \mathbb{P}(4,5,6,7,23), K^{3}=\frac{1}{420}$.
- When $p_{g}(X) \leq 1, \frac{1}{18} \leq g \leq \frac{1}{2}$.
- Fletcher-Reid's example:
$X_{46} \subset \mathbb{P}(4,5,6,7,23), K^{3}=\frac{1}{420}$.
- When $p_{g}(X) \leq 1, \frac{1}{18} \leq g \leq \frac{1}{2}$.
- When $K_{X}^{3}<\frac{1}{420}$, Reid's weighted baskets can be completely listed, but the list is too big!
- Fletcher-Reid's example:
$X_{46} \subset \mathbb{P}(4,5,6,7,23), K^{3}=\frac{1}{420}$.
- When $p_{g}(X) \leq 1, \frac{1}{18} \leq g \leq \frac{1}{2}$.
- When $K_{X}^{3}<\frac{1}{420}$, Reid's weighted baskets can be completely listed, but the list is too big!
- To find a function $c(g)$ such that $K_{X}^{3} \geq c(g)$ with $g(X)=g$.
- Chen-Chen $\Rightarrow \exists$ a very effective function $v(g)$ $(g<2)$ satisfying $K_{X}^{3} \geq v(g(X))$.
- Chen-Chen $\Rightarrow \exists$ a very effective function $v(g)$ $(g<2)$ satisfying $K_{X}^{3} \geq v(g(X))$.
- Set $g=1 / n_{0}$, here is part of the description:

n_{0}	7	8	9	10	11	12
$v\left(n_{0}\right)$	$1 / 420$	$1 / 450$	$1 / 630$	$1 / 825$	$1 / 1089$	$1 / 1404$
n_{0}	13	14	15	16	17	18
$v\left(n_{0}\right)$	$1 / 1728$	$1 / 2152.5$	$1 / 2640$	-	-	-

- Chen-Chen $\Rightarrow \exists$ a very effective function $v(g)$ $(g<2)$ satisfying $K_{X}^{3} \geq v(g(X))$.
- Set $g=1 / n_{0}$, here is part of the description:

n_{0}	7	8	9	10	11	12
$v\left(n_{0}\right)$	$1 / 420$	$1 / 450$	$1 / 630$	$1 / 825$	$1 / 1089$	$1 / 1404$
n_{0}	13	14	15	16	17	18
$v\left(n_{0}\right)$	$1 / 1728$	$1 / 2152.5$	$1 / 2640$	-	-	-

- $\mathcal{N}\left(\frac{1}{2}\right)=v\left(\frac{1}{2}\right)=\frac{1}{12}$. (optimal)

Conclusions

- Fletcher-Reid examples with $g=1 / 2$ and $K^{3}=1 / 12$:

$$
\begin{aligned}
& X_{22} \subset \mathbb{P}(1,2,3,4,11) \\
& X_{6,18} \subset \mathbb{P}(2,2,3,3,4,9) \\
& X_{10,14} \subset \mathbb{P}(2,2,3,4,5,7)
\end{aligned}
$$

Conclusions

- Fletcher-Reid examples with $g=1 / 2$ and $K^{3}=1 / 12$:

$$
\begin{aligned}
& X_{22} \subset \mathbb{P}(1,2,3,4,11) \\
& X_{6,18} \subset \mathbb{P}(2,2,3,3,4,9) \\
& X_{10,14} \subset \mathbb{P}(2,2,3,4,5,7)
\end{aligned}
$$

Theorem

Let X be a minimal projective 3-fold of general type. Then
(1) $K_{X}^{3} \geq \frac{17}{30030}>\frac{1}{1767}$. Furthermore, $K_{X}^{3}=\frac{17}{30030}$ if and only if $\mathbb{B}(X)=\left\{B_{3 a}, 0,3\right\}$.
(2) (announcement) φ_{m} is birational for $m \geq 65$.

- We study the m_{0}-canonical map of X :

$$
\varphi_{m_{0}}: X \longrightarrow \mathbb{P}^{P_{m_{0}}-1}
$$

By Hironaka's big theorem, we can take successive blow-ups $\pi: X^{\prime} \rightarrow X$ such that:
(i) X^{\prime} is smooth;
(ii) the movable part of $\left|m_{0} K_{X^{\prime}}\right|$ is base point free;
(iii) the support of the union of $\pi^{*}\left(K_{m_{0}}\right)$ and the exceptional divisors is of simple normal crossings.

