Geography on 3-folds of General Type

Meng Chen Fudan University, Shanghai

September 9, 2010

(1日) (日) (日)

• Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_V = \mathcal{O}_V(K_V)$. One task of birational geometry is to study the geometry induced from linear system $|mK_V|$ or $|-mK_V|$, $\forall m \in \mathbb{Z}^+$.

(1日) (1日) (1日)

• Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_V = \mathcal{O}_V(K_V)$. One task of birational geometry is to study the geometry induced from linear system $|mK_V|$ or $|-mK_V|$, $\forall m \in \mathbb{Z}^+$.

• Assume that V is of general type, i.e. $\kappa(V) = \dim(V)$. Set

 $\mathfrak{V}_n := \{$ n-dimensional variety of general type $\}$.

イロト イポト イヨト イヨト 三国

• Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_V = \mathcal{O}_V(K_V)$. One task of birational geometry is to study the geometry induced from linear system $|mK_V|$ or $|-mK_V|$, $\forall m \in \mathbb{Z}^+$.

• Assume that V is of general type, i.e. $\kappa(V) = \dim(V)$. Set

 $\mathfrak{V}_n := \{$ n-dimensional variety of general type $\}$.

(日) (部) (注) (注) (言)

• Post-MMP Problem: how to classify \mathfrak{V}_n ?

• In 2006, Hacon-M^ckernan, Takayama $\Rightarrow \exists r_n$ such that φ_m is birational $\forall m \ge r_n$ and $\forall V \in \mathfrak{V}_n$.

- In 2006, Hacon-M^ckernan, Takayama $\Rightarrow \exists r_n$ such that φ_m is birational $\forall m \ge r_n$ and $\forall V \in \mathfrak{V}_n$.
- Chen-Chen \Rightarrow (1) $r_3 \leq 73$; (2) $Vol(V) \geq 1/2660 \forall V \in \mathfrak{V}_3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- In 2006, Hacon-M^ckernan, Takayama $\Rightarrow \exists r_n$ such that φ_m is birational $\forall m \ge r_n$ and $\forall V \in \mathfrak{V}_n$.
- Chen-Chen \Rightarrow (1) $r_3 \leq 73$; (2) $Vol(V) \geq 1/2660 \forall V \in \mathfrak{V}_3$.
- The aim of this talk—geography \Rightarrow to improve the above results.

• Let X be a (QFT) minimal projective 3-fold of general type. Reid $\Rightarrow \exists !$ weighted basket $\mathbb{B}_X := \{B_X, P_2, \mathcal{O}_X\}$ such that all the birational invariants of X are uniquely determined by \mathbb{B}_X , where $B_X = \{\frac{1}{r_i}(1, -1, b_i) | i = 1, \dots, t\}$.

- 本間 と イヨ と イヨ と 二 ヨ

Let X be a (QFT) minimal projective 3-fold of general type. Reid ⇒ ∃! weighted basket B_X := {B_X, P₂, O_X} such that all the birational invariants of X are uniquely determined by B_X, where B_X = {1/r_i(1, -1, b_i)|i = 1, ..., t}.
Open problem: to find exact relations between

the sets

$\mathfrak{V}_3 \leftrightsquigarrow \{ \mathsf{weighted \ baskets} \}$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Two geographical inequalities

• Miyaoka-Reid inequality:

$$\mathcal{K}_X^3 \leq 72\chi(\omega_X) + 3\sum_i (r_i - \frac{1}{r_i}).$$

・ 回 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Two geographical inequalities

• Miyaoka-Reid inequality:

$$\mathcal{K}_X^3 \leq 72\chi(\omega_X) + 3\sum_i (r_i - \frac{1}{r_i}).$$

• Inequalities of Noether type (Chen-Chen):

$$K_X^3 \ge a_m P_m(X) - b_m$$

where $a_m, b_m \in \mathbb{Q}^+$, $m \ge 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

• The fact: general type 3-folds with $p_g \leq 1$ form an infinite family.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

크

Numerical genus

• The fact: general type 3-folds with $p_g \leq 1$ form an infinite family.

• When
$$p_g(X) \leq 1$$
,
 $n_0(X) := \min\{m | P_m(X) \geq 2\}$. Chen-Chen \Rightarrow
 $2 \leq n_0(X) \leq 18$.

Definition

The numerical genus of X is defined as:

$$g(X) := egin{cases} p_g(X); & p_g(X) \geq 2 \ rac{1}{n_0(X)}; & ext{otherwise.} \end{cases}$$

▲ □ ► ▲ □ ►

• Chen-Chen
$$\Rightarrow g(X) \geq \frac{1}{18}$$
.

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function $\mathcal{N}(g) := \inf\{K_X^3 | g(X) = g\}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function
 \$\mathcal{N}(g) := \inf{K_X^3 | g(X) = g}\$.
 For all minimal 3-fold X of general type,

Noether inequality

$$K_X^3 \geq \mathcal{N}(g(X)).$$

同 とくほ とくほと

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function $\mathcal{N}(g) := \inf\{K_X^3 | g(X) = g\}.$

• For all minimal 3-fold X of general type, Noether inequality

$$K_X^3 \geq \mathcal{N}(g(X)).$$

• What is the Noether function $\mathcal{N}(g)$?