- Set $g_{m_{0}}:=\varphi_{m_{0}} \circ \pi$. Then $g_{m_{0}}$ is a morphism by assumption. Let $X^{\prime} \xrightarrow{f} \Gamma \xrightarrow{s} W^{\prime}$ be the Stein factorization of $g_{m_{0}}$ with W^{\prime} the image of X^{\prime} through $g_{m_{0}}$.

- Denote by $M_{m_{0}}$ the movable part of $\left|m_{0} K_{X^{\prime}}\right|$. One has

$$
m_{0} \pi^{*}\left(K_{X}\right)=M_{m_{0}}+E_{m_{0}}^{\prime}
$$

for an effective \mathbb{Q}-divisor $E_{m_{0}}^{\prime}$. In total, since $h^{0}\left(X^{\prime},\left\llcorner m_{0} \pi^{*}\left(K_{X}\right)\right\lrcorner\right)=h^{0}\left(X^{\prime},\left\ulcorner m_{0} \pi^{*}\left(K_{X}\right)\right\urcorner\right)=P_{m_{0}}\left(X^{\prime}\right)=P_{m_{0}}(X)$,
one has:

$$
m_{0} K_{X^{\prime}}=M_{m_{0}}+Z_{m_{0}}
$$

where $Z_{m_{0}}$ is the fixed part of $\left|m_{0} K_{X^{\prime}}\right|$.

- If $\operatorname{dim}(\Gamma) \geq 2$, a general member S of $\left|M_{m_{0}}\right|$ is a nonsingular projective surface of general type.
Set $p=1$.
- If $\operatorname{dim}(\Gamma) \geq 2$, a general member S of $\left|M_{m_{0}}\right|$ is a nonsingular projective surface of general type.
Set $p=1$.
- If $\operatorname{dim}(\Gamma)=1$, a general fiber S of f is an irreducible smooth projective surface of general type. We may write

$$
M_{m_{0}}=\sum_{i=1}^{a_{m_{0}}} S_{i} \equiv a_{m_{0}} S
$$

where S_{i} are smooth fibers of f for all i and $a_{m_{0}} \geq \min \left\{2 P_{m_{0}}-2, P_{m_{0}}+g(\Gamma)-1\right\}$. Set $p=a_{m_{0}}$.

- Let S be a generic irreducible element of $\left|m_{0} K_{X^{\prime}}\right|$. Let $|G|$ be a base point free linear system on S. Let C be a generic irreducible element of $|G|$. Kodaira Lemma $\Rightarrow \exists \beta>0$ such that $\left.\pi^{*}\left(K_{X}\right)\right|_{s} \geq \beta C$.
- Let S be a generic irreducible element of $\left|m_{0} K_{X^{\prime}}\right|$. Let $|G|$ be a base point free linear system on S. Let C be a generic irreducible element of $|G|$. Kodaira Lemma $\Rightarrow \exists \beta>0$ such that $\left.\pi^{*}\left(K_{X}\right)\right|_{s} \geq \beta C$.
- Inequality (1):

$$
\begin{equation*}
K_{X}^{3} \geq \frac{p \beta}{m_{0}} \xi \tag{1}
\end{equation*}
$$

where $\xi=\pi^{*}\left(K_{X}\right) \cdot C$.

- Inequality (2):

$$
\begin{equation*}
\xi \geq \frac{\operatorname{deg}\left(K_{C}\right)}{1+\frac{m_{0}}{p}+\frac{1}{\beta}} \tag{2}
\end{equation*}
$$

- Inequality (2):

$$
\begin{equation*}
\xi \geq \frac{\operatorname{deg}\left(K_{C}\right)}{1+\frac{m_{0}}{p}+\frac{1}{\beta}} \tag{2}
\end{equation*}
$$

- Inequality (3): For any positive integer m such that $\alpha_{m}:=\left(m-1-\frac{m_{0}}{p}-\frac{1}{\beta}\right) \xi>1$, one has

$$
\begin{equation*}
\xi \geq \frac{\operatorname{deg}\left(K_{C}\right)+\left\ulcorner\alpha_{m}\right\urcorner}{m} \tag{3}
\end{equation*}
$$