(1日) (日) (日)

• In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying: $K_X^3 = \frac{4}{3}p_g(X) - \frac{10}{3}.$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying: K_X³ = ⁴/₃p_g(X) - ¹⁰/₃.
In 2004, Chen ⇒ K_X³ ≥ ⁴/₃p_g(X) - ¹⁰/₃ for canonically polarized 3-folds.

向下 イヨト イヨト

In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying: K_X³ = ⁴/₃p_g(X) - ¹⁰/₃.
In 2004, Chen ⇒ K_X³ ≥ ⁴/₃p_g(X) - ¹⁰/₃ for canonically polarized 3-folds.
In 2006, Catanese-Chen-Zhang ⇒ K_X³ ≥ ⁴/₃p_g(X) - ¹⁰/₃ for nonsingular minimal

3-folds of general type.

In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying: K_X³ = ⁴/₃p_g(X) - ¹⁰/₃.
In 2004, Chen ⇒ K_X³ ≥ ⁴/₃p_g(X) - ¹⁰/₃ for

canonically polarized 3-folds.

• In 2006, Catanese-Chen-Zhang \Rightarrow $K_X^3 \ge \frac{4}{3}p_g(X) - \frac{10}{3}$ for nonsingular minimal 3-folds of general type.

• Conjecture: $K_X^3 \ge \frac{4}{3}p_g(X) - \frac{10}{3}$ holds for Gorenstein minimal 3-folds of general type.

イロン イヨン イヨン イヨン

Known value of $\mathcal{N}(g)$

• In 2007, Chen $\Rightarrow K_X^3 \ge \frac{1}{3}$ when $g = p_g(X) \ge 2$.

(ロ) (同) (E) (E) (E)

Known value of $\mathcal{N}(g)$

• In 2007, Chen $\Rightarrow K_X^3 \ge \frac{1}{3}$ when $g = p_g(X) \ge 2$. • Chen \Rightarrow $\mathcal{N}(2) = \frac{1}{3};$ $\mathcal{N}(3) = 1;$ $\mathcal{N}(4) = 2;$ $\mathcal{N}(g) \ge g - 2$ for $g \ge 5$.

due to supporting examples of Fletcher-Reid.

イロト イポト イヨト イヨト

• Fletcher-Reid's example: $X_{46} \subset \mathbb{P}(4, 5, 6, 7, 23), \ K^3 = \frac{1}{420}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Fletcher-Reid's example: $X_{46} \subset \mathbb{P}(4, 5, 6, 7, 23), \ K^3 = \frac{1}{420}.$ • When $p_g(X) \le 1, \ \frac{1}{18} \le g \le \frac{1}{2}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Fletcher-Reid's example: $X_{46} \subset \mathbb{P}(4, 5, 6, 7, 23), \ K^3 = \frac{1}{420}.$ • When $p_g(X) \le 1, \ \frac{1}{18} \le g \le \frac{1}{2}.$
- When $K_X^3 < \frac{1}{420}$, Reid's weighted baskets can be completely listed, but the list is too big!

伺 ト イヨ ト イヨト

- Fletcher-Reid's example: X₄₆ ⊂ ℙ(4, 5, 6, 7, 23), K³ = ¹/₄₂₀.
 When p_g(X) ≤ 1, ¹/₁₈ ≤ g ≤ ¹/₂.
- When $K_X^3 < \frac{1}{420}$, Reid's weighted baskets can be completely listed, but the list is too big!

• To find a function c(g) such that $K_X^3 \ge c(g)$ with g(X) = g.

• Chen-Chen $\Rightarrow \exists$ a very effective function v(g)(g < 2) satisfying $K_X^3 \ge v(g(X))$.

The main statements

• Chen-Chen $\Rightarrow \exists$ a very effective function v(g)(g < 2) satisfying $K_X^3 \ge v(g(X))$.

• Set $g = 1/n_0$, here is part of the description:

<i>n</i> ₀	7	8	9	10	11	12
$v(n_0)$	1/420	1/450	1/630	1/825	1/1089	1/1404
<i>n</i> ₀	13	14	15	16	17	18
$v(n_0)$	1/1728	1/2152.5	1/2640	_	_	_

The main statements

• Chen-Chen $\Rightarrow \exists$ a very effective function v(g)(g < 2) satisfying $K_X^3 \ge v(g(X))$.

• Set $g = 1/n_0$, here is part of the description:

<i>n</i> ₀	7	8	9	10	11	12
$v(n_0)$	1/420	1/450	1/630	1/825	1/1089	1/1404
<i>n</i> ₀	13	14	15	16	17	18
$v(n_0)$	1/1728	1/2152.5	1/2640	_	_	_

• $\mathcal{N}(\frac{1}{2}) = v(\frac{1}{2}) = \frac{1}{12}$. (optimal)

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusions

• Fletcher-Reid examples with g = 1/2 and $K^3 = 1/12$:

$$egin{aligned} X_{22} \subset \mathbb{P}(1,2,3,4,11) \ X_{6,18} \subset \mathbb{P}(2,2,3,3,4,9) \ X_{10,14} \subset \mathbb{P}(2,2,3,4,5,7) \end{aligned}$$

(日) (同) (E) (E) (E)

Conclusions

• Fletcher-Reid examples with g = 1/2 and $\mathcal{K}^3 = 1/12$: $X_{22} \subset \mathbb{P}(1, 2, 3, 4, 11)$ $X_{6,18} \subset \mathbb{P}(2, 2, 3, 3, 4, 9)$ $X_{10,14} \subset \mathbb{P}(2, 2, 3, 4, 5, 7)$

Theorem

Let X be a minimal projective 3-fold of general type. Then (1) $K_X^3 \ge \frac{17}{30030} > \frac{1}{1767}$. Furthermore, $K_X^3 = \frac{17}{30030}$ if and only if $\mathbb{B}(X) = \{B_{3a}, 0, 3\}$. (2) (announcement) φ_m is birational for $m \ge 65$. • We study the *m*₀-canonical map of *X*:

$$\varphi_{m_0}: X \dashrightarrow \mathbb{P}^{P_{m_0}-1}$$

By Hironaka's big theorem, we can take successive blow-ups $\pi: X' \to X$ such that: (i) X' is smooth; (ii) the movable part of $|m_0 K_{X'}|$ is base point free: (iii) the support of the union of $\pi^*(K_{m_0})$ and the exceptional divisors is of simple normal crossings.

The method

• Set $g_{m_0} := \varphi_{m_0} \circ \pi$. Then g_{m_0} is a morphism by assumption. Let $X' \xrightarrow{f} \Gamma \xrightarrow{s} W'$ be the Stein factorization of g_{m_0} with W' the image of X' through g_{m_0} .

• Denote by M_{m_0} the movable part of $|m_0 K_{X'}|$. One has

$$m_0\pi^*(K_X) = M_{m_0} + E'_{m_0}$$

for an effective \mathbb{Q} -divisor E'_{m_0} . In total, since $h^0(X', \llcorner m_0\pi^*(K_X) \lrcorner) = h^0(X', \ulcorner m_0\pi^*(K_X) \urcorner) = P_{m_0}(X') = P_{m_0}(X),$

one has:

$$m_0 K_{X'} = M_{m_0} + Z_{m_0}$$

where Z_{m_0} is the fixed part of $|m_0 K_{X'}|$.

The method

• If dim(Γ) \geq 2, a general member *S* of $|M_{m_0}|$ is a nonsingular projective surface of general type. Set p = 1.

イロト イヨト イヨト イヨト

The method

• If dim(Γ) \geq 2, a general member *S* of $|M_{m_0}|$ is a nonsingular projective surface of general type. Set p = 1.

• If dim(Γ) = 1, a general fiber S of f is an irreducible smooth projective surface of general type. We may write

$$M_{m_0}=\displaystyle{\sum_{i=1}^{a_{m_0}}}S_i\equiv a_{m_0}S_i$$

where S_i are smooth fibers of f for all i and $a_{m_0} \ge \min\{2P_{m_0} - 2, P_{m_0} + g(\Gamma) - 1\}$. Set $p = a_{m_0}$.

The method

• Let S be a generic irreducible element of $|m_0K_{X'}|$. Let |G| be a base point free linear system on S. Let C be a generic irreducible element of |G|. Kodaira Lemma $\Rightarrow \exists \beta > 0$ such that $\pi^*(K_X)|_S \ge \beta C$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The method

• Let S be a generic irreducible element of $|m_0K_{X'}|$. Let |G| be a base point free linear system on S. Let C be a generic irreducible element of |G|. Kodaira Lemma $\Rightarrow \exists \beta > 0$ such that $\pi^*(K_X)|_S \ge \beta C$.

• Inequality (1):

$$K_X^3 \ge \frac{p\beta}{m_0} \xi$$
 (1)

・ 同 ト ・ ヨ ト ・ ヨ ト …

where $\xi = \pi^*(K_X) \cdot C$.

• Inequality (2):

$$\xi \geq rac{ \mathsf{deg}(\mathcal{K}_{\mathcal{C}})}{1+rac{m_0}{p}+rac{1}{eta}}.$$

(2)

(ロ) (部) (E) (E) =

• Inequality (2):

$$\xi \geq \frac{\deg(K_C)}{1 + \frac{m_0}{p} + \frac{1}{\beta}}.$$
 (2)

• Inequality (3): For any positive integer m such that $\alpha_m := (m - 1 - \frac{m_0}{p} - \frac{1}{\beta})\xi > 1$, one has

$$\xi \geq \frac{\deg(K_C) + \lceil \alpha_m \rceil}{m}.$$
 (3)

(ロ) (同) (E) (E) (E)

Technical applications

• When dim $\Gamma > 1$, take $|G| := |S|_S|$. Thus $\beta = \frac{1}{m_0}$.