- When $\operatorname{dim} \Gamma>1$, take $|G|:=|S|_{S} \mid$. Thus $\beta=\frac{1}{m_{0}}$.
- When $\operatorname{dim} \Gamma>1$, take $|G|:=|S| s \mid$. Thus $\beta=\frac{1}{m_{0}}$.
- When $\operatorname{dim} \Gamma=1$, take $G=q \sigma^{*}\left(K_{S_{0}}\right)$ for $q \geq 1$ where $\sigma: S \rightarrow S_{0}$ is the contraction onto the minima model. Here is a key inequality:

$$
\left.\pi^{*}\left(K_{X}\right)\right|_{S} \geq \frac{p}{m_{0}+p} \sigma^{*}\left(K_{S_{0}}\right)
$$

- When $\operatorname{dim} \Gamma>1$, take $|G|:=|S| s \mid$. Thus $\beta=\frac{1}{m_{0}}$.
- When $\operatorname{dim} \Gamma=1$, take $G=q \sigma^{*}\left(K_{S_{0}}\right)$ for $q \geq 1$ where $\sigma: S \rightarrow S_{0}$ is the contraction onto the minima model. Here is a key inequality:

$$
\left.\pi^{*}\left(K_{X}\right)\right|_{S} \geq \frac{p}{m_{0}+p} \sigma^{*}\left(K_{S_{0}}\right)
$$

- Here is the complete list for 3-folds with small invariants:

No.	$\left(P_{3}, \cdots, P_{11}\right)$	P_{18}	P_{24}	μ_{1}	χ	$B^{(12)}=\left(n_{1,2}, n_{5,11}, \cdots, n_{1,5}\right)$ or $B_{\text {min }}$	K^{3}
1	$(0,0,0,0,0,0,0,1,0)$	4	8	14	2	$(5,0,0,1,0,3,0,0,3,0,0,1,0,0,0)$	$\frac{3}{770}$
2	$(0,0,0,0,0,1,0,0,0)$	3	7	15	2	$(4,0,1,0,0,2,1,0,3,0,0,0,2,0,0)$	$\frac{1}{360}$
$2 a$		2	3	18		$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{1}{1170}$
3	$(0,0,0,0,0,1,0,1,0)$	3	7	15	3	$(6,1,0,0,0,4,1,0,4,0,1,0,2,0,0)$	$\frac{23}{9240}$
$3 a$		2	3	18		$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{17}{30030}$
4	$(0,0,0,0,0,1,0,1,0)$	4	9	14	3	$(7,0,1,0,0,4,0,1,3,0,1,0,2,0,0)$	$\frac{13}{3465}$
4.5		1	2	14		$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{630}$
5	$(0,0,0,0,0,1,0,1,0)$	5	10	14	3	$(7,0,1,0,0,4,1,0,4,0,0,1,1,0,0)$	$\frac{17}{3960}$
$5 a$		4	3	15		$\{(8,20),(3,8), *\} \succ\{(11,28), *\}$	$\frac{1}{1386}$
$5 b$		3	3	15		$\{(5,13),(4,15), *\}$	$\frac{1}{1170}$
6	$(0,0,0,1,0,0,0,1,0)$	3	6	14	3	$(9,0,0,2,0,1,0,1,4,0,2,0,0,0,1)$	$\frac{1}{462}$
7	$(0,0,0,1,0,0,1,0,0)$	3	5	14	2	$(5,0,1,1,0,0,0,0,5,0,1,0,0,0,1)$	$\frac{1}{630}$
$7 a$		2	3	14		$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$
8	$(0,0,0,1,0,0,1,1,0)$	3	5	14	3	$(7,1,0,1,0,2,0,0,6,0,2,0,0,0,1)$	$\frac{1}{770}$
10	$(0,0,0,1,0,1,0,0,0)$	3	6	14	3	$(8,0,1,1,0,0,2,0,5,0,1,0,1,0,1)$	$\frac{1}{630}$
10a		2	4	14		$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$
11	$(0,0,0,1,0,1,0,1,0)$	2	4	14	3	$(9,0,0,2,0,0,1,1,3,1,0,0,1,0,1)$	$\frac{3}{3080}$
12	$(0,0,0,1,0,1,0,1,0)$	5	11	14	3	$(9,0,1,0,0,1,2,0,4,0,2,0,0,0,1)$	$\frac{1}{252}$
12a		4	6	14		$\{(2,5),(6,16), *\} \succ\{(8,21), *\}$	$\frac{1}{630}$
13	$(0,0,0,1,0,1,0,1,0)$	3	4	14	4	$(12,0,0,2,0,2,0,2,4,0,2,0,0,1,0)$	$\frac{4}{3465}$
14	$(0,0,0,1,0,1,0,1,0)$	3	6	14	4	$(10,1,0,1,0,2,2,0,6,0,2,0,1,0,1)$	$\frac{1}{770}$
15	$(0,0,0,1,0,1,0,1,0)$	4	8	14	4	$(11,0,1,1,0,2,1,1,5,0,2,0,1,0,1)$	$\frac{71}{27720}$
$15 b$		3	4	14		$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{23}{36036}$
$15 c$		3	5	14		$\{(7,16),(7,19), *\}$	$\frac{31}{31920}$
16	$(0,0,0,1,0,1,0,1,0)$	5	9	14	4	$(11,0,1,1,0,2,2,0,6,0,1,1,0,0,1)$	$\frac{43}{13860}$
16.5		4	3	14		$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{85}{72072}$