(ロ) (同) (E) (E) (E)

Technical applications

• When dim $\Gamma > 1$, take $|G| := |S|_S|$. Thus $\beta = \frac{1}{m_0}$.

• When dim $\Gamma = 1$, take $G = q\sigma^*(K_{S_0})$ for $q \ge 1$ where $\sigma : S \to S_0$ is the contraction onto the minima model. Here is a key inequality:

$$\pi^*(\mathcal{K}_X)|_{\mathcal{S}} \geq rac{p}{m_0+p}\sigma^*(\mathcal{K}_{\mathcal{S}_0}).$$

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Technical applications

• When dim $\Gamma > 1$, take $|G| := |S|_S|$. Thus $\beta = \frac{1}{m_0}$.

• When dim $\Gamma = 1$, take $G = q\sigma^*(K_{S_0})$ for $q \ge 1$ where $\sigma : S \to S_0$ is the contraction onto the minima model. Here is a key inequality:

$$\pi^*(\mathcal{K}_X)|_{\mathcal{S}} \geq rac{p}{m_0+p}\sigma^*(\mathcal{K}_{\mathcal{S}_0}).$$

• Here is the complete list for 3-folds with small invariants:

(D) (A) (A) (A) (A)

No.	(P_3, \cdots, P_{11})	P ₁₈	P ₂₄	μ_1	x	$B^{(12)} = (n_{1,2}, n_{5,11}, \cdots, n_{1,5})$ or B_{min}	K ³
1	(0, 0, 0, 0, 0, 0, 0, 0, 1, 0)	4	8	14	2	(5, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 1, 0, 0, 0)	3770
2	(0, 0, 0, 0, 0, 1, 0, 0, 0)	3	7	15	2	(4, 0, 1, 0, 0, 2, 1, 0, 3, 0, 0, 0, 2, 0, 0)	360
2 <i>a</i>		2	3	18		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	1170 23
3	(0, 0, 0, 0, 0, 1, 0, 1, 0)	3	7	15	3	(6, 1, 0, 0, 0, 4, 1, 0, 4, 0, 1, 0, 2, 0, 0)	- <u>23</u> - 9240
3 <i>a</i>		2	3	18		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	30030
4	(0, 0, 0, 0, 0, 1, 0, 1, 0)	4	9	14	3	(7, 0, 1, 0, 0, 4, 0, 1, 3, 0, 1, 0, 2, 0, 0)	3465
4.5		1	2	14		$\{(4, 11), (1, 3), *\} \succ \{(5, 14), *\}$	$\frac{1}{630}$
5	(0, 0, 0, 0, 0, 1, 0, 1, 0)	5	10	14	3	(7, 0, 1, 0, 0, 4, 1, 0, 4, 0, 0, 1, 1, 0, 0)	$\frac{17}{3960}$
5 <i>a</i>		4	3	15		$\{(8, 20), (3, 8), *\} \succ \{(11, 28), *\}$	$\frac{1}{1386}$
5 <i>b</i>		3	3	15		$\{(5, 13), (4, 15), *\}$	1170
6	(0, 0, 0, 1, 0, 0, 0, 1, 0)	3	6	14	3	(9, 0, 0, 2, 0, 1, 0, 1, 4, 0, 2, 0, 0, 0, 1)	1 462
7	(0, 0, 0, 1, 0, 0, 1, 0, 0)	3	5	14	2	(5, 0, 1, 1, 0, 0, 0, 0, 5, 0, 1, 0, 0, 0, 1)	$\frac{1}{630}$
7 <i>a</i>		2	3	14		$\{(4,9),(3,7),*\} \succ \{(7,16),*\}$	$\frac{1}{1680}$
8	(0, 0, 0, 1, 0, 0, 1, 1, 0)	3	5	14	3	(7, 1, 0, 1, 0, 2, 0, 0, 6, 0, 2, 0, 0, 0, 1)	$\frac{1}{770}$
10	(0, 0, 0, 1, 0, 1, 0, 0, 0)	3	6	14	3	(8, 0, 1, 1, 0, 0, 2, 0, 5, 0, 1, 0, 1, 0, 1)	$\frac{1}{630}$
10 <i>a</i>		2	4	14		$\{(4,9),(3,7),*\} \succ \{(7,16),*\}$	1680
11	(0, 0, 0, 1, 0, 1, 0, 1, 0)	2	4	14	3	(9, 0, 0, 2, 0, 0, 1, 1, 3, 1, 0, 0, 1, 0, 1)	30,80
12	(0, 0, 0, 1, 0, 1, 0, 1, 0)	5	11	14	3	(9, 0, 1, 0, 0, 1, 2, 0, 4, 0, 2, 0, 0, 0, 1)	$\frac{1}{252}$
12 <i>a</i>		4	6	14		$\{(2,5),(6,16),*\} \succ \{(8,21),*\}$	$\frac{1}{630}$
13	(0, 0, 0, 1, 0, 1, 0, 1, 0)	3	4	14	4	(12, 0, 0, 2, 0, 2, 0, 2, 4, 0, 2, 0, 0, 1, 0)	3465
14	(0, 0, 0, 1, 0, 1, 0, 1, 0)	3	6	14	4	(10, 1, 0, 1, 0, 2, 2, 0, 6, 0, 2, 0, 1, 0, 1)	$\frac{1}{770}$
15	(0, 0, 0, 1, 0, 1, 0, 1, 0)	4	8	14	4	(11, 0, 1, 1, 0, 2, 1, 1, 5, 0, 2, 0, 1, 0, 1)	27,7,20
15 <i>b</i>		3	4	14		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	36036
15 <i>c</i>		3	5	14		$\{(7, 16), (7, 19), *\}$	31920
16	(0, 0, 0, 1, 0, 1, 0, 1, 0)	5	9	14	4	(11, 0, 1, 1, 0, 2, 2, 0, 6, 0, 1, 1, 0, 0, 1)	13860 13850
16.5		4	3	14		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	72072

Meng Chen Fudan University, Shanghai Geography on 3-folds of General Type

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

16 <i>b</i>		4	4	14		$\{(2,5), (6,16), *\} \succ \{(8,21), *\}$	1296
16.6		3	3	14		$\{(4, 9), (3, 7), *\} \succ \{(7, 16), *\}$	$\frac{130}{6160}$
17	(0, 0, 0, 1, 0, 1, 0, 1, 1)	3	6	14	3	(9, 0, 0, 2, 0, 0, 0, 2, 3, 0, 1, 0, 1, 0, 1)	3
18	(0, 0, 0, 1, 0, 1, 0, 1, 1)	4	7	14	3	(9, 0, 0, 2, 0, 0, 1, 1, 4, 0, 0, 1, 0, 0, 1)	1540
18 <i>b</i>		4	6	14		$\{(3, 8), (4, 11), *\} \succ \{(7, 19), *\}$	9630
19	(0, 0, 0, 1, 0, 1, 1, 0, 0)	3	3	14	3	(8, 0, 1, 1, 0, 1, 0, 1, 5, 0, 1, 0, 0, 1, 0)	+3090 3465
20	(0, 0, 0, 1, 0, 1, 1, 0, 0)	4	7	14	3	(7, 0, 2, 0, 0, 1, 1, 0, 6, 0, 1, 0, 1, 0, 1)	5405 1 504
21	(0, 0, 0, 1, 0, 1, 1, 1, 0)	4	8	14	2	(6, 0, 1, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 0, 1)	1 260
23	(0, 0, 0, 1, 0, 1, 1, 1, 0)	3	5	14	3	(8, 0, 1, 1, 0, 1, 0, 1, 4, 1, 0, 0, 1, 0, 1)	<u>19</u> 13860
25	(0, 0, 0, 1, 0, 1, 1, 1, 0)	4	7	14	4	(9, 1, 1, 0, 0, 3, 1, 0, 7, 0, 2, 0, 1, 0, 1)	$\frac{13000}{27720}$
25 <i>a</i>		4	6	14		$\{(5, 11), (4, 9), *\} \succ \{(9, 20), *\}$	840
26	(0, 0, 0, 1, 0, 1, 1, 1, 0,)	5	9	14	4	(10, 0, 2, 0, 0, 3, 0, 1, 6, 0, 2, 0, 1, 0, 1)	$\frac{41}{13860}$
26 <i>a</i>		3	5	14		$\{(4, 11), (1, 3), *\} \succ \{(5, 14), *\}$	1300
27	(0, 0, 0, 1, 0, 1, 1, 1, 0)	6	10	14	4	(10, 0, 2, 0, 0, 3, 1, 0, 7, 0, 1, 1, 0, 0, 1)	$\frac{1600}{27720}$
27.5		5	3	14		$\{(4, 10), (3, 8), *\} \succ \{(7, 18), *\}$	1386
27 <i>b</i>		5	5	14		{(5, 13), (5, 18), *}	1300
28	(0, 0, 0, 1, 0, 1, 1, 1, 1)	4	8	14	2	(5, 1, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 1)	23
29	(0, 0, 0, 1, 0, 1, 1, 1, 1)	5	10	14	2	(6, 0, 1, 0, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 1)	3465
29.5		3	4	14		$\{(4, 11), (1, 3), *\} \succ \{(5, 14), *\}$	1 630
30	(0, 0, 0, 1, 0, 1, 1, 1, 1)	3	5	14	3	(7, 1, 0, 1, 0, 1, 0, 1, 5, 0, 1, 0, 1, 0, 1)	924
31	(0, 0, 0, 1, 0, 1, 1, 1, 1)	4	6	14	3	(7, 1, 0, 1, 0, 1, 1, 0, 6, 0, 0, 1, 0, 0, 1)	- <u>1</u>
32	(0, 0, 0, 1, 0, 1, 1, 1, 1)	5	8	14	3	(8, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 0, 1)	693
32 <i>a</i>		4	6	14		$\{(4, 9), (3, 7), *\} \succ \{(7, 16), *\}$	528
32 <i>b</i>		2	2	14		$\{(4, 11), (1, 3), *\} \succ \{(5, 14), *\}$	1386
33	(0, 0, 0, 1, 1, 0, 0, 1, 0)	2	4	14	2	(5, 0, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0)	1000
34	(0, 0, 0, 1, 1, 0, 0, 1, 0)	4	8	14	3	(7, 0, 1, 1, 0, 2, 1, 0, 3, 0, 3, 0, 0, 0, 0)	$\frac{0}{360}$
34 <i>a</i>		3	6	14		$\{(4, 9), (3, 7), *\} \succ \{(7, 16), *\}$	560
34 <i>b</i>		3	4	14		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	$\frac{310}{1170}$
						・ロ・・1日・ ・目・・	≅⊁ ≣.