$16 b$		4	4	14
16.6		3	3	14
17	$(0,0,0,1,0,1,0,1,1)$	3	6	14
18	$(0,0,0,1,0,1,0,1,1)$	4	7	14
$18 b$		4	6	14
19	$(0,0,0,1,0,1,1,0,0)$	3	3	14
20	$(0,0,0,1,0,1,1,0,0)$	4	7	14
21	$(0,0,0,1,0,1,1,1,0)$	4	8	14
23	$(0,0,0,1,0,1,1,1,0)$	3	5	14
25	$(0,0,0,1,0,1,1,1,0)$	4	7	14
$25 a$		4	6	14
26	$(0,0,0,1,0,1,1,1,0)$,	5	9	14
$26 a$		3	5	14
27	$(0,0,0,1,0,1,1,1,0)$	6	10	14
27.5		5	3	14
$27 b$	$(0,0,0,1,0,1,1,1,1)$	4	8	14
28	$(0,0,0,1,0,1,1,1,1)$	5	10	14
29		3	4	14
29.5	$(0,0,0,1,0,1,1,1,1)$	3	5	14
30	$(0,0,0,1,0,1,1,1,1)$	4	6	14
31	$(0,0,0,1,0,1,1,1,1)$	5	8	14
32		4	6	14
$32 a$	$(0,0,0,1,1,0,0,1,0)$	2	4	14
$32 b$	$(0,0,0,1,1,0,0,1,0)$	4	8	14
33		3	6	14
34	$(0,5$	3	4	14
$34 a$	$(0,0$			