Meng Chen Fudan University, Shanghai Geography

Geography on 3-folds of General Type

No.	(P_3, \cdots, P_{11})	P ₁₈	P ₂₄	μ_1	χ	$(n_{1,2}, n_{4,9}, \cdots, n_{1,5})$ or B_{min}	K ³
35	(0, 0, 0, 1, 1, 0, 0, 1, 1)	3	6	14	2	(5, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0)	$\frac{1}{462}$
36	(0, 0, 0, 1, 1, 0, 1, 1, 0)	3	5	14	2	(4, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0)	630
36 <i>a</i>		2	3	14		$\{(4, 9), (3, 7), *\} \succ \{(7, 16), *\}$	1680
36 <i>b</i>		2	4	14		$\{(3, 10), (2, 7), *\} \succ \{(5, 17), *\}$	5355
37	(0, 0, 0, 1, 1, 0, 1, 1, 0)	5	9	14	3	(6, 0, 2, 0, 0, 3, 0, 0, 4, 0, 3, 0, 0, 0, 0)	315
38	(0, 0, 0, 1, 1, 0, 1, 1, 1)	3	5	14	2	(3, 1, 0, 1, 0, 1, 0, 0, 3, 0, 2, 0, 0, 0, 0)	$\frac{-1}{770}$
39	(0, 0, 0, 1, 1, 1, 0, 1, 0)	3	6	14	3	(7, 0, 1, 1, 0, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0)	- <u>1</u> - 630
39 <i>a</i>		2	4	14		$\{(4, 9), (3, 7), *\} \succ \{(7, 16), *\}$	1680
39 <i>b</i>		2	5	14		$\{(3, 10), (2, 7), *\} \succ \{(5, 17), *\}$	5355
40	(0, 0, 0, 1, 1, 1, 0, 1, 0)	5	10	14	4	(9, 0, 2, 0, 0, 3, 2, 0, 4, 0, 3, 0, 1, 0, 0)	315
40.5		4	4	14		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	$> \frac{1}{780}$
40 <i>b</i>		4	5	14		$\{(2,5), (6,16), *\} \succ \{(8,21), *\}$	$\frac{1}{1260}$
41	(0, 0, 0, 1, 1, 1, 0, 1, 1)	5	11	13	2	(5, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0)	- <u>1</u> - 252
42	(0, 0, 0, 1, 1, 1, 0, 1, 1)	3	6	14	3	(6, 1, 0, 1, 0, 1, 2, 0, 3, 0, 2, 0, 1, 0, 0)	770
43	(0, 0, 0, 1, 1, 1, 0, 1, 1)	4	8	14	3	(7, 0, 1, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 0, 0)	27,720
43 <i>b</i>		3	4	14		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	36036
43 <i>c</i>		3	5	14		$\{(7, 16), (7, 19), *\}$	31 <u>920</u> 31 <u>920</u>
44	(0, 0, 0, 1, 1, 1, 0, 1, 1)	5	9	14	3	(7, 0, 1, 1, 0, 1, 2, 0, 3, 0, 1, 1, 0, 0, 0)	13860
44 <i>a</i>		4	4	14		$\{(2,5), (6,16), *\} \succ \{(8,21), *\}$	1386
44 <i>c</i>		4	6	14		$\{(7, 16), (5, 18), *\}$	720
44.5		4	4	14		$\{(5, 13), *\}$	> 1848
45	(0, 0, 0, 1, 1, 1, 1, 0, 1)	4	7	14	2	(3, 0, 2, 0, 0, 0, 1, 0, 3, 0, 1, 0, 1, 0, 0)	1010
46	(0, 0, 0, 1, 1, 1, 1, 1, 0)	4	7	14	3	(6, 0, 2, 0, 0, 2, 1, 0, 3, 1, 1, 0, 1, 0, 0)	504
46 <i>b</i>		3	6	14		$\{(3, 10), (2, 7), *\} \succ \{(5, 17), *\}$	6120
48	0, 0, 0, 1, 1, 1, 1, 1, 1)	3	5	14	2	(4, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0)	13860
49	(0, 0, 0, 1, 1, 1, 1, 1, 1)	4	7	14	3	(5, 1, 1, 0, 0, 2, 1, 0, 4, 0, 2, 0, 1, 0, 0)	$\frac{47}{27720}$

Meng Chen Fudan University, Shanghai Geography on 3-folds of General Type

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

49 <i>a</i>		4	6	14		$\{(5, 11), (4, 9), *\} \succ \{(9, 20), *\}$	$\frac{1}{840}$
50	(0, 0, 0, 1, 1, 1, 1, 1, 1)	5	9	14	3	(6, 0, 2, 0, 0, 2, 0, 1, 3, 0, 2, 0, 1, 0, 0)	$\frac{41}{13860}$
50 <i>a</i>		3	5	14		$\{(4, 11), (1, 3), *\} \succ \{(5, 14), *\}$	1260
51	(0, 0, 0, 1, 1, 1, 1, 1, 1)	6	10	14	3	(6, 0, 2, 0, 0, 2, 1, 0, 4, 0, 1, 1, 0, 0, 0)	27720
51 <i>a</i>		5	4	14		$\{(4, 10), (3, 8), *\} \succ \{(7, 18), *\}$	1386
51 <i>b</i>		5	5	14		$\{(5, 13), (5, 18), *\}$	$\frac{1}{1170}$
52	(0, 0, 1, 0, 0, 1, 0, 1, 0)	3	7	14	2	(4, 0, 0, 1, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 1)	$\frac{1}{420}$
53	(0, 0, 1, 0, 0, 1, 1, 1, 0)	4	8	14	2	(3, 0, 1, 0, 0, 3, 1, 0, 3, 0, 0, 0, 0, 0, 1)	$\frac{1}{360}$
53 <i>a</i>		3	4	15		$\{(2,5),(3,8),*\} \succ \{(5,13),*\}$	$\frac{310}{1170}$
54	(0, 0, 1, 0, 1, 0, 0, 1, 0)	2	4	14	2	(2, 0, 0, 2, 0, 3, 1, 0, 1, 0, 1, 0, 0, 0, 0)	1 840
56	(0, 0, 1, 0, 1, 0, 1, 1, 0)	3	5	14	2	(1, 0, 1, 1, 0, 4, 0, 0, 2, 0, 1, 0, 0, 0, 0)	$\frac{1}{630}$
56 <i>a</i>		2	3	14		$\{(4,9),(3,7),*\} \succ \{(7,16),*\}$	$\frac{1}{1680}$
57	(0, 0, 1, 0, 1, 0, 1, 1, 0)	3	3	14	3	(3, 0, 1, 2, 0, 5, 0, 0, 4, 0, 0, 1, 0, 0, 0)	$\frac{1}{13,86}$
58	(0, 0, 1, 0, 1, 1, 0, 1, 0)	3	6	14	3	(4, 0, 1, 1, 0, 4, 2, 0, 2, 0, 1, 0, 1, 0, 0)	-100
58 <i>a</i>		2	4	14		$\{(4,9),(3,7),*\} \succ \{(7,16),*\}$	$\frac{010}{1680}$
59	(0, 0, 1, 0, 1, 1, 0, 1, 1)	2	4	14	2	(2, 0, 0, 2, 0, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0)	3080
60	(0, 0, 1, 0, 1, 1, 1, 1, 0)	4	7	14	3	(3, 0, 2, 0, 0, 5, 1, 0, 3, 0, 1, 0, 1, 0, 0)	504 19
62	(0, 0, 1, 0, 1, 1, 1, 1, 1)	3	5	14	2	(1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 0, 1, 0, 0)	13860

◆□ > ◆□ > ◆ ≧ > ◆ ≧ > ○ € ○ ○ ○ ○

Canonically fibred 3-folds

• Let X be a nonsingular projective 3-fold of general type. When the geometric genus $p_g \ge 2$, the canonical map $\varphi_1 := \Phi_{|K_X|}$ is usually a key tool for birational classification.

向下 イヨト イヨト

Canonically fibred 3-folds

• Let X be a nonsingular projective 3-fold of general type. When the geometric genus $p_g \ge 2$, the canonical map $\varphi_1 := \Phi_{|K_X|}$ is usually a key tool for birational classification.

• If φ_1 is of fiber type (i.e. dim $\overline{\varphi_1(X)} < 3$), it is interesting to see if the birational invariants of the generic irreducible component in the general fiber of φ_1 is bounded from above.

• Let X be a nonsingular projective 3-fold of general type. When the geometric genus $p_g \ge 2$, the canonical map $\varphi_1 := \Phi_{|K_X|}$ is usually a key tool for birational classification.

• If φ_1 is of fiber type (i.e. dim $\overline{\varphi_1(X)} < 3$), it is interesting to see if the birational invariants of the generic irreducible component in the general fiber of φ_1 is bounded from above.

• Chen-Hacon \Rightarrow When X is Gorenstein minimal and φ_1 is of fiber type, then X is canonically fibred by surfaces or curves with bounded invariants.