No.	$\left(P_{3}, \cdots, P_{11}\right)$	P_{18}	P_{24}	μ_{1}	χ	$\left(n_{1,2}, n_{4,9}, \cdots, n_{1,5}\right)$ or $B_{\text {min }}$	K^{3}
35	$(0,0,0,1,1,0,0,1,1)$	3	6	14	2	$(5,0,0,2,0,0,0,1,1,0,2,0,0,0,0)$	$\frac{1}{462}$
36	$(0,0,0,1,1,0,1,1,0)$	3	5	14	2	$(4,0,1,1,0,1,0,0,2,1,1,0,0,0,0)$	$\frac{1}{630}$
$36 a$		2	3	14		$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$
$36 b$		2	4	14		$\{(3,10),(2,7), *\} \succ\{(5,17), *\}$	$\frac{4}{5355}$
37	$(0,0,0,1,1,0,1,1,0)$	5	9	14	3	$(6,0,2,0,0,3,0,0,4,0,3,0,0,0,0)$	$\frac{1}{315}$
38	$(0,0,0,1,1,0,1,1,1)$	3	5	14	2	$(3,1,0,1,0,1,0,0,3,0,2,0,0,0,0)$	$\frac{1}{770}$
39	$(0,0,0,1,1,1,0,1,0)$	3	6	14	3	$(7,0,1,1,0,1,2,0,2,1,1,0,1,0,0)$	$\frac{1}{630}$
39a		2	4	14		$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$
$39 b$		2	5	14		$\{(3,10),(2,7), *\} \succ\{(5,17), *\}$	$\frac{4}{5355}$
40	$(0,0,0,1,1,1,0,1,0)$	5	10	14	4	$(9,0,2,0,0,3,2,0,4,0,3,0,1,0,0)$	$\frac{1}{315}$
40.5		4	4	14		$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	> ${ }^{1}$
$40 b$		4	5	14		$\{(2,5),(6,16), *\} \succ\{(8,21), *\}$	$\frac{1^{100}}{1260}$
41	$(0,0,0,1,1,1,0,1,1)$	5	11	13	2	$(5,0,1,0,0,0,2,0,1,0,2,0,0,0,0)$	$\frac{1}{252}$
42	$(0,0,0,1,1,1,0,1,1)$	3	6	14	3	$(6,1,0,1,0,1,2,0,3,0,2,0,1,0,0)$	$\frac{1}{770}$
43	$(0,0,0,1,1,1,0,1,1)$	4	8	14	3	$(7,0,1,1,0,1,1,1,2,0,2,0,1,0,0)$	$\frac{71}{27720}$
$43 b$		3	4	14		$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{23}{36036}$
$43 c$		3	5	14		$\{(7,16),(7,19), *\}$	$\frac{31}{31920}$
44	$(0,0,0,1,1,1,0,1,1)$	5	9	14	3	$(7,0,1,1,0,1,2,0,3,0,1,1,0,0,0)$	$\frac{43}{13860}$
44a		4	4	14		$\{(2,5),(6,16), *\} \succ\{(8,21), *\}$	$\frac{1}{1386}$
$44 c$		4	6	14		$\{(7,16),(5,18), *\}$	$\frac{1}{720}$
44.5		4	4	14		$\{(5,13), *\}$	$>\frac{1}{848}$
45	$(0,0,0,1,1,1,1,0,1)$	4	7	14	2	$(3,0,2,0,0,0,1,0,3,0,1,0,1,0,0)$	$\frac{1}{504}$
46	(0, 0, 0, 1, 1, 1, 1, 1, 0)	4	7	14	3	$(6,0,2,0,0,2,1,0,3,1,1,0,1,0,0)$	$\frac{1}{504}$
$46 b$		3	6	14		$\{(3,10),(2,7), *\} \succ\{(5,17), *\}$	$\frac{7}{6120}$
48	0, 0, 0, 1, 1, 1, 1, 1, 1)	3	5	14	2	$(4,0,1,1,0,0,0,1,1,1,0,0,1,0,0)$	$\frac{19}{13860}$
49	$(0,0,0,1,1,1,1,1,1)$	4	7	14	3	$(5,1,1,0,0,2,1,0,4,0,2,0,1,0,0)$	$\frac{47}{27720}$

$49 a$		4	6	14		$\{(5,11),(4,9), *\} \succ\{(9,20), *\}$	$\frac{1}{840}$
50	$(0,0,0,1,1,1,1,1,1)$	5	9	14	3	$(6,0,2,0,0,2,0,1,3,0,2,0,1,0,0)$	$\frac{41}{13860}$
$50 a$		3	5	14		$\{(4,11),(1,3), *\} \succ\{(5,14), *\}$	$\frac{1}{1260}$
51	$(0,0,0,1,1,1,1,1,1)$	6	10	14	3	$(6,0,2,0,0,2,1,0,4,0,1,1,0,0,0)$	$\frac{97}{271^{20}}$
$51 a$		5	4	14		$\{(4,10),(3,8), *\} \succ\{(7,18), *\}$	$\frac{1}{1386}$
$51 b$		5	5	14		$\{(5,13),(5,18), *\}$	$\frac{1}{1170}$
52	$(0,0,1,0,0,1,0,1,0)$	3	7	14	2	$(4,0,0,1,0,2,2,0,2,0,0,0,0,0,1)$	$\frac{1}{420}$
53	$(0,0,1,0,0,1,1,1,0)$	4	8	14	2	$(3,0,1,0,0,3,1,0,3,0,0,0,0,0,1)$	$\frac{1}{360}$
$53 a$		3	4	15		$\{(2,5),(3,8), *\} \succ\{(5,13), *\}$	$\frac{1}{1170}$
54	$(0,0,1,0,1,0,0,1,0)$	2	4	14	2	$(2,0,0,2,0,3,1,0,1,0,1,0,0,0,0)$	$\frac{1}{840}$
56	$(0,0,1,0,1,0,1,1,0)$	3	5	14	2	$(1,0,1,1,0,4,0,0,2,0,1,0,0,0,0)$	$\frac{1}{630}$
$56 a$		2	3	14		$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$
57	$(0,0,1,0,1,0,1,1,0)$	3	3	14	3	$(3,0,1,2,0,5,0,0,4,0,0,1,0,0,0)$	$\frac{1}{1386}$
58	$(0,0,1,0,1,1,0,1,0)$	3	6	14	3	$(4,0,1,1,0,4,2,0,2,0,1,0,1,0,0)$	$\frac{1}{630}$
$58 a$		2	4	14		$\{(4,9),(3,7), *\} \succ\{(7,16), *\}$	$\frac{1}{1680}$
59	$(0,0,1,0,1,1,0,1,1)$	2	4	14	2	$(2,0,0,2,0,2,1,1,0,0,0,0,1,0,0)$	$\frac{3}{3080}$
60	$(0,0,1,0,1,1,1,1,0)$	4	7	14	3	$(3,0,2,0,0,5,1,0,3,0,1,0,1,0,0)$	$\frac{1}{504}$
62	$(0,0,1,0,1,1,1,1,1)$	3	5	14	2	$(1,0,1,1,0,3,0,1,1,0,0,0,1,0,0)$	$\frac{19}{13860}$