Canonically fibred 3-folds

• Chen-Cui, 2010 \Rightarrow

Theorem

Let X be a Gorenstein minimal projective 3-fold of general type. Assume that X is canonically of fiber type. Let F be a smooth model of the generic irreducible component in the general fiber of φ_1 . Then

(i) $g(F) \le 91$ when F is a curve and $p_g(X) \ge 183$; (ii) $p_g(F) \le 37$ when F is a surface and $p_g(X) \gg 0$, say $p_g(X) \ge 3890$. **Standard construction**. Let S be a minimal surface of g eneral type with $p_{g}(S) = 0$. Assume there exists a divisor H on S such that $|K_S + H|$ is composed with a pencil of curves and that 2H is linearly equivalent to a smooth divisor R. Let \hat{C} be a generic irreducible element of the movable part of $|K_{S} + H|$. Assume \hat{C} is smooth. Set $d := \hat{C}.H$ and $D := \hat{C} \cap H$. Let C_0 be a fixed smooth projective curve of genus 2. Let θ be a 2-torsion divisor on C_0 . Set $Y := S \times C_0$. Take $\delta := p_1^*(H) + p_2^*(\theta)$ and pick a smooth divisor $\Delta \sim p_1^*(2H)$. Then the pair (δ, Δ) determines a smooth double covering $\pi: X \to Y$ and $K_X = \pi^*(K_Y + \delta)$. 通 と く ヨ と く ヨ と

Since $K_Y + \delta = p_1^*(K_S + H) + p_2^*(K_{C_0} + \theta)$, $p_{g}(Y) = 0$ and $h^{0}(K_{C_{0}} + \theta) = 1$, one sees that $|K_X| = \pi^* |K_Y + \delta|$ and that $\Phi_{|K_Y|}$ factors through π , p_1 and $\Phi_{|K_S+H|}$. Since $|K_S+H|$ is composed with a pencil of curves \hat{C} , X is canonically fibred by surfaces F and F is a double covering over $T := \hat{C} \times C_0$ corresponding to the data $(q_1^*(D) + q_2^*(\theta), q_1^*(2D))$ where q_1 and q_2 are projections. Denote by $\sigma: F \to T$ the double covering. Then $K_F = \sigma^*(K_T + q_1^*(D) + q_2^*(\theta))$. By calculation, one has $p_{g}(F) = 3g(\hat{C})$ when d = 0and $p_g(F) = 3g(\hat{C}) + d - 1$ whenever d > 0. < E ▶ < E ▶</p>

Lemma

Let S be any smooth minimal projective surface of general type with $p_g(S) = 0$. Assume $\mu : S \to \mathbb{P}^1$ is a genus 2 fibration. Let H be a general fiber of μ . Then $|K_S + H|$ is composed with a pencil of curves \hat{C} of genus $g(\hat{C})$ and $\hat{C} \cdot H = 2$.

イロト イポト イヨト イヨト

Lemma

Let S be any smooth minimal projective surface of general type with $p_g(S) = 0$. Assume $\mu : S \to \mathbb{P}^1$ is a genus 2 fibration. Let H be a general fiber of μ . Then $|K_S + H|$ is composed with a pencil of curves \hat{C} of genus $g(\hat{C})$ and $\hat{C} \cdot H = 2$.

• We take a pair (S, H) which was found by Xiao, where S is a numerical Compedelli surface with $K_S^2 = 2$, $p_g(S) = q(S) = 0$ and Tor $(S) = (\mathbb{Z}_2)^3$.

• Let $P = \mathbb{P}^1 \times \mathbb{P}^1$. Take four curves C_1 , C_2 , C_3 and C_4 defined by the following equations, respectively:

$$C_1: x = y;$$

 $C_2: x = -y;$
 $C_3: xy = 1;$
 $C_4: xy = -1;$

These four curves intersect mutually at 12 ordinary double points:

$$\begin{array}{l} (0,0), \ (\infty,\infty), \ (0,\infty), \ (\infty,0) \\ (\pm 1,\pm 1), \ (\pm \sqrt{-1},\pm \sqrt{-1}). \end{array}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Xiao \Rightarrow There exists a divisor R_1 of bidegree (14, 6) which has exactly 12 simple singularities of multiplicity 4. Then the data (δ_1, R_1) determines a singular double covering onto P.

 $K_{S}^{2} = 2$ and $p_{g}(S) = q(S) = 0$.

イロン イ団ン イヨン イヨン 三日

• Let *H* be a general fiber of *f*. Calculations \Rightarrow $|K_S + H|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in |K_S + H|$ is a smooth curve of genus 6.

• Let *H* be a general fiber of *f*. Calculations \Rightarrow $|K_S + H|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in |K_S + H|$ is a smooth curve of genus 6.

• Now we take the triple (S, H, \hat{C}) and run standard construction. What we get is the 3-fold $X_{S,19}$ which is canonically fibred by surfaces F with $p_g(F) = 19$.

• Let *H* be a general fiber of *f*. Calculations \Rightarrow $|K_S + H|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in |K_S + H|$ is a smooth curve of genus 6.

• Now we take the triple (S, H, \hat{C}) and run standard construction. What we get is the 3-fold $X_{S,19}$ which is canonically fibred by surfaces F with $p_g(F) = 19$.

• Thanks very much!

イロト イポト イヨト イヨト