Canonically fibred 3-folds

- Let X be a nonsingular projective 3-fold of general type. When the geometric genus
$p_{g} \geq 2$, the canonical map $\varphi_{1}:=\Phi_{\left|K_{x}\right|}$ is usually a key tool for birational classification.

Canonically fibred 3-folds

- Let X be a nonsingular projective 3-fold of general type. When the geometric genus $p_{g} \geq 2$, the canonical map $\varphi_{1}:=\Phi_{\left|K_{x}\right|}$ is usually a key tool for birational classification.
- If φ_{1} is of fiber type (i.e. $\operatorname{dim} \overline{\varphi_{1}(X)}<3$), it is interesting to see if the birational invariants of the generic irreducible component in the general fiber of φ_{1} is bounded from above.

Canonically fibred 3-folds

- Let X be a nonsingular projective 3-fold of general type. When the geometric genus
$p_{g} \geq 2$, the canonical map $\varphi_{1}:=\Phi_{\left|K_{x}\right|}$ is usually a key tool for birational classification.
- If φ_{1} is of fiber type (i.e. $\operatorname{dim} \overline{\varphi_{1}(X)}<3$), it is interesting to see if the birational invariants of the generic irreducible component in the general fiber of φ_{1} is bounded from above.
- Chen-Hacon \Rightarrow When X is Gorenstein minimal and φ_{1} is of fiber type, then X is canonically fibred by surfaces or curves with bounded invariants.

Canonically fibred 3-folds

- Chen-Cui, $2010 \Rightarrow$

Theorem

Let X be a Gorenstein minimal projective 3-fold of general type. Assume that X is canonically of fiber type. Let F be a smooth model of the generic irreducible component in the general fiber of φ_{1}.
Then
(i) $g(F) \leq 91$ when F is a curve and $p_{g}(X) \geq 183$;
(ii) $p_{g}(F) \leq 37$ when F is a surface and $p_{g}(X) \gg 0$, say $p_{g}(X) \geq 3890$.

New examples

Standard construction. Let S be a minimalsurface of g eneral type with $p_{g}(S)=0$. Assume there exists a divisor H on S such that $\left|K_{S}+H\right|$ is composed with a pencil of curves and that 2 H is linearly equivalent to a smooth divisor R. Let \hat{C} be a generic irreducible element of the movable part of $\left|K_{S}+H\right|$. Assume \hat{C} is smooth. Set $d:=\hat{C} . H$ and $D:=\hat{C} \bigcap H$. Let C_{0} be a fixed smooth projective curve of genus 2. Let θ be a 2-torsion divisor on C_{0}. Set $Y:=S \times C_{0}$. Take $\delta:=p_{1}^{*}(H)+p_{2}^{*}(\theta)$ and pick a smooth divisor $\Delta \sim p_{1}^{*}(2 H)$. Then the pair (δ, Δ) determines a smooth double covering $\pi: X \rightarrow Y$ and $K_{X}=\pi^{*}\left(K_{Y}+\delta\right)$.

Since $K_{Y}+\delta=p_{1}^{*}\left(K_{S}+H\right)+p_{2}^{*}\left(K_{C_{0}}+\theta\right)$, $p_{g}(Y)=0$ and $h^{0}\left(K_{C_{0}}+\theta\right)=1$, one sees that $\left|K_{X}\right|=\pi^{*}\left|K_{Y}+\delta\right|$ and that $\Phi_{\left|K_{X}\right|}$ factors through π, p_{1} and $\Phi_{\left|K_{S}+H\right|}$. Since $\left|K_{S}+H\right|$ is composed with a pencil of curves \hat{C}, X is canonically fibred by surfaces F and F is a double covering over $T:=\hat{C} \times C_{0}$ corresponding to the data $\left(q_{1}^{*}(D)+q_{2}^{*}(\theta), q_{1}^{*}(2 D)\right)$ where q_{1} and q_{2} are projections. Denote by $\sigma: F \rightarrow T$ the double covering. Then $K_{F}=\sigma^{*}\left(K_{T}+q_{1}^{*}(D)+q_{2}^{*}(\theta)\right)$. By calculation, one has $p_{g}(F)=3 g(\hat{C})$ when $d=0$ and $p_{g}(F)=3 g(\hat{C})+d-1$ whenever $d>0$.

New examples

Lemma

Let S be any smooth minimal projective surface of general type with $p_{g}(S)=0$. Assume $\mu: S \rightarrow \mathbb{P}^{1}$ is a genus 2 fibration. Let H be a general fiber of μ. Then $\left|K_{S}+H\right|$ is composed with a pencil of curves \hat{C} of genus $g(\hat{C})$ and $\hat{C} . H=2$.

Lemma

Let S be any smooth minimal projective surface of general type with $p_{g}(S)=0$. Assume $\mu: S \rightarrow \mathbb{P}^{1}$ is a genus 2 fibration. Let H be a general fiber of μ. Then $\left|K_{S}+H\right|$ is composed with a pencil of curves \hat{C} of genus $g(\hat{C})$ and $\hat{C} . H=2$.

- We take a pair (S, H) which was found by Xiao, where S is a numerical Compedelli surface with $K_{S}^{2}=2, p_{g}(S)=q(S)=0$ and $\operatorname{Tor}(S)=\left(\mathbb{Z}_{2}\right)^{3}$.
- Let $P=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Take four curves C_{1}, C_{2}, C_{3} and C_{4} defined by the following equations, respectively:

$$
\begin{aligned}
& C_{1}: x=y \\
& C_{2}: x=-y \\
& C_{3}: x y=1 \\
& C_{4}: x y=-1
\end{aligned}
$$

These four curves intersect mutually at 12 ordinary double points:

$$
\begin{gathered}
(0,0),(\infty, \infty),(0, \infty),(\infty, 0) \\
(\pm 1, \pm 1),(\pm \sqrt{-1}, \pm \sqrt{-1}) .
\end{gathered}
$$

Xiao \Rightarrow There exists a divisor R_{1} of bidegree $(14,6)$ which has exactly 12 simple singularities of multiplicity 4 . Then the data (δ_{1}, R_{1}) determines a singular double covering onto P.

$$
\begin{aligned}
& S \stackrel{\sigma}{\longleftarrow} \tilde{S} \xrightarrow{\theta} \tilde{P} \\
& f \downarrow \quad{ }^{\tilde{f}} \quad \downarrow \tau \\
& \mathbb{P}^{1}=\mathbb{P}^{1} \longleftarrow_{\varphi} P
\end{aligned}
$$

$K_{S}^{2}=2$ and $p_{g}(S)=q(S)=0$.

- Let H be a general fiber of f. Calculations \Rightarrow $\left|K_{S}+H\right|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in\left|K_{S}+H\right|$ is a smooth curve of genus 6 .
- Let H be a general fiber of f. Calculations \Rightarrow $\left|K_{S}+H\right|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in\left|K_{S}+H\right|$ is a smooth curve of genus 6 .
- Now we take the triple (S, H, \hat{C}) and run standard construction. What we get is the 3-fold $X_{S, 19}$ which is canonically fibred by surfaces F with $p_{g}(F)=19$.
- Let H be a general fiber of f. Calculations \Rightarrow $\left|K_{S}+H\right|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in\left|K_{S}+H\right|$ is a smooth curve of genus 6 .
- Now we take the triple (S, H, \hat{C}) and run standard construction. What we get is the 3-fold $X_{S, 19}$ which is canonically fibred by surfaces F with $p_{g}(F)=19$.
- Thanks very much!

